Physics 2135 Exam 1

September 22, 2015

Exam Total

Printed Name:

Key

Rec. Sec. Letter: _ N/A
Five multiple choice questions, 8 points each. Choose the best or most nearly correct answer.
\qquad 1. Positive charge $+4 Q$ is located at $(x, y)=(0,0)$ and negative charge $-Q$ is located at $(\mathrm{x}, \mathrm{y})=(a, 0)$. Which of the statements about the electric potential V_{P} and electric field \vec{E}_{P} at the point $P(\mathrm{x}, \mathrm{y})=(2 a, 0)$ is true? (Assume $V=0$ at infinity.)

[A] $V_{\mathrm{P}}>0$ and \vec{E}_{P} points \rightarrow
[B] $V_{\mathrm{P}}<0$ and \vec{E}_{P} points \leftarrow
[C] $V_{\mathrm{P}}=0$ and \vec{E}_{P} is zero
[D] $V_{\mathrm{P}}>0$ and \vec{E}_{P} is zero

B2. The figure to the right shows three possible orientations of an electric dipole in a uniform electric field. For which orientation is the dipole electric potential energy minimum?
[A] orientation (a)
[B] orientation (b)
[C] orientation (c)

\qquad 3. When a positive charge $+Q$ is placed inside a Gaussian surface, the electric flux through the surface is Φ_{0}. If a second identical positive charge $+Q$ is then placed just outside the Gaussian surface, the electric flux through the surface is
[A] Φ_{0}
[B] $\Phi_{0} / 2$
[C] $2 \Phi_{0}$
[D] 0 .
\qquad 4. Identical positive point charges $+Q$ are placed at two of the vertices of an equilateral triangle, as shown. Point P is at the third vertex. What charge must be placed at point P so that the electric potential energy of the system consisting of all three charges is zero?
[A] $-2 Q$
[B] $-4 Q$
[C] $-Q / 2$
[D] $-Q$

ABC 5. What did Dr. Pringle say when the neutron asked for a peanut butter sandwich?
[A] I'm positive we're out of bread today.
[B] For you, there is no charge.
[C] Are you sure you won't have a negative reaction to the peanuts?
6. (40 points total) A thin insulating ring of radius a lies flat in the xy-plane with its center at the origin of the coordinate system. The right half of the ring carries a positive charge $+2 Q$ uniformly distributed over its length while the left half carries a negative charge $-Q$ uniformly distributed over its length.
(a) (5 points) Find the linear charge densities $\lambda_{\text {left }}$ and $\lambda_{\text {right }}$ of the left and right semicircles, respectively.

$$
\begin{aligned}
& \lambda_{\text {left }}=-Q / \frac{1}{2}(2 \pi a)=-\frac{Q}{\pi a} \\
& \lambda_{\text {right }}=+2 Q / \frac{1}{2}(2 \pi a)=+\frac{2 Q}{\pi a}
\end{aligned}
$$

(b) (25 points) Find the magnitude and direction of the electric field at the origin of the coordinate system (use symmetry arguments when appropriate).

$$
\begin{aligned}
& \text { LEFT: } d E=\frac{k|d g|}{r^{2}} \quad E_{y}=0 \text { (symmetry) } \quad|d g|=|\lambda| d s=|\lambda| a d \theta \\
& E_{x}=\int d E_{x}=-\int_{0}^{\pi} d E \sin \theta=-\int_{0}^{\pi} \frac{k}{a^{2}}\left|-\frac{Q}{\pi a}\right| a \sin \theta d \theta \\
& E_{x}=-\frac{k Q}{\pi a^{2}} \int_{0}^{\pi} \sin \theta d \theta=+\left.\frac{k Q}{\pi a^{2}} \cos \theta\right|_{0} ^{\pi}=\frac{k Q}{\pi a^{2}}(-1-1)=-\frac{2 k Q}{\pi a^{2}}
\end{aligned}
$$

RIGHT: $E_{y}=0$ (symmetry)

