Condensed Matter Physics

Largest subfield of physics
Link between atoms and everyday world.
Unity obscured by tremendous variety of topics.

Dividing the field

Historical Roots

Atomic Structure
Electronic Structure
Mechanical Properties
Electron Transport
Optical Properties
Magnetism

Concepts

Self-organization
Form and Function
Scaling and Symmetry
(rysecision Measurement
Fabrication
© Computation

Atomic Structure

Questions:
What is the basic structure of matter?
How do atoms spontaneously organize?
Basic Answer:
Scaling theory relates atom-scale units to macroscopic solids.
Atoms form crystalline arrays.
I里 Idea comes from special class of solids: minerals.

See vast numbers of minerals at http://webmineral.com/

Two-Dimensional Lattices

```
Definitions:
Bravais lattice
primitive vector
basis vector
unit cell (primitive or not)
Wigner-Seitz cell (Voronoi polyhedron)
translation, space, and point groups
```

Square

Bravais Lattices

Rectangular

Centered Rectangular

Oblique

Question

Q: Are primitive vectors unique?
A: No..for hexagonal lattice

$$
\begin{align*}
\vec{a}_{1} & =a(10) \tag{L1a}\\
\vec{a}_{2} & =a\left(\frac{1}{2} \frac{\sqrt{3}}{2}\right) \tag{L1b}
\end{align*}
$$

However, one could equally well choose

$$
\begin{align*}
\vec{a}_{1}^{\prime} & =a\left(-\frac{1}{2} \frac{\sqrt{3}}{2}\right) \tag{L2a}\\
\vec{a}_{2}^{\prime} & =a\left(\frac{1}{2} \frac{\sqrt{3}}{2}\right) \tag{L2b}
\end{align*}
$$

Lattice with Basis

Note presence of glide plane, showing that space group is not the same as the product of translation group and point group.

Selective Destruction of Symmetry by Basis 9

Some, but not all symmetries of triangular lattice destroyed.

Unit cells

Unit cells are not unique.
(A)

(B)

Puzzler: how does one construct bizarre-shaped cells that tile the plane?

Questions

Q: What makes lattices the same or different?

A: Two lattices are the same if one can be tranformed continuously into the other without changing any symmetry operations along the way.

The Space Group

Operations

$$
\begin{equation*}
\mathbf{G}=\vec{a}+\mathcal{R}(\hat{n}, \theta) . \tag{L3}
\end{equation*}
$$

that leave lattice invariant.
Two important subgroups: translation and point groups. The full space group cannot be formed from these because of glide lines and Screw axes.

$$
\begin{equation*}
S \mathcal{R} S^{-1}+S^{-1} \vec{a}=\mathcal{R}^{\prime}+\vec{a}^{\prime} \tag{L4}
\end{equation*}
$$

$$
\begin{equation*}
S_{t}=(1-t)+S t \tag{L5}
\end{equation*}
$$

Q: How many distinct Bravais lattices are there?

A: Five

Q: How many distinct two-dimensional lattices are there?
A: Seventeen. They are enumerated at
http://www2.spsu.edu/math/tile/index.htm or
http://www.clarku.edu/~djoyce/wallpaper/

