Band Structure Calculations

23rd March 2003
(C)2003, Michael Marder

Question: How could it ever be true that electrons in a metal think they are moving freely in an empty box?

Pseudopotentials give conceptual answer.
Restrict attention to single unit cell.
Let $|\vec{k}\rangle$ denote plane waves $e^{i \vec{k} \cdot \vec{r}}$.
Let $\left|\psi_{c}\right\rangle$ denote core states.

$$
\begin{gather*}
\left|\vec{k}_{\mathrm{ps}}\right\rangle=|\vec{k}\rangle-\sum_{c}\left|\psi_{c}\right\rangle\left\langle\psi_{c} \mid \vec{k}\right\rangle \tag{L1}\\
\hat{U}\left|\vec{k}_{\mathrm{ps}}\right\rangle=\hat{U}|\vec{k}\rangle-\sum_{c} \hat{U}\left\langle\psi_{c} \mid \vec{k}\right\rangle\left|\psi_{c}\right\rangle \tag{L2}\\
(\hat{\mathcal{H}}-\varepsilon)\left|\vec{k}_{\mathrm{ps}}\right\rangle= \tag{L3}\\
=\left(\frac{\hat{P}^{2}}{2 m}+\hat{U}-\varepsilon\right)\left|\vec{k}_{\mathrm{ps}}\right\rangle \\
=
\end{gather*}
$$

Pseudopotentials

$$
\begin{gather*}
?=\left(\frac{\hat{P}^{2}}{2 m}+\hat{U}_{\mathrm{ps}}-\mathcal{E}\right)|\vec{k}\rangle=\left(\hat{\mathcal{H}}_{\mathrm{ps}}-\mathcal{E}\right)|\vec{k}\rangle \tag{L6}\\
\hat{U}_{\mathrm{ps}}=\hat{U}-\sum_{c}\left(\mathcal{E}_{c}-\mathcal{E}\right)\left|\psi_{c}\right\rangle\left\langle\psi_{c}\right| \tag{L7}\\
(\hat{\mathcal{H}}-\mathcal{E})\left|\vec{k}_{\mathrm{ps}}\right\rangle=\left(\hat{\mathcal{H}}_{\mathrm{ps}}-\mathcal{E}\right)|\vec{k}\rangle \tag{L8}
\end{gather*}
$$

Empirical Pseudopotentials

Figure 1: The Ashcroft empty core pseudopotential is zero up to a critical radius R_{c}, and it equals a screened Coulomb potential $-U_{0} \exp [-r / d] / r$ thereafter.

First-Principles Pseudopotentials

Figure 2: Real and pseudo wave functions for the $5 s, 5 p$, and $4 d$ levels of silver. The $5 p$ level is not much occupied in the ground state of silver, but it can be included in the pseudopotential nevertheless.

First-Principles Pseudopotentials

Figure 3: Pseudopotentials for the $5 s, 5 p$, and $4 d$ states of silver.

First-Principles Pseudopotentials

Electron density $n(\vec{r})=\sum\left|\psi_{i}(\vec{r})\right|^{2}$ is spherically symmetrical in vicinity of nucleus
Equation for radial functions is

$$
\begin{gather*}
-\frac{\hbar^{2}}{2 m}\left[\frac{1}{r} \frac{\partial^{2}}{\partial r^{2}} r-\frac{l(l+1)}{r^{2}}\right] \mathcal{R}_{n l}+\left[\int \frac{e^{2} n\left(r^{\prime}\right)}{\left|\vec{r}-\vec{r}^{\prime}\right|} d \vec{r}^{\prime}-\frac{e^{2} Z}{r}+\frac{\delta \varepsilon_{x c}}{\delta n}-\mathcal{E}_{n l}\right] \mathcal{R}_{n l}(r)=0 . \tag{L9}\\
U_{l}^{\mathrm{ps}}(r)=\quad \frac{\hbar^{2}}{2 m}\left[\frac{1}{r \mathcal{R P}_{n l}^{\mathrm{p}}} \frac{\partial^{2} r \mathcal{R}_{n l}^{\mathrm{ps}}}{\partial r^{2}}-\frac{l(l+1)}{r^{2}}\right] \\
- \tag{L10}\\
{\left[\int \frac{e^{2} n^{\mathrm{ps}}\left(r^{\prime}\right)}{\left|\vec{r}-\vec{r}^{\prime}\right|} d \vec{r}^{\prime}+\frac{\delta \varepsilon_{x c}}{\delta n^{\mathrm{ps}}}-\varepsilon_{n l}\right] .} \tag{L11}\\
\psi(\vec{r})=\sum_{l m} Y_{l m}(\theta, \phi) \psi_{l m}(r) ; \psi_{l m}(r)=\int d \theta d \phi \sin \theta Y_{l m}^{*}(\theta, \phi) \psi(\vec{r}),
\end{gather*}
$$