(c) (10 points) A small ball of mass m and negative charge $-q$ is placed at the center of the ring and released from rest. Find magnitude and direction of its initial acceleration (gravity can be neglected).

$$
\begin{aligned}
& \vec{F}=m \vec{a} \Rightarrow \vec{a}=\vec{F} / m=\frac{0 E^{\prime}}{} / m \\
& a_{y}=0 \quad a_{x}=\frac{(-q) E x}{m}=-\frac{q}{m}\left(-\frac{6 k Q}{\pi a^{2}}\right)=\frac{6 k q Q}{\pi a^{2} m} \\
& \vec{a}=\frac{6 k g Q}{\pi a^{2} m}, \text { in }+x \text { direction }
\end{aligned}
$$

7. (40 points total) A solid conducting sphere of radius a carries a net charge of $+Q$. The sphere is surrounded by a concentric insulating spherical shell of inner radius b and outer radius c which carries a uniform positive charge density ρ.
(a) (10 points) What is the magnitude of the electric field for $r<a$?

$$
E=0 \text { (inside conductor) }
$$

(b) (10 points) In the diagram to the right, draw a Gaussian surface that you could use to find the electric field for $a<r<b$. For a point of your choice on that surface, show the directions of the \vec{E} and $\mathrm{d} \vec{A}$ vectors.
 $E, \mathrm{~d} A$, and Gaussian surface shown in red (c) (10 points) Use Gauss's law to find the magnitude of the electric field for $a<r<b$.

$$
\begin{aligned}
& \oint \vec{E} \cdot d \vec{A}=\frac{q_{i n d}}{\epsilon_{0}} \\
& E \cdot 4 \pi r^{2}=\frac{Q}{E_{0}} \\
& E=\frac{Q}{4 \pi \epsilon_{0} r^{2}}
\end{aligned}
$$

note: it is not sufficient to simply write down the use for E of a point charge
(b) (10 points) Use Gauss’s law to find the magnitude of the electric field for $b<r<c$.

$$
\begin{aligned}
& \oint \vec{E} \cdot d \vec{A}=g_{\text {end }} / \epsilon_{0} \\
& q_{\text {end }}=q_{\text {cont }}+q_{\text {shell }} \text { end }=Q+\rho_{\text {shell }} V_{\text {shell, encl }} \\
&=Q+\rho\left(\frac{4}{3} \pi r^{3}-\frac{4}{3} \pi b^{3}\right) \\
& E 4 \pi r^{2}=\frac{1}{\epsilon_{0}}\left(Q+\rho\left(\frac{4}{3} \pi r^{3}-\frac{4}{3} \pi b^{3}\right)\right) \\
& E=\frac{Q+\frac{4}{3} \pi \rho\left(r^{3} \cdot b^{3}\right)}{4 \pi r^{2}}
\end{aligned}
$$

8. (40 points total) A thin, uniformly charged insulating rod is bent into a semicircle with radius a and placed as shown, with its center of curvature at the origin. The total charge on the rod is $+Q$.
(a) (15 points) Derive an expression for the electrical potential V at the origin. You may assume that the electrical potential is zero at a point infinitely far away.

$$
\begin{aligned}
& d v=\frac{h d q}{r} \\
& V=\int d v=\int \frac{k d q}{a}=\frac{k}{a} \int d Q=+\frac{k Q}{a}
\end{aligned}
$$

it is not sufficient to write down V for a point charge you must show that the potential is calculated by integrating over the distribution
(b) (15 points) A positive charge $+q$ with mass m is placed at the origin and released from rest. Calculate the work done by the electric field in moving the particle from the origin to infinity along the positive x axis.

$$
\begin{aligned}
& W_{\text {field }}=W_{\text {cons }}=-\Delta u=-q \Delta v=-q\left(\nu_{\infty}^{0}-V_{0}^{0}\right)=q v_{0}=q\left(\frac{k Q}{a}\right) \\
& W_{\text {field }}=\frac{k q}{a}
\end{aligned}
$$

