An infinitely long insulating cylindrical shell has an inner radius a, an outer radius b, and an unknown uniform positive charge density ρ (charge per unit volume) distributed in the region between $r=a$ and $r=b$.
(a) Using Gauss’s law, find the electric field in the hollow inner region $r<a$. Begin with a statement of Gauss's Law and justify all steps leading to your answer.

(b) Suppose the electric field at the outer edge of the cylindrical shell (i.e., at $r=b$) is measured, and is found to have a magnitude of E_{0}. Use Gauss's law to express the charge density ρ in terms of the quantities E_{0}, a, b, and any fundamental constants you may need. Leave your answer in symbolic form.
(c) Find the magnitude E of the electric field at a radial distance $a<r<b$ from the center of the cylindrical shell. Express your answer in terms of fundamental constants and some combination of a, b, r, E_{0}, and/or ρ.

