Dislocations and Cracks

	_
23	100000
	00808
	99083
	00095
	100000
	00000
	608808
	000088
	00950
	108808
	199098
	billion and
	000013
	808808
	198088
	ARCORS
	109888
	INCRAS
	198088
	890995
	889994
	1080.98
	89996
	80889
	80,960
	10000 B
	00080
	80868
	808808
	88098
	08009
	09808
	000000
	00000
	88098
	08006
	80809
	86086
	THORN O

Definitions

Brittle

- Ductile
- Dislocation
- Burgers Vector
- Glide Plane
- Frenkel–Kontorova Model
- Hexatic Phases
- Orientational Order, Mermin–Wagner Theorem
- Kosterlitz–Thouless–Berezinkskii Transition
- Cracks
- Conformal Mapping
- Stress Intensity Factor

Definitions

Given surface energy of $\Gamma = 1 \text{ J/m}^2$, height *h* at which it pays to split object in two is

$$h = \sqrt{\frac{4\Gamma}{\rho g}} \approx 1.4 \text{ cm.}$$
 (L1)

Failure in Shear

Failure in Shear

	$S = \frac{F}{A} = \begin{cases} \frac{G}{5} & \text{shear} \\ \frac{Y}{5} & \text{tension.} \end{cases}$	(L3
Material	Shear modulus $G/5$	Yield strength
	$(10^{11} \text{ ergs cm}^{-3})$	$(10^{11} \text{ ergs cm}^{-3})$
Iron	1.0–1.6	0.02–1
Copper	1.0	0.005
Titanium	1.0	0.08

Failure in Tension

$$S = \frac{F}{A} = \begin{cases} \frac{G}{5} & \text{shear} \\ \frac{Y}{5} & \text{tension.} \end{cases}$$
$$Y \frac{\delta L}{L} = \frac{F}{A}.$$

Material Young's Theoretical Practical Ratio Modulus Y/5Strength Strength $(10^{11} {\rm ergs \, cm^{-3}})$ $(10^{11} {\rm ergs \, cm^{-3}})$ $(10^{11} {\rm ergs \, cm^{-3}})$ 0.03 0.008 Iron 4.0 4 Titanium 2.2 3.1 0.03 0.009 0.07 0.05 Silicon 3.2 1.5 Glass 1.4 4 0.04 0.01

(L4)

(L5)

Complete Cohesive Energy Curve

Dislocations

 \vec{b}

Burgers Vector

Experimental Observations of Dislocations 10

Experimental Observations of Dislocations 11

[Source: Amelinckx (1964)]

Experimental Observations of Dislocations 12

(A) Courtesy of J. Humphreys, Manchester University.)

[(B) Cullis et al. (1985)]

$$f_x = \sigma_{xy} b_x, \tag{L7}$$

$$\sigma_{xy} = \frac{F_{\text{ext}}}{Na^2} \tag{L8}$$

$$\vec{f} = (\sigma \cdot \vec{b}) \times \hat{L}. \tag{L9}$$

Peach–Kohler force

Find force needed to move dislocation in simple one-dimensional model.

One-Dimensional Dislocations: Frenkel–Kontorova Model 15

$$U(x) = \frac{1}{2}\mathcal{K}[x - a\inf(x/a + \frac{1}{2})]^2 - fx,$$
 (L10)

$$f_n = k[x_{n+1} - x_n - a] + k[x_{n-1} - x_n + a] - \frac{\partial U}{\partial x}.$$
 (L11)

$$f_n = \begin{cases} k[x_{n+1} - x_n - a] + k[x_{n-1} - x_n + a] + f - \mathcal{K}[x_n - (n-1)a] & \text{for} \quad n \le 0\\ k[x_{n+1} - x_n - a] + k[x_{n-1} - x_n + a] + f - \mathcal{K}[x_n - na] & \text{for} \quad n > 0. \end{cases}$$
(L12)

$$x_n = f/\mathcal{K} + a(n-1) + A_l e^{qn}, \qquad (L13)$$

$$k(e^{q} - 2 + e^{-q}) - \mathcal{K} = 0$$
 (L14)

$$x_n = f/\mathcal{K} + an + A_r e^{-qn}.$$
 (L15)

