Phonons

Space

Phonons

- Goldstone modes
- Acoustic branch
- Optical branch
- Density of phonon states
- Einstein model
- Debye model, Debye frequency, Debye temperature
- Grüneisen parameter
- Inelastic scattering, scattering length, inelastic structure factor
- Debye–Waller factor
- Kohn anomalies
- Mössbauer effect

Vibrations of a Classical Lattice

Find energy when atoms move small distances from equilibrium. Must keep changes to second order.

$$\mathcal{E}(\vec{u}^1, \vec{u}^2 \dots \vec{u}^N), \tag{L1}$$

$$\mathcal{E} = \mathcal{E}_c + \sum_{\alpha \atop l} \frac{\partial \mathcal{E}}{\partial u_{\alpha}^l} u_{\alpha}^l + \frac{1}{2} \sum_{\alpha \beta \atop ll'} u_{\alpha}^l \Phi_{\alpha\beta}^{ll'} u_{\beta}^{l'} + \dots$$
(L2)

$$\Phi_{\alpha\beta}^{ll'} = \frac{\partial^2 \mathcal{E}}{\partial u_{\alpha}^l \partial u_{\beta}^{l'}}$$
(L3)
$$M \ddot{\vec{u}}^l = -\sum_{l'} \Phi^{ll'} \vec{u}^{l'}.$$
(L4)

In a crystal, because of translational invariance,

$$\sum_{l'} \Phi^{ll'} = 0. \tag{L5}$$
14th April 2003

© 2003, Michael Marder

Normal Modes

Polarization $\vec{\epsilon}$

$$\vec{u}^l = \vec{\epsilon} e^{i\vec{k}\cdot\vec{R}^l - i\omega t}.$$
 (L6)

$$M\omega^{2}\vec{\epsilon} = \sum_{l'} \Phi^{ll'} e^{i\vec{k}\cdot(\vec{R}^{l}-\vec{R}^{l'})}\vec{\epsilon}$$
(L7a)
= $\Phi(\vec{k})\vec{\epsilon}$, with $\Phi(\vec{k}) = \sum_{l'} e^{i\vec{k}\cdot(\vec{R}^{l}-\vec{R}^{l'})}\Phi^{ll'}$. (L7b)

14th April 2003 © 2003, Michael Marder

Normal Modes

$$\omega_{\vec{k}\nu}^2 = \frac{\Phi_\nu(\vec{k})}{M}.$$
 (L8)

$$\Phi(\vec{k} + \vec{K}) = \Phi(\vec{k}), \tag{L9}$$

- rightarrow Can restrict \vec{k} to the first Brillouin zone.
- Phonons, like electrons, are waves in a periodic potential.
- $rightarrow \vec{k}$ in Brillouin zone completely exhausts all phonon states.

$$M\ddot{u}^{l} = \mathcal{K}(u^{l+1} - 2u^{l} + u^{l-1}).$$
 (L10)

Substituting $u \propto \exp(ikl - i\omega t)$ gives

$$M\omega^2 = ?$$
 ? (L11)
 $\Rightarrow \omega = ?$? (L12)

Example in One Dimension

Linear dispersion as $\vec{k} = \rightarrow 0$ is generic, example of Goldstone mode.

Lattice with a Basis

Acoustic

• 0 0 • 0 • • • • • • • • • • • • • • • • • 0 • 0 • • • 0 0 • • • • • • • • • O • • 0 • 0 0 0 0 0 0 • 0 0 • • • • • 0 • • 0.0 • • • 🔾 0 0 0 0 0 • • 0 0 0 • • 🔘) 🔘 o • • • • • 0 0 0 0 • • 0000 0 • 0 • 0 • 0 • • 0 • • • 0 • 0 • • 0 0 • 0 0 • • • • • • • • • 0 • 0 • 0 • 0 • 🔘 0 • • • 0 • 0 • 0 0 0 0 0 • 🔘 0 • • 0 0 • **O** • **O** • **•** • **•** • • • • • • • • • • • • • • • • 0

Optical

• • 🔾 00 0 00 • 0 0 • 0 O 00 • 00 ••• 0 00 • • 0 00 0 0 • 0 00 •0 • 0 0 00 0 0 • 0 • 00 • • • 0 00 0 0 00 0 • 0 00 0 0 0 0 00 O 0. 0

Space

$$M_{n}\ddot{\vec{u}}^{n} = -\sum_{l'n'} \Phi^{lnl'n'}\vec{u}^{l'n'}, \qquad (L13)$$

14th April 2003 © 2003, Michael Marder

Time

Lattice with a Basis

$$\vec{u}^{ln} = \vec{\epsilon}^n e^{i\vec{k}\cdot\vec{R}^{ln}-i\omega t}, \qquad (L14)$$
$$\Rightarrow M_n \omega^2 \vec{\epsilon}^n = \sum_{n'} \Phi^{nn'}(\vec{k}) \vec{\epsilon}^{n'}. \qquad (L15)$$

$$M_p \omega^2 \epsilon_p = \sum_{p'}^{3N} \Phi_{pp'}(\vec{k}) \epsilon_{p'}.$$
 (L16)