(c) (10 points) Calculate the maximum speed of the particle after it is released from rest. Express your answer in terms of system parameters.

$$
\begin{aligned}
& E_{f}-E_{i}=\left[w_{010}\right]_{i}^{0} \rightarrow f \\
& K_{f}+u_{f}-x_{i}^{0}-u_{i}=0 \\
& K_{f}=-u_{f}+u_{i}=-\Delta u=W_{f i e l d} \\
& \frac{1}{2} m v^{2}=\frac{k g Q}{a} \\
& v=\sqrt{\frac{2 k g Q}{m a}}
\end{aligned}
$$

This is also correct:

$$
\begin{aligned}
& W_{\text {net }}=\Delta K \\
& W_{\text {field }}+\text { Wether }=K_{f}-k_{i} \\
& \frac{k g Q}{a}=\frac{1}{2} m v^{2} \text { solve for } v
\end{aligned}
$$

9. (40 points total) (All solutions MUST start with OSE's.)
(a) (10 points) A parallel-plate capacitor consists of two conducting plates of width 2 m and length 3 m . The separation between the two plates is 2 mm . What is the capacitance of the capacitor?

$$
C=\frac{E_{0} A}{d}=\frac{\left(8.85 \times 10^{-12}\right)(2 \times 3)}{2 \times 10^{-3}}=26.55 \mathrm{nF} \text { or } 26.55 \times 10^{-9} \mathrm{~F}
$$

(b) (10 points) A 12 V battery is connected to a parallel-plate capacitor with capacitance of 6 nF .
(i) Calculate the charge stored in the capacitor.

$$
Q=C V=\left(6 \times 10^{-9}\right)(12)=72 \mathrm{nC} \text { or } 72 \times 10^{-9} \mathrm{C}
$$

(ii) The battery is then disconnected from the capacitor. What is the charge stored in the
 capacitor if the separation between the two plates is doubled?

$$
\text { battery disconnected } \Rightarrow Q \text { does not change } Q=72 n C
$$

(c) (10 points) Calculate the equivalent capacitance between a and b for the capacitor circuit shown. $C_{1}=2 \mu \mathrm{~F}, C_{2}=4 \mu \mathrm{~F}, C_{3}=6 \mu \mathrm{~F}$, and $C_{4}=12 \mu \mathrm{~F}$.
$C_{1} \& C_{2}$ in parallel: $C_{12}=2+4=6 \mu \mathrm{~F}$

$$
c_{12}, c_{3}, c_{9} \text { in series: } \frac{1}{c_{e g}}=\frac{1}{c_{12}}+\frac{1}{r_{3}}+\frac{1}{c_{4}}=\frac{1}{6}+\frac{1}{6}+\frac{1}{12}
$$

$$
\frac{1}{C_{e q}}=\frac{5}{12} \quad C_{e q}=\frac{12}{5}=2.4 \mu F
$$

(d) (10 points) A battery supplying a potential difference of 15 V is connected across a and b in the capacitor circuit in part (c). Determine the charge stored in C_{1}.
$C_{12} \quad C_{3} C_{4}$ in series

$$
\Rightarrow Q_{12}=Q_{\rho q}=C_{e q} V=(2.4)(15)=3 C \mu C
$$

$C_{1} C_{2}$ in parallel

$$
\begin{aligned}
& \Rightarrow V_{1}=V_{2}=V_{12}=\frac{Q_{12}}{C_{12}}=\frac{36}{6}=6 \mathrm{~V} \\
& Q_{1}=C_{1} V_{1}=2(6)=12 \mu \mathrm{C}
\end{aligned}
$$

alternative approach

$$
\begin{aligned}
& V_{12}=15-V_{3}-V_{4}=15-\frac{Q_{3}}{c_{3}}-\frac{Q_{4}}{c_{4}} \\
& V_{12}=15-\frac{36}{6}-\frac{36}{12}=6 V=V_{1}
\end{aligned}
$$

Then solve for Q,