One-Dimensional Dislocations: Frenkel–Kontorova Model 16

 $\frac{\mathcal{K}}{k}$

 $q \approx$

$$-a + A_l = A_r \tag{L16a}$$

$$A_l e^q = a + A_r e^{-q}, (L16b)$$

$$A_{l} = \frac{a}{e^{q}+1}$$
(L17a)
$$A_{r} = \frac{-a}{e^{-q}+1}.$$
(L17b)

$$x_0 = -\frac{a}{2} = \frac{f_c}{\mathcal{K}} - a + A_l$$
 (L18)

$$\Rightarrow f_c = \frac{a\mathcal{K}}{2} \tanh\frac{q}{2}.$$
 (L19)

(L20)

One-Dimensional Dislocations: Frenkel–Kontorova Model

 $f_c \approx \frac{a\mathcal{K}}{4}\sqrt{\frac{\mathcal{K}}{k}}.$

17

(L21)

Impossibility of Crystalline Order in Two Dimensions

Peierls and Landau showed that two–dimensional crystals are destroyed by thermal fluctuations.

$$U = \int d^2 r \, \frac{1}{2} C \sum_{\alpha\beta} \frac{\partial u_{\alpha}}{\partial r_{\beta}} \frac{\partial u_{\alpha}}{\partial r_{\beta}}.$$
 (L22)

$$u_{\alpha}(\vec{r}) = \sum_{\vec{k}} e^{i\vec{r}\cdot\vec{k}} u_{\alpha}(\vec{k}).$$
 (L23)

$$\vec{u}(\vec{k}) = 0 \text{ for } k > 1/\mathcal{D}.$$
 (L24)

$$U = \int d^2 r \frac{1}{2} C \sum_{\beta \alpha \vec{k} \vec{k}'} k_{\beta} k'_{\beta} e^{i(\vec{k} - \vec{k}') \cdot \vec{r}} u_{\alpha}(\vec{k}) u^*_{\alpha}(\vec{k}')$$
(L25)

$$= \frac{\mathcal{V}C}{2} \sum_{\alpha \vec{k}} k^2 |u_{\alpha}(\vec{k})|^2 \tag{L26}$$

Impossibility of Crystalline Order in Two Dimensions 19

$$\langle u^{2} \rangle = \langle \int \frac{d^{2}r}{\mathcal{V}} \sum_{\beta} u_{\beta}(\vec{r}) u_{\beta}(\vec{r}) \rangle \qquad (L27)$$
$$= \sum_{\beta \vec{k}} \langle |u_{\beta}(\vec{k})|^{2} \rangle \qquad (L28)$$

$$\vec{u}(\vec{k}) = \vec{u}^*(-\vec{k}) \tag{L29}$$

$$\langle |u_{\beta}(\vec{k})|^{2} \rangle$$

$$= \frac{\int \prod_{\alpha \vec{k}'} du_{\alpha}(\vec{k}') |u_{\beta}(\vec{k})|^{2} e^{-\beta \frac{\nabla C}{2} \sum_{\alpha \vec{k}'} k'^{2} |u_{\alpha}(\vec{k}')|^{2}}}{\int \prod_{\alpha \vec{k}'} du_{\alpha}(\vec{k}') e^{-\beta \frac{\nabla C}{2} \sum_{\alpha \vec{k}'} k'^{2} |u_{\alpha}(\vec{k}')|^{2}}}$$

$$= \frac{\int du_{\beta}(\vec{k}) |u_{\beta}(\vec{k})|^{2} e^{-\beta \nabla C k^{2} |u_{\beta}(\vec{k})|^{2}}}{\int du_{\beta}(\vec{k}) e^{-\beta \nabla C k^{2} |u_{\beta}(\vec{k})|^{2}}}$$

