Exam 2: Tuesday, March 21, 5:00-6:00 PM

Test rooms:

- Instructor
- Dr. Hale
- Dr. Kurter
- Dr. Madison
- Dr. Parris
- Mr. Upshaw
- Dr. Waddill
- Special Accommodations
(Contact Dr. Vojta a.s.a.p. if you need accommodations different than for exam 1)

Sections

F, H
B, N
K, M
J, L
A, C, E, G
D

Room
104 Physics
125 BCH
199 Toomey
B-10 Bertelsmeyer*
G-3 Schrenk
120 BCH
Testing Center

Today's agenda:

Magnetic Fields Due To A Moving Charged Particle.

You must be able to calculate the magnetic field due to a moving charged particle.

Biot-Savart Law: Magnetic Field due to a Current Element.

 You must be able to use the Biot-Savart Law to calculate the magnetic field of a currentcarrying conductor (for example: a long straight wire).
Force Between Current-Carrying Conductors.

You must be able to calculate forces between current-carrying conductors.
*last week we studied the effects of magnetic fields on charges, today we learn how to produce magnetic fields

Magnetic Field of a Moving Charged Particle

- moving charge creates magnetic field

$$
\vec{B}=\frac{\mu_{0}}{4 \pi} \frac{q \vec{V} \times \hat{r}}{r^{2}} .
$$

μ_{0} is a constant, $\mu_{0}=4 \pi \times 10^{-7} \mathrm{~T} \cdot \mathrm{~m} / \mathrm{A}$

As in lecture 14: Motion with respect to what? You, the earth, the sun? Highly nontrivial, leads to Einstein's theory of relativity.

Remember:
\hat{r} is unit vector from source point (the thing that causes the field) to the field point P
(location where the field is being measured).

Detour: cross products of unit vectors

- need lots of cross products of unit vectors $\hat{\mathrm{i}}, \hat{\mathrm{j}}, \hat{\mathrm{k}}$

Work out determinant:

$$
\text { Example: } \quad \hat{k} \times(-\hat{j})=\operatorname{det}\left(\begin{array}{ccc}
\hat{i} & \hat{j} & \hat{k} \\
0 & 0 & 1 \\
0 & -1 & 0
\end{array}\right)=\hat{i}(0-(-1))=\hat{i}
$$

Use right-hand rule:

Detour: cross products of unit vectors

Cyclic property:

"forward"
"backward"

$$
\xrightarrow[\hat{i} \times \hat{j}=\hat{k}]{i \mathrm{j}} \mathrm{kijk}
$$

ijkijk
$\hat{j} \times \hat{i}=-\hat{k}$

Example: proton 1 has a speed $\mathrm{v}_{0}\left(\mathrm{v}_{0} \ll \mathrm{c}\right)$ and is moving along the x-axis in the $+x$ direction. Proton 2 has the same speed and is moving parallel to the x-axis in the $-x$ direction, at a distance r directly above the x-axis. Determine the electric and magnetic forces on proton 2 at the instant the protons pass closest to each other.

This is example 28.1 in your text.

Electric force on proton 2:

- Electric field due to proton 1 at the position of proton 2 :

$$
\overrightarrow{\mathrm{E}}_{1}=\frac{1}{4 \pi \varepsilon_{0}} \frac{\mathrm{q}_{1}}{\mathrm{r}^{2}} \hat{\mathrm{r}}=\frac{1}{4 \pi \varepsilon_{0}} \frac{\mathrm{e}}{\mathrm{r}^{2}} \hat{\mathrm{j}}
$$

- this electric field exerts a force on proton 2

$$
\overrightarrow{\mathrm{F}}_{\mathrm{E}}=\mathrm{q} \overrightarrow{\mathrm{E}}_{1}=\mathrm{e} \frac{1}{4 \pi \varepsilon_{0}} \frac{\mathrm{e}}{\mathrm{r}^{2}} \hat{\mathrm{j}}=\frac{1}{4 \pi \varepsilon_{0}} \frac{\mathrm{e}^{2}}{\mathrm{r}^{2}} \hat{\mathrm{j}}
$$

Magnetic force on proton 2:

