Welcome...

PHYSICS 2135 Engineering Physics II

Dr. S. Thomas Vojta Instructor in charge
Office: 204 Physics,
Phone: 341-4793
vojtat@mst.edu
www.mst.edu/~vojtat
Office hours: Mon+ Wed 11am-12pm and by appointment
Course website: www.mst.edu/-vojtat/class 2135
Textbook: University Physics with Modern Physics, Vol. 2 Young and Freedman, 14th Edition

Course components

Lectures (Monday \& Wednesday):

- discuss important concepts, solve example problems
- please read the reading assignment before lecture!
- sections 1AA, 1BB are in-seat lectures, 1CC is an asynchronous online lecture (for details click here)

Recitations (Tuesday and Thursday):

- review concepts
- focus on problem solving (homework, practice problems)
- boardwork: you may be asked to solve a homework problem without your notes

Laboratory (every other week):

- connects learned concepts to physical experience
- details see lab instructions below

Course information

Course handbook, syllabus, and official starting equations were handed out during the first recitation

These documents and others (special homework problems, instructor information, exam times, ...) can be found at the course website: www.mst.edu/~vojtat/class 2135

Know your recitation section and recitation instructor! $\mathrm{He} /$ she is your first contact for Physics 2135 questions

How to read the syllabus

Physics 2135 Syllabus

Spring 2017

Prof. S. Thomas Vojta

Office: 204 Physics Phone: 341-4793 email: vojtat@mst.edu Course Web Site: http://web.mst.edu/~vojtat/class_2135/
Textbook: University Physics with Modern Physics Vol. 2, 14th Edition, Young and Freedman

Lecture	Recitation/Exam	Lab
Monday, January 16 Martin Luther King Day	1. Tuesday, January 17 Vector Review (to be handed out in class)	No Labs
1. Wednesday, January 18 read 21: 1-4 Electric Charge, Coulomb's Law, Electric Field, Motion of a Charge in Electric Field	2. Thursday, January 19 21: $14,25,36,74$, Special Homework \#1 (special homework assignments are posted on the course website)	
2. Monday, January 23 read 21: 5 Electric Field of a Charge Distribution	3. Tuesday, January 24 21: $51,79 \mathrm{ab}, 82 \mathrm{ab}, 86,90$ (reminder: all solutions must begin with starting equations)	Odd O1: Coulomb's Law
3. Wednesday, January 25 read 21: 6-7; 22: 1-3 Electric Field Lines, Dipoles, Electric Flux, Gauss' Law	4. Thursday, January 26 21: 53,$55 ; 22: 10,45$, Special Homework \#2 (reminder: all solutions must begin with starting equations)	
4. Monday, January 30	5. Tuesday, January 31	Even

How to read the syllabus

Physics 2135 Syllabus
Office: 204 Physics Phone: 341-4793 email: vojtat@mst.edu Course Web Site: http://web.mst.edu/~vojtat/class_2135/
Textbook: University Physics with Modern Physics Vol. 2, 14th Edition, Young and Freedman

Lecture	Recitation/Exam	Lab
Monday, January 16 Martin Luther King Day	1. Tuesday, January 17 Vector Review (to be handed out in class)	No Labs
wednesda, January 18 read 21: 1-4 lectric Cb ge, Coulomb's	2. Thursday, January 19 21: 14, 25, 36, 74, Special Homework \#1 (special homework assignments are posted on the	
Law, Ele a Charge Reading assignnent. Please read		
2. Monda read 21: Electric 1 this lecture! Distribution		
3. Wednesday, January 25 read 21: 6-7; 22: 1-3 Electric Field Lines, Dipoles, Electric Flux, Gauss' Law	4. Thursday, January 26 21: 53, 55; 22: 10, 45, Special Homework \#2 (reminder: all solutions must begin with starting equations)	
4. Monday, January 30	5. Tuesday, January 31	Odd

How to read the syllabus

Physics 2135 Syllabus
Office: 204 Physics Phone: 341-4793 email: vojtat@mst.edu
Course Web Site: http://web.mst.edu/~vojtat/class_2135/
Textbook: University Physics with Modern Physics Vol. 2, 14th Edition, Young and Freedman