$$= \frac{\int du^{r} du^{i} [(u^{r})^{2} + (u^{i})^{2}] e^{-\beta \nabla C k^{2} [(u^{r})^{2} + (u^{i})^{2}]}}{\int du^{r} du^{i} e^{-\beta \nabla C k^{2} [(u^{r})^{2} + (u^{i})^{2}]}}$$

$$(L32)$$

Impossibility of Crystalline Order in Two Dimensions

$$= \frac{k_B T}{\mathcal{V}Ck^2}.$$
 (L33)

$$\langle u^2 \rangle = \sum_{\alpha \vec{k}} \frac{k_B T}{\mathcal{V} C k^2}$$

$$= 2 \int \frac{d^2 k}{(2\pi)^2} \frac{k_B T}{C k^2}$$

$$= 2 \int_0^{1/\mathcal{D}} \frac{dk}{2\pi k} \frac{k_B T}{C} \to \infty.$$

$$(L36)$$

Orientational Order

$$(dx, dy) = \vec{r}' - \vec{r}.$$
 (L37)

$$\phi = \tan^{-1}(dy/dx). \tag{L38}$$

$$\vec{r} + \vec{u}(\vec{r})$$
 and $\vec{r}' + \vec{u}(\vec{r}')$. (L39)

Orientational Order

$$\phi' = \tan^{-1} \left(\frac{dy + \partial u_y / \partial x \, dx + \partial u_y / \partial y \, dy}{dx + \partial u_x / \partial x \, dx + \partial u_x / \partial y \, dy} \right) \tag{L40}$$

$$\approx \phi + \frac{dxdy}{dx^2 + dy^2} \left[\left(\frac{\partial u_y}{\partial y} - \frac{\partial u_x}{\partial x} \right) + \frac{dx}{dy} \frac{\partial u_y}{\partial x} - \frac{dy}{dx} \frac{\partial u_x}{\partial y} \right]$$
(L41)

$$\Rightarrow \phi' - \phi = \cos\phi \sin\phi \left(\frac{\partial u_y}{\partial y} - \frac{\partial u_x}{\partial x}\right) + \cos^2\phi \frac{\partial u_y}{\partial x} - \sin^2\phi \frac{\partial u_x}{\partial y}.$$
 (L42)

$$\delta\phi(\vec{r}) = \frac{1}{2} \left(\frac{\partial u_y}{\partial x} - \frac{\partial u_x}{\partial y} \right).$$
(L43)

$$\delta\phi(\vec{r}) = \frac{1}{2} \sum_{\vec{k}} (ik_x u_y(\vec{k}) - ik_y u_x(\vec{k})) e^{i\vec{k}\cdot\vec{r}}.$$
 (L44)

$$\int \frac{d^2 r}{\mathcal{V}} \langle \delta \phi(\vec{r}) \delta \phi(\vec{r}) \rangle$$

$$= \frac{1}{4} \sum_{\vec{k}} k_x^2 \langle |u_x(\vec{k})|^2 \rangle + k_y^2 \langle |u_y(\vec{k})|^2 \rangle - k_x k_y \langle (u_x(\vec{k}) u_y^*(\vec{k}) + u_y(\vec{k}) u_x^*(\vec{k})) \rangle$$
(L45)
(L45)

Orientational Order

$$= \frac{1}{4} \sum_{\vec{k}} \frac{k_B T}{C \mathcal{V} k^2} (k_x^2 + k_y^2)$$
(L47)
$$= \frac{k_B T}{4C} \int_0^{2\pi} d\theta \int_0^{1/\mathcal{D}} \frac{dk k}{(2\pi)^2} = \frac{k_B T}{16\pi \mathcal{D}^2 C}.$$
(L48)