-magnetic field due to proton 1 at the position of proton 2

$$
\begin{aligned}
& \vec{B}_{1}=\frac{\mu_{0}}{4 \pi} \frac{q_{1} \vec{v}_{1} \times \hat{r}}{r^{2}} \\
& \vec{B}_{1}=\frac{\mu_{0}}{4 \pi} \frac{e v_{0} \hat{i} \times \hat{j}}{r^{2}} \\
& \vec{B}_{1}=\frac{\mu_{0}}{4 \pi} \frac{e v_{0}}{r^{2}} \hat{k}
\end{aligned}
$$

Proton 2 "feels" a magnetic force due to the magnetic field of proton 1.

$$
\begin{gathered}
\overrightarrow{\mathrm{F}}_{\mathrm{B}}=\mathrm{q}_{2} \overrightarrow{\mathrm{v}}_{2} \times \overrightarrow{\mathrm{B}}_{1} \\
\overrightarrow{\mathrm{~F}}_{\mathrm{B}}=\mathrm{ev}_{0}(-\hat{\mathrm{i}}) \times\left(\frac{\mu_{0}}{4 \pi} \frac{\mathrm{ev}_{0}}{\mathrm{r}^{2}} \hat{\mathrm{k}}\right) \\
\overrightarrow{\mathrm{F}}_{\mathrm{B}}=\frac{\mu_{0}}{4 \pi} \frac{\mathrm{e}^{2} v_{0}^{2}}{\mathrm{r}^{2}} \hat{\mathrm{j}}
\end{gathered}
$$

What would proton 1 "feel?"

- both forces are in the +y direction
- ratio of their magnitudes:

$$
\begin{gathered}
\frac{\mathrm{F}_{\mathrm{B}}}{\mathrm{~F}_{\mathrm{E}}}=\frac{\left(\frac{\mu_{0}}{4 \pi} \frac{\mathrm{e}^{2} v_{0}^{2}}{r^{2}}\right)}{\left(\frac{1}{4 \pi \varepsilon_{0}} \frac{\mathrm{e}^{2}}{r^{2}}\right)} \\
\frac{\mathrm{F}_{\mathrm{B}}}{\mathrm{~F}_{\mathrm{E}}}=\mu_{0} \varepsilon_{0} v_{0}^{2}
\end{gathered}
$$

Later we will find that

$$
\mu_{0} \varepsilon_{0}=\frac{1}{\mathrm{c}^{2}}
$$

Thus $\frac{F_{B}}{F_{E}}=\frac{v_{0}^{2}}{c^{2}}$

If $v_{0}=10^{6} \mathrm{~m} / \mathrm{s}$, then

$$
\frac{F_{B}}{F_{E}}=\frac{\left(10^{6}\right)^{2}}{\left(3 \times 10^{8}\right)^{2}}=1.11 \times 10^{-5}
$$

What if you are a nanohuman, lounging on proton 1. You rightfully claim you are at rest. There is no magnetic field from your proton, and no magnetic force on 2.

Another nanohuman riding on proton 2 would say "I am at rest, so there is no magnetic force on my proton, even though there is a magnetic field from proton 1."

This calculation says there is a magnetic field and force. Who is right? Take Physics 2305/107 to learn the answer.

Or see here, here, and here for a hint about how to resolve the paradox.

Today's agenda:

Magnetic Fields Due To A Moving Charged Particle.

 You must be able to calculate the magnetic field due to a moving charged particle.
Biot-Savart Law: Magnetic Field due to a Current Element.

You must be able to use the Biot-Savart Law to calculate the magnetic field of a currentcarrying conductor (for example: a long straight wire).

Force Between Current-Carrying Conductors.

 You must be able to begin with starting equations and calculate forces between currentcarrying conductors.
Biot-Savart Law: magnetic field of a current element

current I in infinitesimal length $\mathrm{d} \vec{\ell}$ of wire gives rise to magnetic field d \vec{B}

$$
\mathrm{d} \overrightarrow{\mathrm{~B}}=\frac{\mu_{0}}{4 \pi} \frac{\mathrm{Id} \vec{\ell} \times \hat{r}}{\mathrm{r}^{2}}
$$

Biot-Savart Law

Derived, as in lecture 15, by summing contributions of all charges in wire element

You may see the equation written using $\vec{r}=r \hat{r}$.