Screening

$$
\begin{equation*}
U^{\mathrm{ps}}=\frac{4 \pi Z e^{2}}{q^{2}+\kappa^{2}} \tag{L12}
\end{equation*}
$$

Result from later work....

$$
\begin{equation*}
\frac{1}{\Omega} U^{\mathrm{ps}}(q=0)=-\frac{2}{3} \mathcal{E}_{F} . \tag{L13}
\end{equation*}
$$

Linear Combination of Atomic Orbitals

$$
\begin{gather*}
\psi_{\vec{k}}(\vec{r})=\frac{1}{\sqrt{N}} \sum_{\vec{R}, l} b_{l} e^{i \vec{k} \cdot \vec{R}} a_{l}^{\mathrm{at}}(\vec{r}-\vec{R}), \tag{L14}\\
\langle\psi| \hat{\mathcal{H}}-\varepsilon|\psi\rangle . \tag{L15}\\
\langle\psi| \mathcal{E}|\psi\rangle=\varepsilon \sum_{\vec{R} \vec{R}^{\prime}} \int d \vec{r} a^{\mathrm{at}}(\vec{r}-\vec{R}) a^{\mathrm{at}}\left(\vec{r}-\vec{R}^{\prime}\right) \frac{e^{i \vec{k} \cdot\left(\vec{R}-\vec{R}^{\prime}\right)}}{N} b^{2} \tag{L16}\\
=b^{2} \varepsilon\left(1+\sum_{\vec{\delta}} \alpha e^{\vec{k} \cdot \vec{\delta}}\right) \tag{L17}
\end{gather*}
$$

and

$$
\begin{gather*}
\alpha=\int d \vec{r} a^{\mathrm{at}}(\vec{r}) a^{\mathrm{at}}(\vec{r}+\vec{\delta}) . \tag{L18}\\
\langle\psi| \hat{\mathcal{H}}|\psi\rangle=\sum_{\vec{R} \vec{R}^{\prime}} \int d \vec{r} a^{\mathrm{at}}(\vec{r}-\vec{R})\left[-\frac{\hbar^{2}}{2 m} \nabla^{2}+U(\vec{r})\right] a^{\operatorname{at}}\left(\vec{r}-\vec{R}^{\prime}\right) \frac{e^{i \vec{k} \cdot\left(\vec{R}-\vec{R}^{\prime}\right)}}{N} b^{2} \tag{L19}
\end{gather*}
$$

Linear Combination of Atomic Orbitals

$$
\begin{align*}
& =\sum_{\vec{R} \vec{R}^{\prime}} \int d \vec{r} a^{\mathrm{at}}(\vec{r}-\vec{R})\left\{\begin{array}{c}
{\left[-\frac{\hbar^{2}}{2 m} \nabla^{2}+U^{\mathrm{at}}\left(\vec{r}-\vec{R}^{\prime}\right)\right] a^{\mathrm{at}}\left(\vec{r}-\vec{R}^{\prime}\right)} \\
+\left[U(\vec{r})-U^{\mathrm{at}}\left(\vec{r}-\vec{R}^{\prime}\right)\right] a^{\mathrm{at}}\left(\vec{r}-\vec{R}^{\prime}\right)
\end{array}\right\} \frac{e^{i \vec{k} \cdot\left(\vec{R}-\vec{R}^{\prime}\right)}}{N} b^{2}(\mathrm{~L} 20) \\
& =\int d \vec{r} \sum_{\vec{R} \vec{R}^{\prime}} \mathcal{E}^{\mathrm{at}} \frac{t^{\mathrm{at}}(\vec{r}-\vec{R}) a^{\mathrm{at}}\left(\vec{r}-\vec{R}^{\prime}\right)}{N} e^{i \vec{k} \cdot\left(\vec{R}-\vec{R}^{\prime}\right)} b^{2} \\
& \quad+\int d \vec{r} \sum_{\vec{R} \vec{R}^{\prime}} a^{\mathrm{at}}(\vec{r}-\vec{R})\left[U(\vec{r})-U^{\mathrm{at}}\left(\vec{r}-\vec{R}^{\prime}\right)\right] a^{\mathrm{at}}\left(\vec{r}-\vec{R}^{\prime}\right) \frac{e^{i \vec{k} \cdot\left(\vec{R}-\vec{R}^{\prime}\right)}}{N} b^{2} . \tag{L21}\\
& \mathcal{E}\left(1+\sum_{\vec{\delta}} \alpha e^{i \vec{k} \cdot \vec{\delta}}\right)=\mathcal{E}^{\mathrm{at}} \sum_{\vec{\delta}} \alpha e^{i \vec{i} \cdot \vec{\delta}}+U+\left(\mathfrak{t}-\alpha \mathcal{E}^{\mathrm{at}}\right) \sum_{\vec{\delta}} e^{i \vec{k} \cdot \vec{\delta}}, \tag{L22}
\end{align*}
$$