[Murray and Grier (1996)]

$$u_x = 0, \quad u_y = 0, \quad u(x, y) = u_z(x, y).$$
 (L49)

$$U = \frac{a\mu}{2} \int d^2 r \left(\nabla u\right)^2 \tag{L50}$$

$$\nabla^2 u = 0. \tag{L51}$$

$$u(x,y) = \frac{a}{2\pi} \operatorname{Im} \ln[x + iy].$$
 (L52)

$$U = \frac{a\mu}{2} \left(\frac{a}{2\pi}\right)^2 \int d^2r \left[\frac{-y}{x^2 + y^2}\right]^2 + \left[\frac{x}{x^2 + y^2}\right]^2$$
(L53)

$$= \frac{a\mu}{2} \left(\frac{a}{2\pi}\right)^2 \int_a^R dr 2\pi r \frac{1}{r^2}$$
(L54)

$$\rightarrow \frac{1}{4\pi} (a^3 \mu) \ln\left(\frac{R}{a}\right) + w.$$
 (L55)

$$u(x,y) = \frac{a}{2\pi} \operatorname{Im} \left\{ \ln[x+iy] - \ln[x-x_0+iy] \right\}.$$
 (L56)

$$2q^2 \ln\left(\frac{x_0}{a}\right) + 2w \quad \text{with } q^2 = \frac{a^3\mu}{4\pi}.$$
 (L57)

*	*	*	•	^	•	^	•	•	-	-	-	-	۰	٠	٦	-	-	-	-	•	•	*	*	•	*	•	•	*	•
•	*	*	*	•	*	•	•	-	-	-	-	-	٦	٦	٦	-	-	-	•	•	•	۲	*	•	•	•	•	•	•
,	•	*	*	•	•	•	•	•	•	-	-	-	-	•	-	-	-	-	•	•	•	•	•	•	•	•	•	•	•
•	•	•	*	•	•	•	•	•	-	-	-	-	-	-	٦	٦	-	-	•	•	•	•	*	*	*	•	•	•	•
,	,	•	•	•	•	•	•	•	^	-	-	-	-	-	-	-	-	-	•	•	•	•	•	•	•	•	•	•	•
,	,	,	•	*	*	•	•	•	•	•	-	-	-	-	-	-	-	-	•	•	•	*	•	•	•	•	•	*	•
,	,	,	•	•	•	•	•	•	•			-	-	-	-	-	-	-	•	•	•	•	•	*	•	•	•	•	•
,	,	,	,	,	•	•	•	•	•			-	-	٠	-	-	-	•	•	•	•	•	*	*	•	•	•	•	*
,	,	,	,	,	,	•		*	•	•	•	-	-	-	-	-	-	•	•	•	•	•	•	•	•	•	•	•	•
,	,	,	,	,	,	,	•		•	•	•	-	-	-	-	-	•	•	•	•	•	•	•	•	•	•	•	*	•
,	,	,	,	,	,	,	,	,					-	+	-	-		•	•	•	•	•	•	•	•	•	•		•
,	,	,	,	,	,	,	,	,	,	,			*	+	-				•	•	•	•	•	•	•	•	×.		۱.
,	,	,	,	,	,	,	,	,	,	,			+	+	•	•				•	•	ŀ		•	•	۱.	۱.	k.	×.
,	,	,	,	,	,	,	,	,	+	+	1	1	~	+	~	~	x	×	×	•	•	۱.				¥			
,	,	,	,	,	,	,	,	,	,	¥	1	1	~	+	1	۲	۲	ŧ	٠	٠									
,	,	,	•	,	,	,	,	,	÷	ŧ	ŧ	ţ	/		1	t	t	ŧ	+		٠			*					
۲	۲	,	,	,	,	,	,	•	٠	ŧ	¥	Ň	K.		- 1	1	t	ŧ	+										
۲	۲	,	,	٦	۲	,	۰,	•	•	x	X	1	~		/	1	1	1		4	4	4	4	4	4	4	4	4	
۲	۲	٦	٦	٦	٦	٦	•	•	•			~	•	-+	~	/	/	,		4	4	4	4	4	4	4	4	4	4
۲	٦	١	٩	٦	٦	٩	٩	•				•	+	+	-		,	,			4	4	4	4	4	4	4	4	4
۲	٠	٠	٩	٩	٩	٩	•	•	•	•	•	•	+	+	-	-						4	4	4	4	4	4	4	4
٩	٠	٩	٩	٩	٩	•	•	•	•	•	•	•	٠	٠	-	-	-							4	4	4	4		4
٠	٩	٩	٩	٩	•	•	•	•	•	•	•	•	٠	-	-	-	-		•							4	4		
٩	٩	٩	•	•	•	•	•	•	•	•	•	•	•	•		-	-			*									
•	•	٠	•	•	•	•	•	•	•	•	•	•	•	۰	-	-	-	•	•										
•	•	•	•	•	•	•	•	•	•	•	•	•	٠	•	٠	-	-	-	•									4	
•	•	•	•	•	•	•	•	•	•	•	•	•	•	٠		-	-	•	•										
•	•	•	•	•	•	•	•	•	•	•	•	•	•	-	٠	-	-	-	•	•	•								
•	•	•	•	•	•	•	•	•	•	•	•	•	•	۲			-	-	•	•	•								
•	•	•	•	•	•	•	•	•	•	•	•	•	•	-			٠	-	-	-	•								

