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• Dr. Hale  F, H   104 Physics 
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• Dr. Madison K, M   199 Toomey 
• Dr. Parris  J, L   B-10 Bertelsmeyer*   
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• Special Accommodations   Testing Center 
    (Contact me a.s.a.p. if you need  
      accommodations different than for exam 1)  
             *new room
    

Exam 2: Tuesday, March 21, 5:00-6:00 PM 

Exam 2 will cover chapters 24.3 to 27 
(energy stored in capacitors to forces and torques on currents) 



 
Today’s agenda: 
 

Magnetic Field Due To A Current Loop. 
You must be able to apply the Biot-Savart Law to calculate the magnetic field of a current 
loop. 

 
Ampere’s Law. 
You must be able to use Ampere’s Law to calculate the magnetic field for high-symmetry 
current configurations. 
 

Solenoids. 
You must be able to use Ampere’s Law to calculate the magnetic field of solenoids and 
toroids.  
 



Magnetic Field of a Current Loop 
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A circular ring of radius a carries a current I as shown.  
Calculate the magnetic field at a point P along the axis of the 
ring at a distance x from its center. 
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Draw a figure. Write 
down the starting 
equation. It tells you 
what to do next. 
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Magnetic Field of a Current Loop 
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A circular ring of radius a carries a current I as shown.  
Calculate the magnetic field at a point P along the axis of the 
ring at a distance x from its center. 
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Complicated diagram! 
You are supposed to 
visualize the ring 
lying in the yz plane. 

dl is in the yz plane. r 
is in the xy plane and 
is perpendicular to dl.* 
Thus                     

r̂

ˆ .×


 d r = d

Also, dB must lie in the xy plane* (perpendicular to dl) and is 
perpendicular to r.                 

*Only when dl is centered on the y-axis! 
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By symmetry, By will be 0. Do you see why?                 Use symmetry to find By. Don’t 
try to integrate dBy to get By. 
See here for the reason. 
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When dl is not centered at z=0, there will be a z-component 
to the magnetic field, but by symmetry Bz will be zero. 
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I, x, and a are constant as you integrate around the ring!                
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This is not on your starting equation sheet 



At the center of the 
ring, x=0.                
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This is not on your starting equation sheet.  
For homework, if a problem requires this 
equation, you need to derive it! 
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For N tightly packed concentric rings (a tight coil)…                
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Magnetic Field at the center of a Current Loop 

A circular ring of radius a lies in the xy plane and carries a 
current I as shown.  Calculate the magnetic field at the center 
of the loop. 
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If you only look at the center of 
the loop, derivation is simpler. 
 
Work on blackboard! 

The direction of the magnetic 
field will be different if the plane 
of the loop is not in the xy plane. 



 
Today’s agenda: 
 

Magnetic Field Due To A Current Loop. 
You must be able to apply the Biot-Savart Law to calculate the magnetic field of a current 
loop. 

 
Ampere’s Law. 
You must be able to use Ampere’s Law to calculate the magnetic field for high-symmetry 
current configurations. 
 

Solenoids. 
You must be able to use Ampere’s Law to calculate the magnetic field of solenoids and 
toroids.  
 



I 

B 

r Line integral of B over a closed circular 
path around wire: 

ds 

( )π⋅∫ ∫




 

B ds =B ds =B 2 r




B ds

( )μ π μ
π

 ⋅  
 ∫







0 
0 

I
B ds = 2 r = I

2 r

Is this an accident, valid only for this particular situation? 

Recall: 

• magnetic field of long straight wire: 

  winds around the wire 
μ
π

= 0 IB
2 r
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0 B ds = I Ampere’s Law 

• Iencl is total current that passes through surface bounded by  
closed path of integration. 

• law of nature: holds for any closed path and any current 
distribution 
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• current I counts positive if integration direction is the same 
as the direction of B from the right hand rule 
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Ampere’s Law 



• starting equation on your OSE sheet contains second term: 

I1 

ds 

• if path includes more than one source of current, add all  
currents (with correct sign). 
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The reason for the 2nd term on the right will become apparent later. Set it equal to zero for now.  