One-dimensional example with basis

$$M_{1}\ddot{u}_{1}^{l} = \mathcal{K}(u_{2}^{l} - 2u_{1}^{l} + u_{2}^{l-1})$$
(L17a)

$$M_{2}\ddot{u}_{2}^{l} = \mathcal{K}(u_{1}^{l+1} - 2u_{2}^{l} + u_{1}^{l})$$
(L17b)

$$\Rightarrow -\omega^2 M_1 \epsilon_1 e^{ikla} = \mathcal{K}(\epsilon_2 - 2\epsilon_1 + \epsilon_2 e^{-ika}) e^{ikla}$$
(L18a)
$$-\omega^2 M_2 \epsilon_2 e^{ikla} = ? ? ? (L18b)$$

$$\Rightarrow \omega = \sqrt{\mathcal{K}} \sqrt{\frac{M_1 + M_2 \pm \sqrt{M_1^2 + 2M_1M_2\cos ka + M_2^2}}{M_1M_2}}.$$
 (L19)

$$\omega(k) = \sqrt{\frac{\mathcal{K}}{2(M_1 + M_2)}} ka, \quad \epsilon_1 = 1; \epsilon_2 = 1 + ika/2, \quad (L20a)$$

$$\omega(k) = \sqrt{\frac{2\mathcal{K}(M_1 + M_2)}{M_1M_2}}, \quad \epsilon_1 = M_2; \epsilon_2 = -M_1(1 + ika/2). \quad (L20b)$$

One-dimensional example with basis

Diamond Lattice

$$U = \frac{1}{2} \sum_{lnl'n'} \phi_{nn'} (|\vec{u}^{ln} + \vec{R}^{ln} - \vec{u}^{l'n'} - \vec{R}^{l'n'}|).$$
(L21)

$$U \approx \frac{1}{4} \sum_{lnl'n'} [\vec{u}^{ln} - \vec{u}^{l'n'}] \mathbf{f}^{lnl'n'} [\vec{u}^{ln} - \vec{u}^{l'n'}], \qquad (L22)$$

$$\mathbf{f}_{\alpha\beta}^{lnl'n'} = \frac{\partial^2}{\partial r_{\alpha}r_{\beta}}\phi_{nn'}(|\vec{r}|)\big|_{\vec{r}=\vec{R}^{ln}-\vec{R}^{l'n'}}$$
(L23)
$$= \left\{ \frac{r_{\alpha}r_{\beta}}{r^2} [\phi_{nn'}'(r) - \frac{1}{r}\phi_{nn'}'(r)] + \frac{\delta_{\alpha\beta}}{r}\phi_{nn'}'(r) \right\} \Big|_{\vec{r}=\vec{R}^{ln}-\vec{R}^{l'n'}}$$
(L24)

$$\sum_{l'n'} \frac{\vec{r}}{r} \phi_{nn'}'(r) \big|_{\vec{r} = \vec{R}^{ln} - \vec{R}^{l'n'}} = 0.$$
(L25)

$$\Phi^{lnl'n'} = \sum_{l''n''} \mathbf{f}^{lnl''n''} (\delta_{ll'} \delta_{nn'} - \delta_{l'l''} \delta_{n'n''}).$$
(L26)

14th April 2003 © 2003, Michael Marder

Diamond Lattice

$$f_1 - f_2 = \phi''(d) - \frac{1}{d}\phi'(d)$$
 (L27)

and

$$f_2 = \frac{1}{d}\phi'(d) \tag{L28}$$

$$\Rightarrow \mathbf{f}_{\alpha\beta}^{lnl'n'} = \frac{r_{\alpha}r_{\beta}}{r^2} [f_1 - f_2] + \delta_{\alpha\beta}f_2 \Big|_{\vec{r} = \vec{R}^{ln} - \vec{R}^{l'n'}}.$$
 (L29)

$$\Phi^{nn'}(\vec{k}) = \sum_{l'} \Phi^{0nl'n'} e^{i\vec{k} \cdot (\vec{R}^{0n} - \vec{R}^{l'n'})}$$
(L30)

Comparison with Experiment

Comparison with Experiment

$$\hbar\omega_{\vec{k}\nu}(n+\frac{1}{2});\tag{L31}$$

$$\hat{\mathcal{H}} = \frac{\hat{P}^2}{2M} + \frac{1}{2}M\omega^2\hat{R}^2 \tag{L32}$$

Raising and lowering operators

$$\hat{a}^{\dagger} = \sqrt{\frac{M\omega}{2\hbar}}\hat{R} - i\sqrt{\frac{1}{2\hbar M\omega}}\hat{P}$$
(L33a)
$$\hat{a} = \sqrt{\frac{M\omega}{2\hbar}}\hat{R} + i\sqrt{\frac{1}{2\hbar M\omega}}\hat{P}.$$
(L33b)

$$\hat{\mathcal{H}} = \hbar\omega \left(\hat{a}^{\dagger} a + \frac{1}{2} \right) = \hbar\omega \left(\hat{n} + \frac{1}{2} \right)$$
(L34)

$$\hat{R} = \sqrt{\frac{\hbar}{2M\omega}} (\hat{a} + \hat{a}^{\dagger}).$$
(L35)

14th April 2003 © 2003, Michael Marder

$$\hat{\mathcal{H}} = \sum_{l} \frac{\hat{P^{l}}^{2}}{2M} + \frac{1}{2} \sum_{ll'} \hat{u}^{l} \Phi^{ll'} \hat{u}^{l'} \dots$$
(L36)

$$\hat{a}_{\vec{k}\nu} = \frac{1}{\sqrt{N}} \sum_{l=1}^{N} e^{-i\vec{k}\cdot\vec{R}^{l}} \vec{\epsilon}_{\vec{k}\nu}^{*} \cdot \left[\sqrt{\frac{M\omega_{\vec{k}\nu}}{2\hbar}} \hat{u}^{l} + i\sqrt{\frac{1}{2\hbar M\omega_{\vec{k}\nu}}} \hat{P}^{l} \right]$$
(L37a)
$$\hat{a}_{\vec{k}\nu}^{\dagger} = \frac{1}{\sqrt{N}} \sum_{l=1}^{N} e^{i\vec{k}\cdot\vec{R}^{l}} \vec{\epsilon}_{\vec{k}\nu} \cdot \left[\sqrt{\frac{M\omega_{\vec{k}\nu}}{2\hbar}} \hat{u}^{l} - i\sqrt{\frac{1}{2\hbar M\omega_{\vec{k}\nu}}} \hat{P}^{l} \right].$$
(L37b)

