Physics 2135 Final Exam

May 15, 2015

Exam Total
$200 / 200$

Printed Name: \qquad
Key

Rec. Sec. Letter: \mathbf{N} / \mathbf{A}

1. (40 points total) Three point charges are arranged as shown.
(a) (30 points) Using the coordinate system given, calculate the electric field at the origin produced by Q_{2}, the 6.00 nC charge, and Q_{3}, the -3.00 nC charge. Express your answer in unit vector notation.

$$
\begin{aligned}
\vec{E} & =\vec{E}_{2}+\overrightarrow{E_{3}} \\
& =-\frac{k\left|Q_{2}\right|}{r_{2}^{2}} \hat{\imath}-\frac{k\left|Q_{3}\right|}{r_{3}^{2}} \hat{\jmath} \\
& =-\frac{\left(9 \times 10^{9}\right)\left(6 \times 10^{-9}\right)}{0.3^{2}} \hat{\imath}-\frac{\left(9 \times 10^{9}\right)\left(3 \times 10^{-9}\right)}{0.1^{2}} \hat{\jmath} \\
& =-600 \frac{\mathrm{~N}}{\mathrm{r}} \hat{\imath}-2700 \frac{\mathrm{~N}}{\mathrm{c}} \hat{\jmath}
\end{aligned}
$$

(b) (10 points) Find the force on the 5.00 nC charge at the origin. Express your answer in unit vector notation.

$$
\begin{aligned}
& \vec{F}=q \vec{E}=\left(+5 \times 10^{-9}\right)(-600 \hat{\imath}-2700 \hat{\jmath}) \\
& =-3 \times 10^{-6} \mathrm{~N} \hat{\imath}-1.35 \times 10^{-5} \mathrm{~N} \hat{\jmath} \\
& \text { you can also apply } \\
& F=\frac{k\left|Q, Q_{2}\right|}{r_{2}^{2}} \\
& \text { but it } 5 \text { more warp! }
\end{aligned}
$$

2. (20 points total) Find the power dissipated in each resistor of the circuit shown.

$$
\begin{aligned}
& \frac{1}{R_{23}}=\frac{1}{R_{2}}+\frac{1}{R_{3}}=\frac{1}{5}+\frac{1}{20}=\frac{471}{20}=\frac{5}{20} \quad R_{23}=4 \Omega \\
& R_{e q}=R_{1}+R_{23}=15 \Omega \\
& I=\frac{\varepsilon}{R_{e q}}=\frac{45}{15}=3 A \\
& P_{1}=I^{2} R_{1}=\left(3^{2}\right)(11)=99 W=P_{1} \\
& V_{2}=V_{3}=V_{23}=I R_{23}=3(4)=12 V \\
& P_{2}=\frac{V_{2}^{2}}{R_{2}}=\frac{144}{5}=28.8 W=P_{2} \\
& P_{3}=\frac{V_{3}^{2}}{R_{3}}=\frac{144}{20}=7.2 W=P_{3}
\end{aligned}
$$

3. (20 points total) A generator has a coil composed of N turns, each with an area of A. This coil rotates at a constant angular speed ω in a uniform magnetic field B.
(a) (10 points) What is the magnetic flux through each turn of the coil as a function of time?

$$
\Phi_{B}=\vec{B} \cdot \vec{A}=B A \cos \theta=B A \cos \omega t
$$

(b) (10 points) What is the peak EMF induced by the generator?

$$
\begin{aligned}
& \varepsilon=-\frac{d \Phi_{\text {total }}}{d t} \quad \varepsilon=-N \frac{d \Phi_{B}}{d t} \\
& \varepsilon=-N \frac{d \Phi_{B}}{d t}=-N \frac{d}{d t}(B A \cos \omega t)=N B A \omega \sin \omega t \\
& \varepsilon_{\max }=N B A \omega\left(\sin \theta=1 \text { for } \varepsilon_{\max }\right)
\end{aligned}
$$

4. (40 points total) Two long straight insulated wires each carry an identical current I in the directions shown.
(a) (20 points) Using the axes shown (the z-axis points out of the plane of the page) find an expression for the magnetic field $\overrightarrow{\mathrm{B}}$ at a point P in the first quadrant located by the coordinates $(x, y)=(a, a)$. Express your answer in unit vector notation.

$$
\begin{aligned}
\vec{B}_{p} & =\vec{B}_{1}+\overrightarrow{B_{2}}=-\frac{\mu_{0} I_{1}}{2 \pi r_{1}} \hat{k}-\frac{\mu_{0} I_{2}}{2 \pi r_{2}} \hat{k} \\
& =-\frac{\mu_{0} I}{2 \pi a} \hat{k}-\frac{\mu_{0} I}{2 \pi a} \hat{k} \\
& =-\frac{\mu_{0} I}{\pi a} \hat{k}
\end{aligned}
$$