Applying the Biot-Savart Law

Example: calculate the magnetic field at point P due to a thin straight wire of length L carrying a current I. (P is on the perpendicular bisector of the wire at distance a.)

ds is an infinitesimal quantity in the direction of dx , so

$$
\mathrm{dB}=\frac{\mu_{0}}{4 \pi} \frac{\mathrm{Idx} \sin \theta}{\mathrm{r}^{2}}
$$

$\sin \theta=\frac{a}{r} \quad r=\sqrt{x^{2}+a^{2}} \quad d B=\frac{\mu_{0}}{4 \pi} \frac{I d x \sin \theta}{r^{2}}$

$$
\mathrm{dB}=\frac{\mu_{0}}{4 \pi} \frac{\mathrm{Idxa}}{\mathrm{r}^{3}}=\frac{\mu_{0}}{4 \pi} \frac{\mathrm{Idxa}}{\left(\mathrm{x}^{2}+\mathrm{a}^{2}\right)^{3 / 2}}
$$

$$
\mathrm{B}=\int_{-L / 2}^{L / 2} \frac{\mu_{0}}{4 \pi} \frac{\mathrm{Idxa}}{\left(\mathrm{x}^{2}+\mathrm{a}^{2}\right)^{3 / 2}}
$$

$$
\mathrm{B}=\frac{\mu_{0} \mathrm{I} \mathrm{a}}{4 \pi} \int_{-L / 2}^{L / 2} \frac{\mathrm{dx}}{\left(\mathrm{x}^{2}+\mathrm{a}^{2}\right)^{3 / 2}}
$$

$$
\mathrm{B}=\frac{\mu_{0} \mathrm{I} a}{4 \pi} \int_{-L / 2}^{\mathrm{L} / 2} \frac{\mathrm{dx}}{\left(\mathrm{x}^{2}+\mathrm{a}^{2}\right)^{3 / 2}}
$$

look integral up in tables, use the web, or use trig substitutions

$$
\int \frac{d x}{\left(x^{2}+a^{2}\right)^{3 / 2}}=\frac{x}{a^{2}\left(x^{2}+a^{2}\right)^{1 / 2}}
$$

$$
\begin{aligned}
B & =\left.\frac{\mu_{0} I a}{4 \pi} \frac{x}{a^{2}\left(x^{2}+a^{2}\right)^{1 / 2}}\right|_{-L / 2} ^{L / 2} \\
& =\frac{\mu_{0} I a}{4 \pi}\left[\frac{L / 2}{a^{2}\left((L / 2)^{2}+a^{2}\right)^{1 / 2}}-\frac{-L / 2}{a^{2}\left((-L / 2)^{2}+a^{2}\right)^{1 / 2}}\right]
\end{aligned}
$$

$$
\begin{aligned}
& B=\frac{\mu_{0} I a}{4 \pi}\left[\frac{2 L / 2}{a^{2}\left(L^{2} / 4+a^{2}\right)^{1 / 2}}\right] \\
& B=\frac{\mu_{0} I L}{4 \pi a} \frac{1}{\left(L^{2} / 4+a^{2}\right)^{1 / 2}} \\
& B=\frac{\mu_{0} I L}{2 \pi a} \frac{1}{\sqrt{L^{2}+4 a^{2}}} \\
& B=\frac{\mu_{0} I}{2 \pi a} \frac{1}{\sqrt{1+\frac{4 a^{2}}{L^{2}}}}
\end{aligned}
$$

$$
B=\frac{\mu_{0} I}{2 \pi a} \frac{1}{\sqrt{1+\frac{4 a^{2}}{L^{2}}}}
$$

When $\mathrm{L} \rightarrow \infty, \mathrm{B}=\frac{\mu_{0} \mathrm{I}}{2 \pi \mathrm{a}}$.

Magnetic Field of a Long Straight Wire

We've just derived the equation for the magnetic field around a long, straight* wire...

$$
B=\frac{\mu_{0} I}{2 \pi r}
$$

> | r is shortest (perpendicular) distance |
| :--- |
| between field point and wire |

...with a direction given by a "new" righthand rule.

link to image source

Looking "down" along the wire:

- magnetic field is not constant
- at fixed distance r from wire, magnitude of field is constant
 (but vector magnetic field is not uniform).
- magnetic field direction is a tangent to imaginary circles around wire

Example: calculate the magnetic field at point O due to the wire segment shown. The wire carries uniform current I, and consists of two radial straight segments and a circular arc of radius R that subtends angle θ.

I see three "parts" to the wire.
A^{\prime} to A
A to C
C to C^{\prime}
As usual, break the problem up into simpler parts.