$$\hat{u}^{l} = \frac{1}{\sqrt{N}} \sum_{\vec{k}\nu} \left[\hat{u}_{\vec{k}\nu} e^{i\vec{k}\cdot\vec{R}^{l}} + \hat{u}_{\vec{k}\nu}^{\dagger} e^{-i\vec{k}\cdot\vec{R}^{l}} \right] \text{ with } \hat{u}_{\vec{k}\nu} \equiv \sqrt{\frac{\hbar}{2M\omega_{\vec{k}\nu}}} \vec{\epsilon}_{\vec{k}\nu} \hat{a}_{\vec{k}\nu} \qquad (L38a)$$

and

$$\hat{P}^{l} = \frac{1}{\sqrt{N}} \sum_{\vec{k}\nu} \left[\hat{P}_{\vec{k}\nu} e^{i\vec{k}\cdot\vec{R}^{l}} + \hat{P}_{\vec{k}\nu}^{\dagger} e^{-i\vec{k}\cdot\vec{R}^{l}} \right] \text{ with } \hat{P}_{\vec{k}\nu} = -i\sqrt{\frac{\hbar M\omega_{\vec{k}\nu}}{2}} \vec{\epsilon}_{\vec{k}\nu} \hat{a}_{\vec{k}\nu}.$$
(L38b)

 $[\hat{P}^l,\hat{R}^l]=-i\hbar$

$$[\hat{a}_{\vec{k}\nu}, \hat{a}^{\dagger}_{\vec{k}\nu}] = 1.$$
 (L39)

$$\omega_{\vec{k}\nu} = \omega_{-\vec{k}\nu}.\tag{L40}$$

$$\sum_{l} \frac{\hat{P}^{l^{2}}}{2M} = \sum_{\vec{k}\nu} \frac{\hbar\omega_{\vec{k}\nu}}{4} \begin{cases} [\hat{a}_{\vec{k}\nu} & \hat{a}_{\vec{k}\nu}^{\dagger} + \hat{a}_{\vec{k}\nu}^{\dagger} \hat{a}_{\vec{k}\nu}] \\ -[\hat{a}_{\vec{k}\nu} & \hat{a}_{\vec{k}\nu}\vec{\epsilon}_{\vec{k}\nu} \cdot \vec{\epsilon}_{-\vec{k}\nu} + \hat{a}_{\vec{k}\nu}^{\dagger} \hat{a}_{\vec{k}\nu}^{\dagger} \vec{\epsilon}_{\vec{k}\nu}^{*} \cdot \vec{\epsilon}_{-\vec{k}\nu}] \end{cases}$$
(A1a)
$$\sum_{ll'} \frac{1}{2} \hat{u}^{l} \Phi^{ll'} \hat{u}^{l'} = \sum_{\vec{k}\nu} \frac{\hbar\omega_{\vec{k}\nu}}{4} \begin{cases} [\hat{a}_{\vec{k}\nu} & \hat{a}_{\vec{k}\nu}^{\dagger} + \hat{a}_{\vec{k}\nu}^{\dagger} \hat{a}_{\vec{k}\nu}] \\ +[\hat{a}_{\vec{k}\nu} & \hat{a}_{\vec{k}\nu}\vec{\epsilon}_{\vec{k}\nu} \cdot \vec{\epsilon}_{-\vec{k}\nu} + \hat{a}_{\vec{k}\nu}^{\dagger} \hat{a}_{\vec{k}\nu}\vec{\epsilon}_{\vec{k}\nu} \cdot \vec{\epsilon}_{-\vec{k}\nu}] \end{cases} \end{cases}$$
(A1b)

Don't assume $\vec{\epsilon}_{\vec{k}\nu}^* = \vec{\epsilon}_{-\vec{k}\nu}$, as it leads to problems for longitudinal modes.

$$\hat{\mathcal{H}} = \sum_{\vec{k}\nu} \frac{\hbar\omega_{\vec{k}\nu}}{2} [\hat{a}_{\vec{k}\nu} \hat{a}_{\vec{k}\nu}^{\dagger} + \hat{a}_{\vec{k}\nu}^{\dagger} \hat{a}_{\vec{k}\nu}] = \sum_{\vec{k}\nu} \hbar\omega_{\vec{k}\nu} (\hat{a}_{\vec{k}\nu}^{\dagger} \hat{a}_{\vec{k}\nu} + \frac{1}{2}).$$
(L42)

14th April 2003 © 2003, Michael Marder

$$\hat{\mathcal{H}} = \sum_{i} \hbar \omega_i (\hat{n}_i + \frac{1}{2}). \tag{L43}$$

$$\hat{a}_{\vec{k}\nu}(t) = e^{i\hat{\mathcal{H}}t/\hbar}\hat{a}_{\vec{k}\nu}e^{-i\hat{\mathcal{H}}t/\hbar}$$
(L44)

so that

$$\frac{\partial \hat{a}_{\vec{k}\nu}(t)}{\partial t} = e^{i\hat{\mathcal{H}}t/\hbar} i[\hat{\mathcal{H}}, \hat{a}_{\vec{k}\nu}] e^{-i\mathcal{H}t/\hbar}/\hbar$$
(L45)

$$= -i\omega_{\vec{k}\nu}\hat{a}_{\vec{k}\nu} \tag{L46}$$

$$\Rightarrow \hat{a}_{\vec{k}\nu}(t) = \hat{a}_{\vec{k}\nu}e^{-i\omega_{\vec{k}\nu}t}.$$
 (L47)

$$\hat{u}^{l}(t) = \frac{1}{\sqrt{N}} \sum_{\vec{k}\nu} [\hat{u}_{\vec{k}\nu} e^{i\vec{k}\cdot\vec{R}^{l} - i\omega_{\vec{k}\nu}t} + \hat{u}_{\vec{k}\nu}^{\dagger} e^{-i\vec{k}\cdot\vec{R}^{l} + i\omega_{\vec{k}\nu}t}].$$
(L48)