where

$$
\begin{equation*}
U=\mathcal{E}^{\mathrm{at}}+\int d \vec{r} a^{\mathrm{at}}(\vec{r})\left[U(\vec{r})-U^{\mathrm{at}}(\vec{r})\right] a^{\mathrm{at}}(\vec{r}) \tag{L23}
\end{equation*}
$$

and

$$
\begin{equation*}
\mathfrak{t}=\alpha \mathcal{E}^{\mathrm{at}}+\int d \vec{r} a^{\mathrm{at}}(\vec{r})\left[U(\vec{r})-U^{\mathrm{at}}(\vec{r}+\vec{\delta})\right] a^{\mathrm{at}}(\vec{r}+\vec{\delta}) . \tag{L24}
\end{equation*}
$$

Linear Combination of Atomic Orbitals

$$
\begin{equation*}
\mathcal{E}=U+\mathfrak{t} \sum_{\vec{\delta}} e^{i \vec{k} \cdot \vec{\delta}} \tag{L25}
\end{equation*}
$$

$$
\begin{equation*}
\vec{K}=l_{1} \vec{b}_{1}+l_{2} \vec{b}_{2}+l_{3} \vec{b}_{3} \tag{L26}
\end{equation*}
$$

$$
\begin{equation*}
\sum_{i=1}^{N} \lambda_{i}^{r} \hat{e}_{i}\left(\hat{e}_{i} \cdot \vec{a}_{1}\right) \tag{L27}
\end{equation*}
$$

$$
\begin{equation*}
\hat{\mathcal{H}}=\frac{\hat{P}^{2}}{2 m}+U(\hat{R}) \tag{L28}
\end{equation*}
$$

$\hbar^{2} K_{\max }^{2} / 2 m=\mathcal{E}_{\max }$

$$
\begin{equation*}
\hat{\mathcal{H}} \psi=\sum_{\vec{K}^{\prime}}\left\{\left[\varepsilon_{\vec{k}+\vec{K}^{\prime}}^{0}-\mathcal{E}_{\max }\right] \delta_{\vec{K} \vec{K}^{\prime}}+U_{\vec{K}-\vec{K}^{\prime}}\right\} \psi_{n \vec{k}}\left(\vec{K}^{\prime}\right) \tag{L29}
\end{equation*}
$$

$$
\begin{equation*}
1+\hat{\mathcal{H}} d t / \hbar \tag{L30}
\end{equation*}
$$

Plane Waves

$$
\begin{equation*}
\psi_{n+1}=(1+\hat{\mathcal{H}} d t / \hbar) \psi_{n} \Rightarrow \frac{\psi_{n+1}-\psi_{n}}{d t}=\frac{1}{\hbar} \hat{\mathcal{H}} \psi_{n} \tag{L3}
\end{equation*}
$$

Linear Augmented Plane Waves (LAPW) ${ }^{14}$

$$
\begin{aligned}
& \phi_{\varepsilon \vec{k}}=e^{i \vec{k} \cdot \vec{r}} \\
& -\frac{1}{2 m} \hbar^{2} \nabla^{2} \phi_{\varepsilon \vec{k}}+U(r) \phi_{\varepsilon \vec{k}}=\varepsilon \phi_{\varepsilon \vec{k}}
\end{aligned}
$$

$$
\begin{equation*}
\psi_{\varepsilon}=Y_{l m} \mathcal{R}_{l \varepsilon}(r) \tag{L32}
\end{equation*}
$$

$$
\begin{equation*}
\frac{-\hbar^{2}}{2 m r^{2}} \frac{\partial}{\partial r} r^{2} \frac{\partial}{\partial r} \mathcal{R}_{l \varepsilon}(r)+\left[U(r)+\frac{\hbar^{2} l(l+1)}{2 m r^{2}}\right] \mathcal{R}_{l \varepsilon}(r)=\varepsilon \mathcal{R}_{l \varepsilon}(r) \tag{L33}
\end{equation*}
$$

$$
\begin{equation*}
\phi_{\varepsilon \vec{k}}=\sum_{l=0}^{\infty} \sum_{m=-l}^{l} A_{l m} Y_{l m}(\hat{r}) \mathcal{R}_{l \varepsilon}(r), \tag{L34}
\end{equation*}
$$