Lecture	Recitation/Exam	Lab
Monday, January 16	1. Tuesday, January 17	No Labs
Martin Luther King Day	Vector Review (to be handed out in class)	
1. Wednesday, January 18 read 21: 1-4	2 Tiursaay, January 19 21: $14,25,36,74$, Special Homework \#1	
Electric Charge, Coulomb's	(spuaial homework assignments are nerct on the	
Law, Electric Field, Motion of a Charge in Electric Field	course webs Homework assignment	oblems
2. Monday, January 23 read 21: 5 Electric Field of a Charge Distribution	3. Tuesday, 21: 51, 79ab $14,25,36$ and 74 of cha must begin well as special homewo due at the start of this re	ter 21 as \#1 are itation.
3. Wednesday, January 25 read 21: 6-7; 22: 1-3 Electric Field Lines, Dipoles, Electric Flux, Gauss' Law	4. Thursday, January 26 21: 53,$55 ; 22: 10,45$, Special Homework \#2 (reminder: all solutions must begin with starting equations)	
4. Monday, January 30	5. Tuesday, January 31	Even

How to read the syllabus

Physics 2135 Syllabus
Office: 204 Physics Phone: 341-4793 email: vojtat@mst.edu
Course Web Site: http://web.mst.edu/~vojtat/class_2135/
Textbook: University Physics with Modern Physics Vol. 2, 14th Edition, Young and Freedman

Lecture	Recitation/Exam	Lab
Monday, January 16	1. Tuesday, January 17	No Labs
Martin Luther King Day	Vector Review (to be handed out in class)	
1. Wednesday, January 18	2. Thursday, January 19 21: $14,25,36,74$, Special Homework \#1 (special homework assignments are posted on the course website)	
read 21: 1-4		
Electric Charge, Coulomb's		
Law, Electric Field, Motion of a Charge in Electric Field		
2. Monday, January 23	3. Tuesday, January 24 21: $51,79 \mathrm{ab}, 82 \mathrm{ab}, 86,90$ (reminder: all solution: must begin with starting equations)	
read 21:5		O1: Cou
Electric Field of a Charge		
Distribution	Lab, odd and even refers	
3. Wednesday, January 25 read 21: 6-7; 22: 1-3	4. Thursday, Janua 21: 53, 55; 22: 10, 4 . to your lab section number	
Electric Field Lines, Dipoles, Electric Flux, Gauss' Law	(reminder: all solutions must begin with starting equations)	
4. Monday, January 30	5. Tuesday, January 31	Even

Laboratory information

Laboratory website:
 http://physics.mst.edu/currentcourses/labs/index.html

Professor in charge of lab:
Dr. Dan Waddill, waddill@mst.edu, 341-4797, 103 Physics
You must purchase a lab manual at the Physics Office, room 102, for $\$ 25$ (cash). You will not receive lab credit without a lab manual.

Your lab section is numbered 3L"some number". If "some number" is even, you are in EVEN labs. If "some number" is odd, you are in ODD labs.

There are no labs this week!

Physics Learning Center

Monday \& Wednesday
2:00-4:30pm and 6:00-8:30pm rooms 129 +130 Physics
attending the PLC is voluntary

open learning environment
faculty and peer learning assistants provide problem solving and homework help

I hope your time in Physics 2135 will be productive!

Lecture 1 agenda:

Electric Charge.

Review of some things you hopefully learned in high school.
Coulomb's Law (electrical force between charged particles). You must be able to calculate the electrical forces between one or more charged particles.

The electric field.

You must be able to calculate the force on a charged particle in an electric field.

Electric field due to point charges.

You must be able to calculate electric field of one or more point charges.
Motion of a charged particle in a uniform electric field.
You must be able to solve for the trajectory of a charged particle in a uniform electric field.

Electric Charge

What is charge?