Testing ground for quantum mechanics

Einstein model

$$\mathcal{E} = \frac{3N\hbar\omega_0}{e^{\hbar\beta\omega_0} - 1}$$
(L49)
$$\Rightarrow C_{\mathcal{V}} = \frac{\partial \mathcal{E}}{\partial T} |_{\mathcal{V}} = \frac{3N(\hbar\omega_0)^2 e^{\hbar\beta\omega_0} / (k_B T^2)}{[e^{\hbar\beta\omega_0} - 1]^2}.$$
(L50)

Residual ray of diamond $\omega_0 = 1.71 \cdot 10^{14} s^{-1}$ leads to

Phonon Specific Heat

Phonon Specific Heat

$$\mathcal{E} = \sum_{i} \hbar \omega_i (l_i + \frac{1}{2}). \tag{L51}$$

$$Z = \sum_{l_1=0}^{\infty} \sum_{l_2=0}^{\infty} \dots e^{-\beta \sum_i \hbar \omega_i (l_i + 1/2)}$$
(L52)

$$= \prod_{i=1}^{\infty} \left\{ \sum_{l=0}^{\infty} e^{-\beta \hbar \omega_i (n+1/2)} \right\}$$
(L53)

$$= \prod_{i=1}^{\infty} \left\{ \frac{e^{-\beta\hbar\omega_i/2}}{1 - \exp(-\beta\hbar\omega_i)} \right\}$$
(L54)

$$\Rightarrow \mathcal{F} = -k_B T \ln Z = \sum_i \frac{\hbar \omega_i}{2} + k_B T \ln(1 - e^{-\beta \hbar \omega_i})$$
(L55)

$$\Rightarrow \mathcal{E} = \frac{\partial\beta\mathcal{F}}{\partial\beta} = \sum_{i} \frac{\hbar\omega_{i}}{2} + \frac{\hbar\omega_{i}}{e^{\beta\hbar\omega_{i}} - 1} = \sum_{i} \hbar\omega_{i}(n_{i} + \frac{1}{2})$$
(L56)

with

$$n_i \equiv \frac{1}{e^{\beta\hbar\omega_i} - 1} \tag{L57}$$

14th April 2003 © 2003, Michael Marder

Phonon Specific Heat

$$\Rightarrow C_{\mathcal{V}} = \frac{\partial \mathcal{E}}{\partial T} |_{\mathcal{V}} = \sum_{i} C_{i} = \sum_{i} \hbar \omega_{i} \frac{\partial n_{i}}{\partial T}.$$
 (L58)

$$D(\omega) = \sum_{i} \delta(\omega - \omega_{i}) = \sum_{\vec{k}\nu} \delta(\omega - \omega_{\vec{k}\nu}) = \int \frac{d\vec{k}}{(2\pi)^{3}} \sum_{\nu} \delta(\omega - \omega_{\vec{k}\nu}), \quad (L59)$$

$$C_{\mathcal{V}} = \mathcal{V} \int_{0}^{\infty} d\omega D(\omega) \frac{\partial}{\partial T} \frac{\hbar\omega}{e^{\beta\hbar\omega} - 1}.$$
 (L60)

- Characteristic frequency of 16 THz
- Cusps are van Hove singularities (Section 7.2.1)

Dulong and Petit

$$C_{\mathcal{V}} = Nk_B \tag{L61}$$

$$D(\omega) = \int \frac{d\vec{k}}{(2\pi)^3} \sum_{\nu} \delta(\omega - c_{\nu}(\hat{k})k)$$
(L62)

$$= \frac{3\omega^2}{2\pi^2 c^3} \text{ with } \frac{1}{c^3} = \frac{1}{3} \sum_{\nu} \int \frac{d\Sigma}{4\pi} \frac{1}{c_{\nu}^3(\hat{k})}$$
(L63)

$$\Rightarrow C_{\mathcal{V}} = \mathcal{V} \frac{\partial}{\partial T} \frac{3(k_B T)^4}{2\pi^2 (c\hbar)^3} \int_0^\infty dx \frac{x^3}{e^x - 1}$$
(L64)
$$= \mathcal{V} \frac{2\pi^2}{5} k_B \left[\frac{k_B T}{\hbar c} \right]^3.$$
(L65)

Einstein Model

$$D(\omega) = \frac{3N}{\mathcal{V}}\delta(\omega - \omega_0), \qquad (L66)$$

Tebye Model

$$D(\omega) = \frac{3\omega^2}{2\pi^2 c^3} \theta(\omega_D - \omega)$$
(L67)

Einstein and Debye Models

[Data, Dolling and Cowley (1966)]

Total number of modes

$$3N = \mathcal{V} \int_0^\infty d\omega D(\omega) \Rightarrow n = \frac{\omega_D^3}{6\pi^2 c^3}.$$
 (L68)

Debye temperature:

$$k_B \Theta_D \equiv \hbar \omega_D \tag{L69}$$

$$C_{\mathcal{V}} = 9Nk_B \left(\frac{T}{\Theta_D}\right)^3 \int_0^{\Theta_D/T} dx \frac{x^4 e^x}{(e^x - 1)^2} \tag{L70}$$

Form of specific heat

[Data, Touloukian et al (1975)]

Phonon and electron specific heats comparable when $T \approx \Theta_D \sqrt{\Theta_D/T_F}$, 10 K