Linear Augmented Plane Waves (LAPW)

$$
\begin{gather*}
e^{i \vec{k} \cdot \vec{r}}=4 \pi \sum_{l=0}^{\infty} \sum_{m=-l}^{l} i^{l} j_{l}(k r) Y_{l m}^{*}(\hat{k}) Y_{l m}(\hat{r}) \tag{L35}\\
\phi_{\varepsilon \vec{k}}=4 \pi \sum_{l=0}^{\infty} \sum_{m=-l}^{l} \frac{i^{l} j_{l}\left(k R_{h}\right) Y_{l m}^{*}(\hat{k})}{\mathcal{R}_{l \varepsilon}\left(R_{h}\right)} Y_{l m}(\hat{r}) \mathcal{R}_{l \mathcal{E}}(r) \tag{L36}\\
\psi_{\vec{k}}=\sum_{\vec{K}} b_{\vec{k}+\vec{K}} \phi_{\varepsilon, \vec{k}+\vec{K}} \tag{L37}\\
\langle\psi| \hat{\mathcal{H}}-\mathcal{E}|\psi\rangle \tag{L38}\\
0=\sum_{\vec{K}}\left\langle\phi_{\mathcal{E} \vec{q}}\right| \hat{\mathcal{H}}-\mathcal{E}\left|\phi_{\mathcal{E} \vec{q}+\vec{K}}\right\rangle b_{\vec{q}+\vec{K}} \tag{L39}
\end{gather*}
$$

where

$$
\begin{equation*}
\left\langle\phi_{\mathcal{\varepsilon} \vec{q}}\right| \hat{\mathcal{H}}-\mathcal{E}\left|\phi_{\varepsilon \vec{q}^{\prime}}\right\rangle=\left(\frac{\hbar^{2} \vec{q} \cdot \vec{q}^{\prime}}{2 m}-\mathcal{E}\right) \Omega \delta_{\vec{q}, \vec{q}^{\prime}}+\mathcal{U}_{\vec{q}, \vec{q}^{\prime}} \tag{L40}
\end{equation*}
$$

Linear Augmented Plane Waves (LAPW)

$$
\chi_{\vec{q}, \vec{q}^{\prime}}=4 \pi R_{h}^{2}\left\{\begin{array}{l}
-\left(\frac{\hbar^{2} \vec{q} \cdot \vec{q}^{\prime}}{2 m}-\varepsilon\right) \frac{j_{1}\left(\left|\vec{q}-\vec{q}^{\prime}\right| R_{h}\right)}{\left|\vec{q}-\vec{q}^{\prime}\right|} \tag{L41}\\
+\sum_{l=0}^{\infty} \frac{\hbar^{2}}{2 m}(2 l+1) P_{l}\left(\hat{q} \cdot \hat{q}^{\prime}\right) j_{l}\left(q R_{h}\right) j_{l}\left(q^{\prime} R_{h}\right) \frac{\mathcal{R}_{l \varepsilon}^{\prime}\left(R_{h}\right)}{\mathcal{R}_{l \varepsilon}\left(R_{h}\right)}
\end{array}\right\} .
$$

Linearized Muffin Tin Orbitals (LMTO)

$$
\begin{gather*}
\chi_{l m}(\mathcal{E}, r)= \begin{cases}i^{l} Y_{l}^{m}(\hat{r})\left[\mathcal{R}_{l \varepsilon}(r)+\left(\frac{r}{R_{h}}\right)^{l} p_{l \varepsilon}\right] & \text { for } r<R_{h} \\
i^{l} Y_{l}^{m}(\hat{r})\left(\frac{R_{h}}{r}\right)^{l+1} & \text { for } r>R_{h}\end{cases} \tag{L42}\\
\mathcal{R}_{l \varepsilon}\left(R_{h}\right)+p_{l \varepsilon}=1 \\
\mathcal{R}_{l \varepsilon}^{\prime}\left(R_{h}\right)+l \frac{p_{l \varepsilon}}{R_{h}}=-\frac{l+1}{R_{h}} . \tag{L43}\\
p_{l \varepsilon}=\frac{-(l+1) / R_{h}-\left.\frac{\partial \mathcal{R}_{l \varepsilon}}{\partial r}\right|_{R_{h}}}{l / R_{h}-\left.\frac{\partial \mathcal{R}_{l \varepsilon}}{\partial r}\right|_{R_{h}}}=\frac{\mathcal{D}_{l}(\mathcal{E})+l+1}{\mathcal{D}_{l}(\mathcal{E})-l} \tag{L44a}
\end{gather*}
$$