- basic property of matter (just like, say, mass)
- humans cannot directly sense charge but some animals can
- we can observe charge indirectly via its effects on matter
- customary symbol: q or Q, unit: $[q]=C$ (Coulomb)

Two kinds of charge:

- like charges repel
- unlike charges attract

Law of conservation of charge:

- net amount of charge does not change in any process
(Not on your starting equation sheet, but a fact that you can use any time.)

Charges are quantized (come in units of $\mathrm{e}=1.6 \times 10^{-19} \mathrm{C}$).

Elementary particles that make up atoms:

- Protons + charge $+\mathrm{e}=+1.6 \times 10^{-19} \mathrm{C}$
- Neutrons uncharged
- Electrons - charge $-\mathrm{e}=-1.6 \times 10^{-19} \mathrm{C}$

Helium atom

Lecture 1 agenda:

Electric Charge.

Review of some things you hopefully learned in high school.

Coulomb's Law (electrical force between charged particles).

You must be able to calculate the electrical forces between one or more charged particles.

The electric field.

You must be able to calculate the force on a charged particle in an electric field.

Electric field due to point charges.

You must be able to calculate electric field of one or more point charges.
Motion of a charged particle in a uniform electric field.
You must be able to solve for the trajectory of a charged particle in a uniform electric field.

Coulomb's Law

Force between two point charges q_{1} and q_{2} :

- force is vector, directed along connecting line

- magnitude:

$$
F_{12}=k \frac{\left|q_{1} q_{2}\right|}{r_{12}^{2}}
$$

r_{12} is the distance between the charges
$\mathrm{k}=9 \times 10^{9} \frac{\mathrm{Nm}^{2}}{\mathrm{C}^{2}}=\frac{1}{4 \pi \varepsilon_{0}} \quad$ with $\quad \varepsilon_{0}=8.85 \times 10^{-12} \frac{\mathrm{C}^{2}}{\mathrm{Nm}^{2}}$.

a note on starting equations

$$
\mathrm{F}_{12}=\mathrm{k} \frac{\left|\mathrm{q}_{1} \mathrm{q}_{2}\right|}{\mathrm{r}_{12}^{2}}
$$

is an official starting equation

- in homework and exam solutions, official starting equations can be used without deriving them
- all other steps of a solution need to be derived
- you may formulate the official starting equation in different
variables,
- for example the equation $F_{E}=k \frac{\left|Q_{A} Q_{B}\right|}{D^{2}} \quad$ is "legal"
*"Starting" does not mean that a starting equation has to be the first thing that appears on your paper. It might be several lines before you use a starting equation.

Coulomb's Law is strictly valid for point charges only. It is a good approximation for small uniformly charged objects.

If more than two charges are involved, the net force is the vector sum of all forces (superposition). For objects with complex shapes, you must add up all the forces acting on each separate charge (calculus!!).

Example: a positive charge $\mathrm{Q}_{1}=+\mathrm{Q}$ is located a distance d along the y-axis from the origin. A second positive charge $Q_{2}=+Q$ is located at the origin and a negative charge $Q_{3}=-2 Q$ is located on the x-axis a distance 2 d away from Q_{1}. Calculate the net electrostatic force on Q_{1} due to the other two charges.

To be worked at the blackboard. You should apply the expert techniques you learned in Physics 1135 when you work Physics 2135 problems.

Skip to slide 25...

Example: a positive charge $\mathrm{Q}_{1}=+\mathrm{Q}$ is located a distance d along the y-axis from the origin. A second positive charge $Q_{2}=+Q$ is located at the origin and a negative charge $Q_{3}=-2 Q$ is located on the x-axis a distance 2 d away from Q_{1}. Calculate the net electrostatic force on Q_{1} due to the other two charges.