Debye Temperatures

El.	Θ_D	El.	Θ_D	El.	Θ_D	El.	Θ_D
Am	121	Eu	118	Na	157	Sm	169
Ar	92	Fe	477	Nb	276	Sn	199
Ag	227	Ga	325	Nd	163	Sr	147
Al	433	Ge	373	Ne	74.6	Ta	245
As	282	Gd	182	Ni	477	Tb	176
Au	162	Н	122	Np	259	Te	152
Ba	111	He	34-108	Os	467	Th	160
Be	1481	Hf	252	Pa	185	Ti	420
Bi	120	Hg	72	Pb	105	Tl	78.5
В	1480	Ho	190	Pd	271	Tm	200
C(gr)	412	Ι	109	Pr	152	U	248
C(dia)	2250	In	112	Pt	237	V	399
Ca	229	Ir	420	Pu	206	W	383
Cd	210	Κ	91.1	Rb	56.5	Xe	64.0
Ce	179	Kr	71.9	Re	416	Y	248
Co	460	La	150	Rh	512	Yb	118
Cr	606	Li	344	Ru	555	Zn	329
Cs	40.5	Lu	183	Sb	220	Zr	290
Cu	347	Mg	403	Sc	346		
Dy	183	Mn	409	Se	153		
Er	188	Mo	423	Si	645		

Thermal Expansion

 $\mathcal{E} = \frac{1}{2}\mathcal{K}x^2. \tag{L72}$

$$\mathcal{E}(x) = \mathcal{E}_0 + \frac{1}{2}\mathcal{K}x^2 + \dots$$
 (L73)

$$\bar{x} = \frac{\int dx x e^{-\beta \mathcal{E}(x)}}{\int dx e^{-\beta \mathcal{E}(x)}} = \frac{\partial}{\partial A} \left(\ln \int dx e^{Ax - \beta \mathcal{E}(x)} \right) \Big|_{A=0}$$
(L74)
$$\approx \frac{\partial}{\partial A} \ln \int dx e^{Ax - \beta \mathcal{E}(x_0) - \beta \mathcal{E}'(x_0)(x - x_0) - \beta \mathcal{E}''(x_0)(x - x_0)^2/2} \Big|_{A=0}.$$
(L75)

$$A = \beta \mathcal{E}'(x_0) = \beta \mathcal{K} x_0 \qquad (L76)$$
$$\Rightarrow \bar{x} = \frac{\partial}{\partial A} \left[\ln \sqrt{\frac{2\pi}{\beta \mathcal{E}''(x_0)}} e^{Ax_0 - \beta \mathcal{E}(x_0)} \right]|_{A=0} \qquad (L77)$$

14th April 2003 © 2003, Michael Marder

Thermal Expansion

$$= \frac{k_B T}{\mathcal{K}} \frac{\partial}{\partial x_0} \left[\ln \sqrt{\frac{2\pi}{\beta \mathcal{E}''(x_0)}} e^{\beta \mathcal{K} x_0^2 / 2 - \beta \mathcal{E}_0} \right] |_{x_0 = 0}$$
(L78)

$$= -\frac{k_B T}{\mathcal{K}\omega} \frac{\partial \omega}{\partial x}|_{x=0}, \text{ with } \mu \omega^2(x) \equiv \mathcal{E}''(x).$$
 (L79)

$$\mathcal{V}\beta_T \equiv \frac{\partial \mathcal{V}}{\partial T} \mid_P = \frac{\partial P/\partial T \mid_{\mathcal{V}}}{-\partial P/\partial \mathcal{V} \mid_T}$$
(L80)
$$= -\frac{\mathcal{V}}{B} \frac{\partial^2 \mathcal{F}}{\partial \mathcal{V} \partial T},$$
(L81)

$$\frac{\partial \mathcal{F}}{\partial \mathcal{V}} |_{T} = \sum_{i} (n_{i} + \frac{1}{2}) \frac{\partial \hbar \omega_{i}}{\partial \mathcal{V}}$$
(L82)
$$\Rightarrow \frac{\partial^{2} \mathcal{F}}{\partial \mathcal{V} \partial T} = \sum_{i} \frac{\partial n_{i}}{\partial T} \frac{\partial \hbar \omega_{i}}{\partial \mathcal{V}}.$$
(L83)

Main results

- The second secon
- Grüneisen parameter relates thermal volume expansion to specific heat

$$\gamma_{T} = \frac{\sum_{i} \frac{\partial n_{i}}{\partial T} (-\mathcal{V} \frac{\partial \hbar \omega_{i}}{\partial \mathcal{V}})}{\sum_{i} \hbar \omega_{i} \frac{\partial n_{i}}{\partial T}}$$
(L84)

$$\Rightarrow -\frac{\partial^{2} \mathcal{F}}{\partial \mathcal{V} \partial T} = \frac{\gamma_{T} C_{\mathcal{V}}}{\mathcal{V}}$$
(L85)

$$\Rightarrow \beta_{T} = \frac{\gamma_{T} C_{\mathcal{V}}}{B \mathcal{V}}.$$
(L86)

Thermal Expansion

[Data from Touloukian (1970a) and (1975) for aluminum]

[Data from Touloukian (1975)]

Inelastic Neutron Scattering

Scattering can be understood from conservation laws

Inelastic Neutron Scattering

Energy

If neutron creates a phonon, then

$$\frac{\hbar^2 k^2}{2m_{\rm n}} = \frac{\hbar^2 (k')^2}{2m_{\rm n}} + \hbar \omega_{\vec{q}\nu}.$$
 (L87a)

If, on the other hand, passage of the neutron destroys a phonon and steals its energy, then

$$\frac{\hbar^2 k^2}{2m_{\rm n}} = \frac{\hbar^2 (k')^2}{2m_{\rm n}} - \hbar \omega_{\vec{q}\nu}.$$
 (L87b)

Momentum

$$\vec{k}' + \vec{q} = \vec{k} + \vec{K} \tag{L88a}$$

for some reciprocal lattice vector \vec{K} , and when a phonon is absorbed,

$$\vec{k}' - \vec{q} = \vec{k} + \vec{K}. \tag{L88b}$$

$$\frac{\hbar^2 k^2}{2m_{\rm n}} \pm \hbar \omega_{(\vec{k}-\vec{k}'),\nu} = \frac{\hbar^2 (k')^2}{2m_{\rm n}},$$