Example: calculate the magnetic field at point O due to the wire segment shown. The wire carries uniform current I, and consists of two radial straight segments and a circular arc of radius R that subtends angle θ.

$$
\mathrm{d} \overrightarrow{\mathrm{~B}}=\frac{\mu_{0}}{4 \pi} \frac{\mathrm{I} \mathrm{~d} \overrightarrow{\mathbf{s}} \times \hat{\mathrm{r}}}{\mathrm{r}^{2}}
$$

For segment A^{\prime} to A :

$$
|\mathrm{d} \overrightarrow{\mathbf{s}} \times \hat{\mathrm{r}}|=\mathrm{ds}|\hat{\mathrm{r}}| \sin 0=0
$$

$$
\left|\mathrm{d} \overrightarrow{\mathrm{~B}}_{\mathrm{A}^{\prime} \mathrm{A}}\right|=0
$$

$$
\vec{B}_{A^{\prime} A}=0
$$

Example: calculate the magnetic field at point O due to the wire segment shown. The wire carries uniform current I, and consists of two radial straight segments and a circular arc of radius R that subtends angle θ.

$$
\mathrm{d} \overrightarrow{\mathrm{~B}}=\frac{\mu_{0}}{4 \pi} \frac{\mathrm{I} \mathrm{~d} \overrightarrow{\mathbf{s}} \times \hat{\mathrm{r}}}{\mathrm{r}^{2}}
$$

For segment C to C^{\prime} :

$$
\begin{aligned}
& |\mathrm{d} \overrightarrow{\mathbf{s}} \times \hat{\mathrm{r}}|=\mathrm{ds}|\hat{\mathrm{r}}| \sin 180^{\circ}=0 \\
& \left|\mathrm{~d} \overrightarrow{\mathrm{~B}}_{\mathrm{CC}}\right|=0 \\
& \overrightarrow{\mathrm{~B}}_{\mathrm{CC}}=0
\end{aligned}
$$

Example: calculate the magnetic field at point O due to the wire segment shown. The wire carries uniform current I, and consists of two straight segments and a circular arc of radius R that subtends angle θ.

Important technique, handy for homework and exams:

The magnetic field due to wire segments $\mathrm{A}^{\prime} \mathrm{A}$ and CC^{\prime} is zero because ds is either parallel or antiparallel to \hat{r} along those paths.

Example: calculate the magnetic field at point O due to the wire segment shown. The wire carries uniform current I, and consists of two radial straight segments and a circular arc of radius R that subtends angle θ.

$$
\mathrm{d} \overrightarrow{\mathrm{~B}}=\frac{\mu_{0}}{4 \pi} \frac{\mathrm{Id} \overrightarrow{\mathrm{~s}} \times \hat{\mathrm{r}}}{\mathrm{r}^{2}}
$$

For segment A to C :

$$
\begin{aligned}
|\mathrm{d} \overrightarrow{\mathbf{s}} \times \hat{\mathbf{r}}| & =\mathrm{ds}|\hat{\mathrm{r}}| \sin 90^{\circ} \\
& =\mathrm{ds}(1)(1) \\
& =\mathrm{ds}
\end{aligned}
$$

$$
\left|\mathrm{dB}_{\mathrm{AC}}\right|=\mathrm{dB}_{\mathrm{AC}}=\frac{\mu_{0}}{4 \pi} \frac{\mathrm{Ids}}{\mathrm{R}^{2}}
$$

Direction of $\mathrm{d} \overrightarrow{\mathrm{B}}$

Cross ds into \hat{r}.
Direction is "into" the page, or \otimes, for all wire elements.

If we use the standard $x y z$ axes, the direction is $-\hat{k}$.

$$
\begin{aligned}
& \mathrm{dB}_{\mathrm{AC}}=\frac{\mu_{0}}{4 \pi} \frac{\mathrm{Ids}}{\mathrm{R}^{2}} \\
& \mathrm{~B}_{\mathrm{AC}}=\int_{\mathrm{arc}} \mathrm{~dB}_{\mathrm{AC}}=\int_{\mathrm{arc}} \frac{\mu_{0} \mathrm{I}}{4 \pi} \frac{\mathrm{ds}}{\mathrm{R}^{2}}
\end{aligned}
$$

$$
\mathrm{B}_{\mathrm{AC}}=\frac{\mu_{0} \mathrm{I}}{4 \pi \mathrm{R}^{2}} \int_{\text {arc }} \mathrm{ds} \quad \begin{aligned}
& \text { The integral of ds is just } \\
& \text { the arc length; just use } \\
& \text { that if you already know it. }
\end{aligned}
$$

$$
B_{A C}=\frac{\mu_{0} I}{4 \pi R^{2}} \int_{\text {arc }} R d \theta
$$

$$
\mathrm{B}_{\mathrm{AC}}=\frac{\mu_{0} \mathrm{I}}{4 \pi \mathrm{R}} \theta
$$