Calculate the net electrostatic force on Q_{1} due to the other two charges.

$$
\begin{aligned}
& \vec{F}=\vec{F}_{2}+\vec{F}_{3} \\
& \vec{F}_{2}=k \frac{\left|q_{1} q_{2}\right|}{r_{12}^{2}} \hat{j}=k \frac{|(+Q)(+Q)|}{d^{2}} \hat{j}=k \frac{Q^{2}}{d^{2}} \hat{j} \\
& \vec{F}_{3}=F_{3 x} \hat{i}+F_{3 y} \hat{j} \\
& \vec{F}_{3}=F_{3} \cos \theta \hat{i}-F_{3} \sin \theta \hat{j} \\
& \vec{F}_{3}=k \frac{\left|q_{1} q_{3}\right|}{r_{13}^{2}} \cos \theta \hat{i}-k \frac{\left|q_{1} q_{3}\right|}{r_{13}^{2}} \sin \theta \hat{j} \\
& \vec{F}_{3}=k \frac{|(+Q)(-2 Q)|}{(2 d)^{2}} \frac{\sqrt{3}}{2} \hat{i}-k \frac{|(+Q)(-2 Q)|}{(2 d)^{2}} \frac{1}{2} \hat{j}
\end{aligned}
$$

Calculate the net electrostatic force on Q_{1} due to the other two charges.

$$
\begin{aligned}
& \vec{F}_{3}=k \frac{(+Q)(-2 Q) \mid}{(2 d)^{2}} \frac{\sqrt{3}}{2} \hat{i}-k \frac{|(+Q)(-2 Q)|}{(2 d)^{2}} \frac{1}{2} \hat{j} \\
& \vec{F}_{3}=k \frac{2 Q^{2}}{4 d^{2}} \frac{\sqrt{3}}{2} \hat{i}-k \frac{2 Q^{2}}{4 d^{2}} \frac{1}{2} \hat{j}
\end{aligned}
$$

$$
\vec{F}_{3}=\frac{\sqrt{3}}{4} \frac{k Q^{2}}{d^{2}} \hat{i}-\frac{1}{4} \frac{k Q^{2}}{d^{2}} \hat{j}
$$

$$
\vec{F}=\vec{F}_{2}+\vec{F}_{3}=k \frac{Q^{2}}{d^{2}} \hat{j}+\frac{\sqrt{3}}{4} \frac{k Q^{2}}{d^{2}} \hat{i}-\frac{1}{4} \frac{k Q^{2}}{d^{2}} \hat{j}
$$

$$
\sin \theta=\frac{1}{2} \quad \cos \theta=\frac{\sqrt{3}}{2}
$$

$$
\vec{F}=\frac{\sqrt{3}}{4} \frac{k Q^{2}}{d^{2}} \hat{i}+\frac{3}{4} \frac{k Q^{2}}{d^{2}} \hat{j}
$$

Comments:
Once you have become an expert at problems like this, you can combine and perhaps even skip some steps.

Skipping steps on work to be graded is not recommended!
You may express your answer in unit vector notation, as on the previous slide.

Or you may write $\quad F_{x}=\frac{\sqrt{3}}{4} \frac{\mathrm{kQ}^{2}}{\mathrm{~d}^{2}} \quad \mathrm{~F}_{\mathrm{y}}=\frac{3}{4} \frac{\mathrm{kQ}^{2}}{\mathrm{~d}^{2}}$
You may also express your answer as a magnitude and direction.

All three of the above ways of writing F completely specify the vector.

If Q_{1} were free to move, what direction would its initial acceleration be? How would I calculate the acceleration?

Would the acceleration remain constant as Q_{1} moved? Could I use the equations of kinematics (remember them from Physics 1135 ?) to describe the motion of Q_{1} ?

Lecture 1 agenda:

Electric Charge.

Just a reminder of some things you learned back in grade school.
Coulomb's Law (electrical force between charged particles). You must be able to calculate the electrical forces between one or more charged particles.

The electric field.

You must be able to calculate the force on a charged particle in an electric field.

Electric field due to point charges.

You must be able to calculate electric field of one or more point charges.
Motion of a charged particle in a uniform electric field. You must be able to solve for the trajectory of a charged particle in a uniform electric field.

Coulomb's Law: it's just part of a bigger picture

Coulomb's Law:

$$
\mathrm{F}_{12}=\frac{1}{4 \pi \varepsilon_{0}} \frac{\left|\mathrm{q}_{1} \mathrm{q}_{2}\right|}{\mathrm{r}_{12}^{2}},
$$

Charged particles produce forces over great distances. How does a charged particle "know" another one is "there?"