(L89)

Results

[Data, Mozer et al (1965)]

Results

[Data Dolling and Cowley (1972), Nilsson and Nelin (1972), density functional computations We and Chou (1994)]

Formal Theory of Neutron Scattering 43

Nuclear scale is 10^{-13} cm

$$\hat{U} = \frac{2\pi\hbar^2 a}{m_{\rm n}} \sum_{l} \delta(\hat{R}_{\rm n} - \vec{R}^l - \hat{u}^l).$$
(L90)
$$\frac{\mathcal{P}\mathcal{V}d\vec{k}'}{(2\pi)^3}$$
(L91)
$$\frac{\mathcal{P}\mathcal{V}m_{\rm n}\hbar k' d\mathcal{E}_{\rm n}d\Omega}{(2\pi\hbar)^3}.$$
(L92)

 $I = \hbar k / \mathcal{V} m_{\rm n}$

$$\frac{d\sigma}{d\Omega d\mathcal{E}_{n}} = \frac{k'}{k} \frac{(\mathcal{V}m_{n})^{2}}{(2\pi\hbar)^{3}} \mathcal{P}(\vec{k} \to \vec{k}'). \tag{L93}$$

$$\mathcal{P}(\vec{k} \to \vec{k}') = \sum_{\text{fi nal states f}} \frac{2\pi}{\hbar} \delta(\mathcal{E}^{\text{f}} - \mathcal{E}^{\text{i}}) |\langle \Psi^{\text{f}} | \hat{U} | \Psi^{\text{i}} \rangle|^{2}.$$
(L94)

14th April 2003 © 2003, Michael Marder

Formal Theory of Neutron Scattering 44

$$\langle \Psi^{\rm f} | \hat{U} | \Psi^{\rm i} \rangle = \int d\vec{r} \langle \vec{k}' | \vec{r} \rangle \langle \vec{r} | \langle \Phi^{\rm f} | \sum_{l} \frac{2\pi\hbar^2 a}{m_{\rm n}} \delta(\hat{R} - \vec{R}^l - \vec{u}^l) | \vec{k} \rangle | \Phi^{\rm i} \rangle \tag{L95}$$

$$= \int \frac{d\vec{r}}{\mathcal{V}} e^{i(\vec{k}-\vec{k}')\cdot\vec{r}} \langle \Phi^{\rm f} | \frac{2\pi\hbar^2 a}{m_{\rm n}} \sum_{l} \delta(\vec{r}-\vec{R}^l-\vec{u}^l) | \Phi^{\rm i} \rangle \tag{L96}$$

$$= \frac{1}{\mathcal{V}} \frac{2\pi\hbar^2 a}{m_{\rm n}} \sum_{l} \langle \Phi^{\rm f} | e^{i(\vec{k}-\vec{k}')\cdot(\hat{u}^l+\vec{R}^l)} | \Phi^{\rm i} \rangle. \tag{L97}$$

$$\hbar\omega_{\rm n} = \frac{\hbar^2 k^2}{2m_{\rm n}} - \frac{\hbar^2 k'^2}{2m_{\rm n}}$$
(L98)

$$\mathcal{P}(\vec{k}\to\vec{k}') = \frac{(2\pi\hbar)^3}{(m_{\rm n}\mathcal{V})^2} a^2 \sum_{\rm f} \delta(\mathcal{E}_{\rm ph}^{\rm f} - \mathcal{E}_{\rm ph}^{\rm i} + \hbar\omega_{\rm n}) \left| \sum_{l} \langle \Phi^{\rm f} | e^{i(\vec{k}-\vec{k}')\cdot(\hat{u}^{l}+\vec{R}^{l})} | \Phi^{\rm i} \rangle \right|^2.$$
(L99)

$$\frac{d\sigma}{d\Omega d\mathcal{E}_{n}} = \frac{k'}{k} \frac{Na^{2}}{\hbar} S^{i}(\vec{k} - \vec{k}', \omega_{n}), \qquad (L100)$$

14th April 2003 © 2003, Michael Marder

Formal Theory of Neutron Scattering 45

$$S^{i}(\vec{q},\omega) = \frac{1}{N} \sum_{f} \delta(\left[\mathcal{E}_{ph}^{f} - \mathcal{E}_{ph}^{i}\right]/\hbar + \omega) \left|\sum_{l} \langle \Phi^{f} | e^{i\vec{q} \cdot (\hat{u}^{l} + \vec{R}^{l})} | \Phi^{i} \rangle \right|^{2}.$$
(L101)

$$S^{i} = \frac{1}{N} \sum_{f} \int \frac{dt}{2\pi} e^{it \left(\left[\mathcal{E}_{ph}^{f} - \mathcal{E}_{ph}^{i} \right] / \hbar + \omega \right)} \sum_{ll'} e^{i\vec{q} \cdot (\vec{R}^{l} - \vec{R}^{l'})} \frac{\left[\left\langle \Phi^{i} \right| e^{-i\vec{q} \cdot \hat{u}^{l}} \right| \Phi^{f} \right\rangle}{\times \left\langle \Phi^{f} \right| e^{i\vec{q} \cdot \hat{u}^{l}} \left| \Phi^{i} \right\rangle \right]}$$
(L102)

