Physics 2135 Exam 1

September 20, 2016

Exam Total
Printed Name: \qquad

Rec. Sec. Letter: \qquad

Five multiple choice questions, 8 points each. Choose the best or most nearly correct answer.
\qquad 1. Two positive charges Q are located a distance d from the origin. One of the charges lies along the positive x -axis, and the other lies along a line making a 30° angle with the positive x-axis, as shown in the diagram. What is the y-component of the total electric field at the origin?
[A] kQ/2d ${ }^{2}$
[B] $-2 \mathrm{kQ} / d^{2}$
[C] $-\mathrm{kQ} / 2 d^{2}$
[D] $-\mathrm{kQ} / \mathrm{d}^{2}$

__ 3. An electron is released from rest in a uniform electric field. The electron then moves under the influence of the electric field. Which of the following is true for the electron?
[A] Its potential energy increases and it moves toward higher electric potential.
[B] Its potential energy decreases and it moves toward higher electric potential.
[C] Its potential energy increases and it moves toward lower electric potential.
[D] Its potential energy decreases and it moves toward lower electric potential.

4. A parallel plate capacitor is fully charged and then disconnected from the battery which

 charged it. The separation between the plates is D and the electric potential difference between the plates is measured to be V_{0}. With the capacitor disconnected, the separation between the plates is then changed to $D / 2$. What is the potential difference between the plates after their separation has been halved?[A] $4 V_{0}$
[B] $2 V_{0}$
[C] V_{0}
[D] $V_{0} / 2$
\qquad 5. If the Earth had a net positive charge, how could you make a Hoverdog ${ }^{\text {TM }}$?
[A] Feed it a bowl of protons.
[B] Rub its fur with a rubber rod so it acquires a positive charge.
[C] Praise it constantly, until it becomes more positive.
[D] Stupid question, the Earth has a negative charge.
Note: no dogs were harmed in the making of this exam.

\qquad
6. (40 points total) A thin insulating semicircle of radius R is held in the vertical xy-plane with its center at the origin of the coordinate system. The semicircle carries a negative charge - Q uniformly distributed over its length.
(a) (25 points) Determine the electric field produced by the semicircle at the origin of the coordinate system. Express your answer in unit vector notation.

(b) (5 points) A small sphere of mass m and charge q is placed at the origin of the coordinate system and released from rest. You observe that it does not move. What is the sign of the charge q of the sphere (circle one below)?

Positive Negative
(c) (10 points) Find the magnitude of the charge q in terms of the system parameters.
\qquad
7. (40 points total) A solid insulating sphere of radius a carries a total net positive charge $2 Q$ uniformly distributed throughout its interior. The insulating sphere is surrounded by a conducting spherical shell of inner radius a and outer radius b. The outer conducting layer carries a net charge of $-Q$.
(a) (10 points) Compute the volume charge density ρ associated with the charge distributed throughout the inner insulating sphere in terms of variables introduced above.

(b) (10 points) Apply Gauss's law to obtain the magnitude $E(r)$ of the electric field in the region at a point located a distance $r<a$ from the center of the insulating sphere. In the figure, draw the Gaussian surface you will use for your computation. Express your answer in terms of a, Q, r, and ε_{0}. (If you get an expression involving ρ substitute in from above to re-express it in terms of the stated variables.) What direction is the electric field at this point?
(c) (10 points) What is the electric field at points in the region $b>r>a$? Briefly justify your answer (a few words will suffice).
(d) (10 points) Find the net charge Q_{b} residing on the outer surface of the conducting shell.
\qquad
8. (40 points total) A point charge $q_{1}=15 \mu \mathrm{C}$ is held stationary at the origin.
(a) (20 points) A second point charge $q_{2}=20 \mu \mathrm{C}$ is moved from the point $(x, y)=(3 \mathrm{~m}, 4 \mathrm{~m})$ to the point $(x, y)=(1 \mathrm{~m}, 0 \mathrm{~m})$ where it is held stationary. How much work was done by the electric force on q_{2} ?

(b) (20 points) The mass of q_{2} is 60 g . If q_{2} is now released from rest at the point $(x, y)=(1 \mathrm{~m}, 0 \mathrm{~m})$ and moves along the $+x$ axis, what will its speed be when it passes through the point $(x, y)=(10 \mathrm{~m}, 0$ $\mathrm{m})$?
\qquad
9. (40 points total) The capacitor network shown in the diagram stores a total charge of 600 nC .
(a) (10 points) If the equivalent capacitance of the network is 10 nF , what is the voltage $\Delta \mathrm{V}$?

(b) (15 points) What is the unknown capacitance C_{1} ?
(c) (15 points) What is the voltage across C_{4} ?
\qquad