Introduce concept of electric field

- new way of thinking about the Coulomb force

The Electric Field

- a charged particle creates a "field" in all space.
- other charged particles sense the field and experience a force in response
- Distinguish source charges and test charges

Definition of electric field:

- one or more source charges
- define the electric field $\overrightarrow{\mathrm{E}}$ via force they exert on a test charge q_{0} :

$$
\overrightarrow{\mathrm{E}}=\frac{\overrightarrow{\mathrm{F}}_{0}}{\mathrm{q}_{0}} \quad \begin{aligned}
& \text { The subscript " } 0 \text { " reminds you the force is on the } \\
& \text { "test charge." I won't require the subscripts when } \\
& \text { you use this equation for boardwork or on exams. }
\end{aligned}
$$

$$
\overrightarrow{\mathrm{F}}=\mathrm{q} \overrightarrow{\mathrm{E}}
$$

This is your second starting equation. It is a vector equation that tells you magnitude and direction of the force!
$\begin{aligned} & \text { The units of electric field are } \\ & \text { newtons/coulomb. }\end{aligned} \quad[\overrightarrow{\mathrm{E}}]=\frac{\left[\overrightarrow{\mathrm{F}}_{0}\right]}{\left[\mathrm{q}_{0}\right]}=\frac{\mathrm{N}}{\mathrm{C}}$

In chapter 23, you will learn that the units of electric field can also be expressed as volts/meter:

$$
[\mathrm{E}]=\frac{\mathrm{N}}{\mathrm{C}}=\frac{\mathrm{V}}{\mathrm{~m}}
$$

The electric field can exist independent of whether there is a charged particle around to "feel" it.

Remember: the electric field direction is the direction a + charge would feel a force.

A + charge would be repelled by another + charge.

Therefore the direction of the electric field is away from positive (and towards negative).

Gravitational Fields

The idea of a field is not new to you. You experienced fields (gravitational) in Physics 1135.

$$
\begin{gathered}
\overrightarrow{\mathrm{F}}_{\mathrm{G}}=\mathrm{G} \frac{\mathrm{~m}_{1} \mathrm{~m}_{2}}{\mathrm{r}_{12}^{2}} \text {, attractive } \\
\overrightarrow{\mathrm{g}}(\overrightarrow{\mathrm{r}})=\frac{\overrightarrow{\mathrm{F}}_{\mathrm{G}}}{\mathrm{~m}} \quad \begin{array}{l}
\text { Units of } \mathrm{g} \text { are } \\
\text { actually } \mathrm{N} / \mathrm{kg}!
\end{array}
\end{gathered}
$$

$\overrightarrow{\mathrm{g}}(\overrightarrow{\mathrm{r}})$ is the local gravitational field. On earth, it is about 9.8 N / kg, directed towards the center of the earth.

A particle with mass modifies the properties of the space around it.

Lecture 1 agenda:

Electric Charge.

Review of some things you hopefully learned in high school.
Coulomb's Law (electrical force between charged particles). You must be able to calculate the electrical forces between one or more charged particles.

The electric field.

You must be able to calculate the force on a charged particle in an electric field.

Electric field due to point charges.

You must be able to calculate electric field of one or more point charges.
Motion of a charged particle in a uniform electric field. You must be able to solve for the trajectory of a charged particle in a uniform electric field.

The Electric Field Due to a Point Charge

Coulomb's law says

$$
\mathrm{F}_{12}=\mathrm{k} \frac{\left|\mathrm{q}_{1} \mathrm{q}_{2}\right|}{\mathrm{r}_{12}^{2}}
$$

treat q_{1} as source charge and q_{2} as test charge, divide by q_{2}, the electric field due to point charge q_{1} is

$$
\left\lvert\, \overrightarrow{\mathrm{E}}_{\mathrm{q}_{1}}=\mathrm{k} \frac{\left|\mathrm{q}_{1}\right|}{\mathrm{r}_{12}{ }^{2}}\right.
$$

or, generally

$$
\mathrm{E}=\mathrm{k} \frac{|\mathrm{q}|}{\mathrm{r}^{2}}
$$

If we define \hat{r} as a unit vector from the source point to the field point...