$$= \frac{1}{N} \sum_{\mathbf{f}} \int \frac{dt}{2\pi} e^{it\omega} \sum_{ll'} e^{i\vec{q}\cdot(\vec{R}^l - \vec{R}^{l'})} \frac{\left[\langle \Phi^{\mathbf{i}} | e^{-i\vec{q}\cdot\hat{u}^{l'}} | \Phi^{\mathbf{f}} \rangle \right]}{\times \langle \Phi^{\mathbf{f}} | e^{i\hat{\mathcal{H}}_{\mathbf{ph}}t/\hbar} e^{i\vec{q}\cdot\hat{u}^{l}} e^{-i\hat{\mathcal{H}}_{\mathbf{ph}}t/\hbar} | \Phi^{\mathbf{i}} \rangle]$$
(L103)

$$= \frac{1}{N} \sum_{\mathbf{f}} \int \frac{dt}{2\pi} e^{it\omega} \sum_{ll'} e^{i\vec{q}\cdot(\vec{R}^l - \vec{R}^{l'})} \langle \Phi^{\mathbf{i}} | e^{-i\vec{q}\cdot\hat{u}^{l'}} | \Phi^{\mathbf{f}} \rangle \langle \Phi^{\mathbf{f}} | e^{i\vec{q}\cdot\hat{u}^{l}(t)} | \Phi^{\mathbf{i}} \rangle$$
(L104)

$$= \frac{1}{N} \int \frac{dt}{2\pi} e^{it\omega} \sum_{ll'} e^{i\vec{q}\cdot(\vec{R}^l - \vec{R}^{l'})} \langle \Phi^i | e^{-i\vec{q}\cdot\hat{u}^{l'}} e^{i\vec{q}\cdot\hat{u}^{l}(t)} | \Phi^i \rangle.$$
(L105)

$$\langle \hat{A} \rangle = \frac{\sum_{i} \langle \Phi^{i} | e^{-\beta \hat{\mathcal{H}}} \hat{A} | \Phi^{i} \rangle}{\sum_{i} \langle \Phi^{i} | e^{-\beta \hat{\mathcal{H}}} | \Phi^{i} \rangle}.$$
 (L106)

$$S(\vec{q},\omega) = \frac{1}{N} \sum_{ll'} e^{i\vec{q}\cdot(\vec{R}^l - \vec{R}^{l'})} \int \frac{dt}{2\pi} e^{i\omega t} \langle e^{-i\vec{q}\cdot\hat{u}^{l'}} e^{i\vec{q}\cdot\hat{u}^{l}(t)} \rangle$$
(L107)
$$= \frac{1}{N} \int d\vec{r} d\vec{r}' \frac{dt}{2\pi} e^{i\vec{q}\cdot(\vec{r}-\vec{r}')} e^{i\omega t} \sum_{ll'} \langle \delta(\vec{r}-\vec{R}^l-\hat{u}^l)\delta(\vec{r}'-\vec{R}^{l'}-\hat{u}^{l'}(t)) \rangle.$$
(L108)

Averaging Exponentials

$$S \equiv \langle e^{\hat{A}} \rangle \tag{L109}$$

$$S = \langle 1 + \hat{A} + \frac{1}{2}\hat{A}^2 + \dots \rangle.$$
 (L110)

$$S = 1 + \frac{1}{2} \langle \hat{A}\hat{A} \rangle + \frac{1}{4!} \langle \hat{A}\hat{A}\hat{A}\hat{A} \rangle + \dots$$
 (L111)

Wick's theorem

$$S = 1 + \frac{1}{2} \langle \hat{A}\hat{A} \rangle + \frac{1}{2!} \frac{1}{2^2} \langle \hat{A}\hat{A} \rangle^2 + \dots + \frac{1}{2^l} \frac{1}{l!} \langle \hat{A}\hat{A} \rangle^l \dots$$
(L112)
= $\exp[\frac{1}{2} \langle \hat{A}^2 \rangle].$ (L113)

$$\langle e^{\hat{A}}e^{\hat{B}}\rangle = e^{\frac{1}{2}\langle \hat{A}^2 + 2\hat{A}\hat{B} + \hat{B}^2 \rangle}.$$
 (L114)

$$\mathfrak{M} \equiv \langle e^{-i\vec{q}\cdot\hat{u}^{l'}} e^{i\vec{q}\cdot\hat{u}^{l}(t)} \rangle.$$
(L115)

14th April 2003 © 2003, Michael Marder

Debye-Waller factor

Quantitative account of how thermal fluctuations degrade scattering peaks

$$\mathfrak{M} = \exp[-\langle (\vec{q} \cdot \hat{u}^l)^2 \rangle] \exp[\langle (\vec{q} \cdot \hat{u}^{l'})(\vec{q} \cdot \hat{u}^l(t)) \rangle].$$
(L116)

$$2W \equiv \langle (\vec{q} \cdot \hat{u}^{l})^{2} \rangle \\ = \frac{1}{N} \sum_{\substack{\vec{k}\vec{k}'\\\nu\nu'}} \langle (\vec{q} \cdot [\hat{u}_{\vec{k}\nu} e^{i\vec{k} \cdot \vec{R}^{l}} + \hat{u}_{\vec{k}\nu}^{\dagger} e^{-i\vec{k} \cdot \vec{R}^{l}}]) (\vec{q} \cdot [\hat{u}_{\vec{k}'\nu'} e^{i\vec{k}' \cdot \vec{R}^{l}} + \hat{u}_{\vec{k}'\nu'}^{\dagger} e^{-i\vec{k}' \cdot \vec{R}^{l}}]) \rangle. \quad (L117)$$

$$2W = \sum_{\vec{k}\nu} \frac{1}{N} \frac{\hbar^2 |\vec{\epsilon}_{\vec{k}\nu} \cdot \vec{q}|^2}{2M\hbar\omega_{\vec{k}\nu}} \langle \hat{a}^{\dagger}_{\vec{k}\nu} \hat{a}_{\vec{k}\nu} + \hat{a}_{\vec{k}\nu} \hat{a}^{\dagger}_{\vec{k}\nu} \rangle$$
(L118)

$$= \sum_{\vec{k}\nu} \frac{1}{N} \frac{\hbar^2 |\vec{\epsilon}_{\vec{k}\nu} \cdot \vec{q}|^2}{2M\hbar\omega_{\vec{k}\nu}} \left(2n_{\vec{k}\nu} + 1\right).$$
(L119)