Final answer: $\vec{B}=\vec{B}_{A A}+\vec{B}_{A C}+\vec{B}_{C C}=-\frac{\mu_{0} I \theta}{4 \pi R} \hat{\mathrm{~K}}$

Important technique, handy for exams:

Along path AC, ds is perpendicular to \hat{r}.

$|\mathrm{d} \mathbf{s} \times \hat{r}|=|\mathrm{ds}||\hat{\mathbf{r}}| \sin 90^{\circ}$
$|d \vec{s} \times \hat{r}|=d s$

Today's agenda:

Magnetic Fields Due To A Moving Charged Particle.

 You must be able to calculate the magnetic field due to a moving charged particle.
Biot-Savart Law: Magnetic Field due to a Current Element.

 You must be able to use the Biot-Savart Law to calculate the magnetic field of a currentcarrying conductor (for example: a long straight wire).
Force Between Current-Carrying Conductors.

You must be able to begin with starting equations and calculate forces between currentcarrying conductors.

Magnetic Field of a Current-Carrying Wire

It is experimentally observed that parallel wires exert forces on each other when current flows.

Example: use the expression for B due to a current-carrying wire to calculate the force between two current-carrying wires.

Force on wire 1 produced by wire 2

$$
\begin{aligned}
& \vec{F}_{12}=I_{1} \vec{L}_{1} \times \vec{B}_{2} \\
& \hat{B}_{2}=\frac{\mu_{0} I_{2}}{2 \pi d} \hat{k} \\
& \vec{F}_{12}=I_{1} L \hat{\mathrm{j}} \times \frac{\mu_{0} I_{2}}{2 \pi \mathrm{~d}} \hat{k} \\
& \vec{F}_{12}=\frac{\mu_{0} I_{1} I_{2} L}{2 \pi d} \hat{i}
\end{aligned}
$$

force per unit length of wire i: $\frac{\vec{F}_{12}}{L}=\frac{\mu_{0} I_{1} I_{2}}{2 \pi d} \hat{i}$.

Force on wire 2 produced by wire 1

$$
\begin{aligned}
& \vec{F}_{21}=I_{2} \vec{L}_{2} \times \vec{B}_{1} \\
& \overrightarrow{\mathrm{~B}}_{1}=-\frac{\mu_{0} \mathrm{I}_{1}}{2 \pi \mathrm{~d}} \hat{\mathrm{k}} \\
& \overrightarrow{\mathrm{~F}}_{21}=\mathrm{I}_{2} \hat{\mathrm{~L}} \times\left(-\frac{\mu_{0} \mathrm{I}_{1}}{2 \pi \mathrm{~d}} \hat{\mathrm{k}}\right) \\
& \overrightarrow{\mathrm{F}}_{21}=-\frac{\mu_{0} \mathrm{I}_{1} \mathrm{I}_{2} \mathrm{~L}}{2 \pi \mathrm{~d}}
\end{aligned}
$$

The force per unit length of wire is $\frac{\vec{F}_{21}}{\mathrm{~L}}=-\frac{\mu_{0} \mathrm{I}_{2} \mathrm{I}_{2}}{2 \pi \mathrm{~d}} \hat{\mathrm{i}}$.

Analogously:
If currents are in opposite directions, force is repulsive.

$$
\begin{aligned}
& F_{12}=F_{21}=\frac{\mu_{0} I_{1} I_{2} L}{2 \pi d} \\
& F_{12}=F_{21}=\frac{4 \pi \times 10^{-7} \mathrm{I}_{1} \mathrm{I}_{2} \mathrm{~L}}{2 \pi \mathrm{~d}}=2 \times 10^{-7} \mathrm{I}_{1} \mathrm{I}_{2} \frac{\mathrm{~L}}{\mathrm{~d}}
\end{aligned}
$$

Official definition of the Ampere:
1 A is the current that produces a force of $2 \times 10^{-7} \mathrm{~N}$ per meter of length between two long parallel wires placed 1 meter apart in empty space.