...then the vector equation for the electric field of a point charge becomes:

$$
\overrightarrow{\mathrm{E}}=\mathrm{k} \frac{\mathrm{q}}{\mathrm{r}^{2}} \hat{\mathrm{r}}
$$

You may start with either equation for the electric field (this one or the one on the previous slide). But only use this one if you REALLY know what you are doing!

Example: calculate the magnitude of the electric field at the electron's distance away from the proton in a hydrogen atom
$\left(5.3 \times 10^{-11} \mathrm{~m}\right)$.

D

$$
E_{P}=\frac{k|q|}{r^{2}}=\frac{k(+e)}{D^{2}}=\frac{9 \times 10^{9}\left(1.6 \times 10^{-19}\right)}{\left(5.3 \times 10^{-11}\right)^{2}} \frac{N}{C}
$$

$$
E_{P}=5.1 \times 10^{11} \frac{N}{C}
$$

For comparison, air begins to break down and conduct electricity at about $30 \mathrm{kV} / \mathrm{cm}$, or $3 \times 10^{6} \mathrm{~V} / \mathrm{m}$.

A Dipole

A combination of two electric charges with equal magnitude and opposite sign, separated by a fixed distance, is called a dipole.

The distance between the charges is d . Dipoles are "everywhere" in nature.

The Electric Field of a Dipole

Example: calculate the electric field at point P, which lies on the perpendicular bisector a distance L from a dipole of charge q.

I am going to skip this example in the "live" lecture this semester.

You have a homework problem similar to this calculation.

The video lecture segment "electric field of point charges" shows the calculation.

Students in the "live" lecture are welcome to watch the lecture videos.

Example: calculate the electric field at point P, which lies on the perpendicular bisector a distance L from a dipole of charge q.

Example: calculate the electric field at point P, which lies on the perpendicular bisector a distance L from a dipole of charge q.

$$
\overrightarrow{\mathrm{E}}=\frac{\mathrm{qd}}{4 \pi \varepsilon_{0} \mathrm{r}^{3}} \hat{\mathrm{i}}
$$

d
"Charge on dipole" is positive by convention, so no absolute value signs needed around q.

d

$$
\mathrm{E}=\frac{\mathrm{qd}}{4 \pi \varepsilon_{0} \mathrm{r}^{3}}
$$

Caution! The above equation for E applies only to points along the perpendicular bisector of the dipole.

It is not a starting equation.

(r is not a system parameter, but let's not worry about that right now)

Lecture 1 agenda:

Electric Charge.

Review of some things you hopefully learned in high school.
Coulomb's Law (electrical force between charged particles). You must be able to calculate the electrical forces between one or more charged particles.

The electric field.

You must be able to calculate the force on a charged particle in an electric field.

Electric field due to point charges.

You must be able to calculate electric field of one or more point charges.

Motion of a charged particle in a uniform electric field.

You must be able to solve for the trajectory of a charged particle in a uniform electric field.

Motion of a Charged Particle in a Uniform Electric Field

charged particle in electric field experiences force, and if it is free to move, an acceleration.
if the only force is due to the electric field

$$
\sum \overrightarrow{\mathrm{F}}=\mathrm{m} \overrightarrow{\mathrm{a}}=\mathrm{q} \overrightarrow{\mathrm{E}} .
$$

$\overrightarrow{\mathrm{E}}$ is constant $\Longrightarrow \overrightarrow{\mathrm{a}}$ constant, use the equations of kinematics* (Physics 1135?).

Example: an electron moving with velocity v_{0} in the positive x direction enters a region of uniform electric field that makes a right angle with the electron's initial velocity. Express the position and velocity of the electron as a function of time.