Low temperature

$$2W = \sum_{\vec{k}\nu} \frac{1}{N} \frac{\hbar^2 (\vec{\epsilon}_{\vec{k}\nu} \cdot \vec{q})^2}{2M\hbar\omega_{\vec{k}\nu}}.$$
 (L120)

In Debye approximation

$$2W = \frac{3}{4} \frac{q^2 \hbar^2}{M \hbar c k_D}.$$
 (L121)

Evaluation of Structure Factor

$$S(\vec{q},\omega) = \sum_{ll'} \frac{1}{N} e^{i\vec{q}\cdot(\vec{R}^l - \vec{R}^{l'})} \int \frac{dt}{2\pi} e^{i\omega t} e^{-2W} e^{\langle \vec{q}\cdot\hat{u}^{l'}\vec{q}\cdot\hat{u}^{l}(t)\rangle}.$$
 (L122)

$$S^{(0)}(\vec{q},\omega) = \sum_{l} e^{i\vec{q}\cdot\vec{R}^{l}} \int \frac{dt}{2\pi} e^{i\omega t} e^{-2W}$$
(L123)

$$= \delta(\omega) N e^{-2W} \sum_{\vec{K}} \delta_{\vec{q}\vec{K}}.$$
 (L124)

$$S^{(1)}(\vec{q},\omega) = \sum_{ll'} \frac{1}{N} e^{i\vec{q}\cdot(\vec{R}^l - \vec{R}^{l'})} \int \frac{dt}{2\pi} e^{i\omega t} e^{-2W} \langle \left(\vec{q}\cdot\hat{u}^{l'}\right) \left(\vec{q}\cdot\hat{u}^{l}(t)\right) \rangle.$$
(L125)

$$\mathfrak{M}' = \langle \left(\vec{q} \cdot \hat{u}^{l'} \right) \left(\vec{q} \cdot \hat{u}^{l}(t) \right) \rangle \\ = \frac{1}{N} \sum_{\substack{\vec{k}\vec{k}'\\\nu\nu'}} \langle \left(\vec{q} \cdot \left[\hat{u}_{\vec{k}\nu} e^{i\vec{k} \cdot \vec{R}^{l'}} + \hat{u}_{\vec{k}\nu}^{\dagger} e^{-i\vec{k} \cdot \vec{R}^{l'}} \right] \right) \\ \times \left(\vec{q} \cdot \left[\hat{u}_{\vec{k}'\nu'} e^{i\vec{k}' \cdot \vec{R}^{l} - i\omega_{\vec{k}'\nu'}t} + \hat{u}_{\vec{k}'\nu'}^{\dagger} e^{-i\vec{k}' \cdot \vec{R}^{l} + i\omega_{\vec{k}'\nu'}t} \right] \right) \rangle$$
(L126)

14th April 2003 © 2003, Michael Marder

$$= \sum_{\vec{k}\nu} \frac{1}{N} \frac{\hbar^{2} (\vec{\epsilon}_{\vec{k}\nu} \cdot \vec{q})^{2}}{2M \hbar \omega_{\vec{k}\nu}} \langle \hat{a}_{\vec{k}\nu}^{\dagger} \hat{a}_{\vec{k}\nu} e^{-i\omega_{\vec{k}\nu}t} + \hat{a}_{\vec{k}\nu} \hat{a}_{\vec{k}\nu}^{\dagger} e^{i\omega_{\vec{k}\nu}t} \rangle e^{i\vec{k} \cdot (\vec{R}^{l'} - \vec{R}^{l})}$$
(L127)
$$= \sum_{\vec{k}\nu} \frac{1}{N} \frac{\hbar^{2} (\vec{\epsilon}_{\vec{k}\nu} \cdot \vec{q})^{2}}{2M \hbar \omega_{\vec{k}\nu}} \left([n_{\vec{k}\nu} + 1] e^{i\omega_{\vec{k}\nu}t} + n_{\vec{k}\nu} e^{-i\omega_{\vec{k}\nu}t} \right) e^{i\vec{k} \cdot (\vec{R}^{l'} - \vec{R}^{l})},$$
(L128)

$$S^{(1)}(\vec{q},\omega) = e^{-2W} \sum_{\nu} \frac{\hbar^2 [\vec{q} \cdot \vec{\epsilon}_{\vec{q}\nu}]^2}{2M\hbar\omega_{\vec{q}\nu}} [(1+n_{\vec{q}\nu})\,\delta(\omega+\omega_{\vec{q}\nu}) + n_{\vec{q}\nu}\delta(\omega-\omega_{\vec{q}\nu})].$$
(L129)

Kohn Anomalies

 $q = 2k_F$

The Mössbauer Effect

$$S(\vec{q}) = \frac{1}{N} \sum_{ll'} e^{i\vec{q} \cdot (\vec{R}^l - \vec{R}^{l'})} \int_0^\infty \frac{dt}{2\pi} \left[e^{i(\Delta \mathcal{E}/\hbar + i\Gamma)t} + e^{-i(\Delta \mathcal{E}/\hbar - i\Gamma)t} \right] \langle e^{-i\vec{q} \cdot \hat{u}^{l'}} e^{i\vec{q} \cdot \hat{u}^{l}(t)} \rangle. \quad (L130)$$

$$\frac{2\Gamma}{(\Delta \mathcal{E}/\hbar)^2 + \Gamma^2}$$
(L131)
$$f = \exp\left[-\frac{3}{4}\frac{q^2\hbar^2}{M\hbar ck_D}\right].$$
(L132)

14th April 2003 © 2003, Michael Marder