0 

• Ampere’s law can be used to calculate magnetic fields 
in high-symmetry situations 



Recipe for using Ampere’s law to find magnetic fields 

• requires high-symmetry situations so that line integral 
can be disentangled 

• analogous to Gauss’ law calculations for electric field 

1. Use symmetry to find direction of magnetic field 

2. Choose Amperian path such that  
 (a) it respects the symmetry, usually  
 (b) and goes through point of interest 





B||ds

3. Start from Amperes law, perform integration, solve for B 



Example: a cylindrical wire of radius R carries a current I 
that is uniformly distributed over the wire’s cross section. 
Calculate the magnetic field inside and outside the wire. 
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Outside the wire: 
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a lot easier than using 
Biot-Savart Law! 

Example: a cylindrical wire of radius R carries a current I 
that is uniformly distributed over the wire’s cross section. 
Calculate the magnetic field inside and outside the wire. 

1. B field tangential to circles around wire 

P 

2. Chose circular Amperian path 
around wire through P 

3. Integrate: 



Example: a cylindrical wire of radius R carries a current I 
that is uniformly distributed over the wire’s cross section. 
Calculate the magnetic field inside and outside the wire. 

• Only part of current enclosed by Amperian path 
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Ampere’s law: 

Solve for B: 
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Plot: 



Calculating Electric and Magnetic Fields 

Electric Field 
 

in general: Coulomb’s Law 
 

for high symmetry 
configurations: Gauss’ Law 

(surface integral) 

Magnetic Field 
 

in general: Biot-Savart Law 
 

for high symmetry 
configurations: Ampere’s Law 

(line integral) 
 

This analogy is rather flawed because Ampere’s Law is not 
really the “Gauss’ Law of magnetism.” 



 
Today’s agenda: 
 

Magnetic Field Due To A Current Loop. 
You must be able to apply the Biot-Savart Law to calculate the magnetic field of a current 
loop. 

 
Ampere’s Law. 
You must be able to use Ampere’s Law to calculate the magnetic field for high-symmetry 
current configurations. 
 

Solenoids. 
You must be able to use Ampere’s Law to calculate the magnetic field of solenoids and 
toroids. You must be able to use the magnetic field equations derived with Ampere’s Law 
to make numerical magnetic field calculations for solenoids and toroids. 
 



Magnetic Field of a Solenoid 

A solenoid is made of many loops of wire, packed closely to 
form long cylinder.  

images from 
hyperphysics.  

*But not so closely that you 
can use μ0 N I

B =
2a

Single loop: 

http://hyperphysics.phy-astr.gsu.edu/hbase/magnetic/magfie.html#c1


Stack many loops to make a solenoid: 

Ought to remind you of the magnetic field of a bar magnet. 



Use Ampere’s law to calculate the magnetic field of a solenoid: 
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μ 0 B =  N I N is the number of loops 
enclosed by our surface. 
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B =   I Magnetic field of a solenoid of 
length l , N loops, current I. 
n=N/l (number of turns per 
unit length). μ0 B =  n I

The magnetic field inside a long solenoid does not depend on the position 
inside the solenoid (if end effects are neglected). 



A toroid* is just a solenoid “hooked up” to itself. 
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Magnetic field 
inside a toroid of N 
loops, current I.  

The magnetic field inside a toroid is not subject to end effects, but is not 
constant inside (because it depends on r). 

*Your text calls this a “toroidal solenoid.” 
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Example: a thin 10-cm long solenoid has a total of 400 turns of 
wire and carries a current of 2 A.  Calculate the magnetic field 
inside near the center. 



“Help! Too many similar starting equations!” 

μ
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solenoid, length l, N turns 

solenoid, n turns per unit length 

μ
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2 r
toroid, N loops 

use Ampere’s law (or note the lack of N) 

field inside a solenoid is constant 

field inside a solenoid is constant 

field inside a toroid depends on position (r) 
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