Skip to slide 48...
To be worked at the blackboard in lecture.
What would be different for a proton?

$$
\begin{aligned}
& \mathrm{v}_{\mathrm{fx}}=\mathrm{v}_{\mathrm{ix}}+\mathrm{a}_{\mathrm{x}} \Delta \mathrm{t} \\
& \mathrm{x}_{\mathrm{f}}=\mathrm{x}_{\mathrm{i}}+\mathrm{v}_{\mathrm{ix}} \Delta \mathrm{t}+\frac{1}{2} \mathrm{a}_{\mathrm{x}}(\Delta \mathrm{t})^{2}
\end{aligned}
$$

Express the position and velocity of the electron as a function of time.

$$
\begin{aligned}
& \overrightarrow{\mathrm{F}}_{\mathrm{E}}=\mathrm{q} \overrightarrow{\mathrm{E}}=(-\mathrm{e}) \overrightarrow{\mathrm{E}}=-\mathrm{eE} \hat{j}=\mathrm{ma} \\
& \overrightarrow{\mathrm{a}}=-\frac{\mathrm{eE}}{\mathrm{~m}} \hat{\mathrm{j}} \\
& a_{x}=0 \quad a_{y}=-\frac{e E}{m}
\end{aligned}
$$

Let's work the rest of the problem one component at a time.

Express the position and velocity of the electron as a function of time.

Position:

$$
\mathrm{x}=\mathrm{v}_{0} \mathrm{t} \quad \mathrm{y}=-\frac{1}{2} \frac{\mathrm{eE}}{\mathrm{~m}} \mathrm{t}^{2}
$$

$$
\mathrm{y}=\frac{1}{2} \mathrm{a}_{\mathrm{y}} \mathrm{t}^{2}=-\frac{1}{2} \frac{\mathrm{eE}}{\mathrm{~m}} \mathrm{t}^{2}
$$

Express the position and velocity of the electron as a function of time.

Velocity:

$$
\mathrm{v}_{\mathrm{x}}=\mathrm{v}_{0} \quad \mathrm{v}_{\mathrm{y}}=-\frac{\mathrm{eE}}{\mathrm{~m}} \mathrm{t} \quad \mathrm{v}_{\mathrm{y}}=\mathrm{a}_{\mathrm{y}} \mathrm{t}=-\frac{\mathrm{eE}}{\mathrm{~m}} \mathrm{t}
$$

What is the shape of the electron's path?

The trajectory of the electron is a parabola, concave down. J ust like the trajectory of a ball thrown horizontally in the gravitational field of the Earth.

Concluding Remarks

Homework Hints (may not apply every semester)

There are two kinds of electric field problems in today's lecture:

1. Given an electric field, calculate the force on $a \quad \overrightarrow{\mathrm{~F}}=q \overrightarrow{\mathrm{E}}$ charged particle.
2. Given one or more charged particles, calculate the electric field they produce.

Make sure you understand which kind of problem you are working on!

Homework Hints (may not apply every semester)

Symmetry is your friend. Use it when appropriate. Don't use it when not appropriate.

$$
\overrightarrow{\mathrm{F}}_{\mathrm{G}, \mathrm{pair}}=\frac{\mathrm{GmM}}{\mathrm{r}^{2}} \text {, attractive }
$$

The above equation is on the Physics 1135 Starting Equation Sheet, which is posted in the recitation classrooms. You are free to use Physics 1135 starting equations at any time.

Homework Hints (may not apply every semester)

Your starting equations so far are:

$$
\mathrm{F}_{12}=\mathrm{k} \frac{\left|\mathrm{q}_{1} \mathrm{q}_{2}\right|}{\mathrm{r}_{12}^{2}}
$$

$$
\overrightarrow{\mathrm{E}}=\frac{\overrightarrow{\mathrm{F}}_{0}}{\mathrm{q}_{0}}
$$

(plus Physics 1135 starting equations).

Remove the absolute value signs ONLY IF you know that all charges are positive.

NEVER do this: $\quad \overrightarrow{\mathrm{E}}=\frac{\overrightarrow{\mathrm{F}}_{0}}{\mathrm{q}_{0}} \Rightarrow \mathrm{q}_{0}=\frac{\overrightarrow{\mathrm{F}}_{0}}{\overrightarrow{\mathrm{E}}} \quad$ (why?)

Learning Center Today 2:00-4:30, 6:00-8:30 Rooms 129/ 130 Physics