 $S=2k_B\ln(L/a),$

(L58)

$$\mathcal{E} = q^2 \ln(L/a). \tag{L59}$$

$$k_B T_c = \frac{q^2}{2}.$$
 (L60)

$$\mathcal{H} = \frac{1}{2} \sum_{i \neq j} U(|\vec{r}_i - \vec{r}_j|) + 2w \quad \text{with} \quad U(r) = 2q^2 \ln(r/a) \tag{L61}$$

$$\langle r^{2} \rangle = \frac{\int_{a}^{\infty} dr 2\pi r r^{2} e^{-\beta U(r)}}{\int_{a}^{\infty} dr 2\pi r e^{-\beta U(r)}}$$
(L62)
$$= a^{2} \left[\frac{\beta q^{2} - 1}{\beta q^{2} - 2} \right].$$
(L63)

$$Z_{\rm gr} = 1 + \sum_{\vec{r}_1, \vec{r}_2} e^{-\beta U(|\vec{r}_1 - \vec{r}_2|) - 2\beta w} + \dots$$
(L64)

$$n(r)dr = \frac{dr}{R^2} \left\langle \delta_{r,|\vec{r_1}-\vec{r_2}|} \right\rangle = \frac{dr}{R^2} \sum_{\vec{r_1}\vec{r_2}} e^{-\beta U(|\vec{r_1}-\vec{r_2}|) - 2\beta w} \delta_{r,|\vec{r_1}-\vec{r_2}|} + \dots$$
(L65)

$$\approx \quad \frac{1}{a^2} \frac{2\pi r^2 dr}{a^2} e^{-\beta U(r) - 2\beta w}.$$
 (L66)

$$\vec{p} = \alpha \vec{E} = rq \langle (\cos\theta, \sin\theta) \rangle$$
 (L67)

$$= \int \frac{d\theta}{2\pi} e^{-\beta U(r) - 2\beta w + \beta E q r \cos \theta} rq(\cos \theta, \sin \theta)$$
(L68)

$$= \frac{1}{2}\beta q^2 r^2 \vec{E}.$$
 (L69)

$$d\chi(r) = n(r) dr \alpha(r) = \frac{1}{2} \beta q^2 \left(\frac{r}{a}\right)^2 \frac{2\pi r dr}{a^2} e^{-\beta U/\epsilon(r) - 2\beta w}.$$
 (L70)

$$\epsilon(r) = 1 + 4\pi \int^{r} d\chi = 1 + 4\pi \int_{a}^{r} dr' n(r') \alpha(r')$$
 (L71)

$$\Rightarrow \frac{d\epsilon(r)}{dr} = 4\pi^2 \beta q^2 \frac{r^3}{a^4} e^{-\beta U(r)/\epsilon(r) - 2\beta w}$$
(L72)
$$\Rightarrow \frac{d\epsilon(x)}{dx} = 4\pi^2 \beta q^2 x^{3 - 2\beta q^2/\epsilon(x)} e^{-2\beta w}.$$
(L73)