(b) (10 points) At some instant, a particle of mass m and positive charge q moves through the point P with a speed v directed out of the page. Find the magnitude of the magnetic force exerted on this particle.
$\vec{F}=q \vec{v} \times \vec{B}=(q v \hat{k}) \times\left(-\frac{\mu_{0} I}{\pi a} \hat{k}\right)=0$
or: $F=0$ because \vec{v} is antiparallel to \vec{B}
(c) (10 points) If instead, this same particle moves through the point P with a speed v in the positive y direction, find the magnetic force exerted on this particle. Express your answer in unit vector notation.

$$
\begin{aligned}
\vec{F} & =q \vec{v} \times \vec{B}=(q N \hat{\jmath}) \times\left(-\frac{\mu_{0} I}{\pi a} \hat{\jmath_{k}}\right)=-\frac{\mu_{0} I}{\pi a} q v \hat{\jmath} \times \hat{k} \\
& =-\frac{\mu_{0} I}{\pi a} q v \hat{\imath}
\end{aligned}
$$

5. (40 points total) A diverging lens has a focal length of magnitude 24.0 cm . The lens forms an image which is $2 / 3$ as tall as the object. The image is upright.
(a) (5 points) Is the image REAL o VIRTUAL circle one)? $m=\frac{+y^{\prime}}{y}=-\frac{s^{\prime}}{s} \quad y^{\prime}>0 \Rightarrow s^{\prime}<0$
(b) (5 points) Is the image on th SAME OPPOSITE side of the lens as the object (circle one)?
(c) (10 points) How far from the lens is the object located?

$$
\begin{aligned}
& m=\frac{y^{\prime}}{y}=\frac{2}{3}=-\frac{s^{\prime}}{s} \Rightarrow s^{\prime}=-\frac{2}{3} s \\
& \frac{1}{s}+\frac{1}{s^{\prime}}=\frac{1}{f} \Rightarrow \frac{1}{s}-\frac{1}{\frac{2}{3} s}=\frac{1}{-24} \Rightarrow \frac{1}{s}-\frac{3}{2 s}=-\frac{1}{24} \Rightarrow \frac{2-3}{2 s}=-\frac{1}{24} \\
& -\frac{1}{2 s}=-\frac{1}{24} \Rightarrow s=12 c m
\end{aligned}
$$

(d) (10 points) Determine the image distance s^{\prime}.

$$
\begin{aligned}
& S^{\prime}=-\frac{2}{3} S=-\frac{2}{3}(12) \\
& s^{\prime}=-8 \mathrm{~cm}
\end{aligned}
$$

(e) (10 points) Suppose an object is placed 40 cm from a lens with $\mathrm{f}=-50 \mathrm{~cm}$. For this object location, draw a ray diagram on the figure provided below, showing both the object and image positions. Adjacent marks on the principal axis are separated by 10.0 cm . You need show only two rays.

6. (20 points total) In the diagram, a light ray refracts at the boundary between materials 1 and 2 , and is then incident at the critical angle on the interface between materials 2 and 3 . The angle ϕ is $60^{\circ}, n_{1}=1.7$ and $n_{2}=1.4$.
(a) (8 points) What is the index of refraction n_{3} ?

$$
\begin{aligned}
& n_{2} \sin \theta_{c}=n_{3} \sin 90^{\circ} \quad \theta_{c}=\phi \\
& n_{3}=1.4 \sin 60^{\circ}=1.21
\end{aligned}
$$

(b) (7 points) What is the angle θ ?

$$
\begin{aligned}
& n_{1} \sin \theta=n_{2} \sin (90-\phi)=n_{2} \sin 30^{\circ} \\
& \sin \theta=\frac{n_{2}}{n_{1}} \sin 30^{\circ}=\frac{1}{2}\left(\frac{1.4}{1.7}\right)=0.412 \quad \theta=24.3^{\circ}
\end{aligned}
$$

(c) (5 points) If θ is decreased, does light refract into material 3? Circle one:

YES θ smaller $\Rightarrow \phi$ bigger $\Rightarrow \theta_{C}$ bigger \Rightarrow no T.I.R.
7. (20 points) A man stands with his nose 4 inches from a concave shaving mirror of radius 16 inches.
(a) (6 points) What is the distance of the image from the mirror?

$$
f=\frac{R}{2}=\frac{16}{2}=8 \text { positive for }
$$

$$
\begin{aligned}
& \frac{1}{s^{\prime}}=\frac{1}{f}-\frac{1}{s}=\frac{1}{8}-\frac{1}{4}=\frac{1-2}{8}=-\frac{1}{8} \\
& s^{\prime}=-8 \mathrm{in}
\end{aligned}
$$

(b) (2 points) On what side of the mirror is the image? Circle one: IN FRONT
(c) (4 points) If the man's face is 7 inches tall, what size is his image?

$$
m=\frac{y^{\prime}}{y}=-\frac{s^{\prime}}{5} \Rightarrow y^{\prime}=-\frac{s^{\prime}}{5} y=-\frac{8}{4} 7=14 \mathrm{in}
$$

(d) (4 points) Is the image real or virtual? Circle one:

REAL
(e) (4 points) Is the image erect or inverted? Circle one:

INVERTED