with

$$
\begin{align*}
\mathcal{D}_{l}(\mathcal{E})= & \left.\frac{R_{h}}{\mathcal{R}_{l \varepsilon}\left(R_{h}\right)} \frac{\partial \mathcal{R}_{l \varepsilon}}{\partial r}\right|_{R_{h}} \tag{L44b}\\
& \psi(\vec{r})=\sum_{l m} B_{l m}^{n \vec{k}} \sum_{\vec{R}} e^{i \vec{k} \cdot \vec{R}} \chi_{l m}(\varepsilon, \vec{r}-\vec{R}) \tag{L45}
\end{align*}
$$

Linearized Muffin Tin Orbitals (LMTO)

$$
\begin{gather*}
0=\sum_{l m} B_{l m}^{\vec{k}}\left[p_{l \varepsilon} i^{l} Y_{l}^{m}(\hat{r})\left(\frac{r}{R_{h}}\right)^{l}+\sum_{\vec{R} \neq 0} i^{l} Y_{l^{\prime}}^{m}(\widehat{\vec{r}-\vec{R}})\left(\frac{R_{h}}{|\vec{r}-\vec{R}|}\right)^{l+1} e^{\overrightarrow{i k} \cdot \vec{R}}\right] . \tag{L46}\\
\sum_{\vec{R} \neq 0} i^{l} Y_{l}^{m} \widehat{(\vec{r}-\vec{R})}\left(\frac{R_{h}}{|\vec{r}-\vec{R}|}\right)^{l+1} e^{i \vec{k} \cdot \vec{R}}=-\sum_{l^{\prime} m^{\prime}} \frac{\mathcal{S}_{l l^{\prime} m m^{\prime}}^{\vec{k}}}{2\left(2 l^{\prime}+1\right)}\left(\frac{r}{R_{h}}\right)^{l^{\prime}} i^{i^{\prime}} Y_{l^{\prime}}^{m^{\prime}}(\hat{r}) . \tag{L47}\\
0=\sum_{l m} B_{l m}^{n \vec{k}}\left[p_{l \varepsilon} i^{l} Y_{l^{m}}^{m}(\hat{r})\left(\frac{r}{R_{h}}\right)^{l}-\sum_{l^{\prime} m^{\prime}} \frac{\mathcal{S}_{l l^{\prime} m m^{\prime}}^{\overrightarrow{2}}}{2\left(2 l^{\prime}+1\right)}\left(\frac{r}{R_{h}}\right)^{l^{\prime}} i^{i^{\prime}} Y_{l^{\prime}}^{m^{\prime}}(\hat{r})\right] \tag{L48}\\
\Rightarrow 0=\sum_{l m l^{\prime} m^{\prime}} B_{l m}^{n \vec{k}}\left[p_{l \varepsilon} \delta_{l l^{\prime}} \delta_{m m^{\prime}}-\frac{\left.\mathcal{S}_{l l^{\prime} m m^{\prime}}^{2\left(2 l^{\prime}+1\right)}\right]\left(\frac{r}{R_{h}}\right)^{l^{\prime}} i^{i^{\prime}} Y_{l^{\prime}}^{m^{\prime}}(\hat{r}) .}{}\right. \\
0=\sum_{l m}\left[2(2 l+1) p_{l \varepsilon} \delta_{l l^{\prime}} \delta_{m m^{\prime}}-S_{l l^{\prime} m m^{\prime}}^{\vec{k}}\right] B_{l m}^{n \vec{k}} . \tag{L50}
\end{gather*}
$$

Definition of Metals, Insulators, and Semiconductors

Wilson's theory:
Insulator: All bands are either full or empty.
Metal: At least one band is partially occupied.
Semiconductor: Insulator where energy gap is less than around 1 eV .
Semimetal: Metal with very small population of conduction electrons.

Definition of Metals, Insulators, and Semiconductors

Insulator

Wave vector k

Metal

Wave vector k

Transition Metals

23rd March 2003
(c)2003, Michael Marder