Fracture of a Strip

$$U = \frac{1}{2}\delta^2 w \frac{Y}{L},\tag{L74}$$

$$dU = dl \frac{1}{2} \delta^2 w \frac{Y}{L}.$$
 (L75)

$$\Gamma w \, dl = dl \frac{1}{2} \delta^2 w \frac{Y}{L} \tag{L76}$$
$$\Rightarrow \quad \delta = \sqrt{\frac{2\Gamma L}{Y}} \quad \text{and} \quad \sigma_{yy} = Y \frac{\delta}{L} = \sqrt{\frac{2\Gamma Y}{L}}. \tag{L77}$$

$$\frac{\text{Maximum stress}}{\text{applied stress}} \propto \sqrt{\frac{l}{R}},$$

(L78)

Stresses Around an Elliptical Hole

$$\nabla^2 u = 0. \tag{L79}$$

$$u = \frac{\phi(\zeta) + \overline{\phi(\zeta)}}{2}, \tag{L80}$$

$$\sigma_{yz} = \mu \frac{\partial u}{\partial y} = \frac{\mu}{2} [i\phi'(x+iy) - i\overline{\phi'(x+iy)}]$$
(L81)

$$\Rightarrow \phi'(\zeta) \to -i\Sigma \text{ for } \zeta \to \infty.$$
 (L82)

$$(x(t), y(t)) \tag{L83}$$

$$\vec{T} = \left(\frac{\partial x}{\partial t}, \frac{\partial y}{\partial t}\right)$$
 and $\vec{N} = \left(-\frac{\partial y}{\partial t}, \frac{\partial x}{\partial t}\right)$ (L84)

$$(\sigma_{xz}, \sigma_{yz}) \cdot \vec{N} = 0 \tag{L85}$$

21st April 2003 © 2003, Michael Marder

Stresses Around an Elliptical Hole

$$\Rightarrow \quad \mu\left(\frac{\partial u}{\partial x}, \frac{\partial u}{\partial y}\right) \cdot \left(-\frac{\partial y}{\partial t}, \frac{\partial x}{\partial t}\right) = 0 \Rightarrow \frac{\partial u}{\partial y} \frac{\partial x}{\partial t} - \frac{\partial u}{\partial x} \frac{\partial y}{\partial t} = 0 \quad (L86)$$

$$\Rightarrow \left(-\frac{\partial ix}{\partial ix} + \frac{\partial ix}{\partial ix}\right) \frac{\partial t}{\partial t} = \left(\frac{\partial iy}{\partial iy} - \frac{\partial iy}{\partial iy}\right) \frac{\partial t}{\partial t}$$
(L87)
$$\Rightarrow \frac{\partial \phi}{\partial t} = \frac{\partial \overline{\phi}}{\partial t}$$
(L88)

$$\Rightarrow \quad \phi(\zeta) = \overline{\phi(\zeta)} \tag{L89}$$

$$\zeta = \omega + \frac{p}{\omega},\tag{L90}$$

$$\omega = e^{i\theta},\tag{L91}$$

$$\phi(\omega) = \overline{\phi(\omega)} = \overline{\phi}(\frac{1}{\omega}), \tag{L92}$$

$$\frac{\omega = \frac{\zeta + \sqrt{\zeta^2 - 4p}}{2}.$$
(L93)
(L93)
(L93)

©2003, Michael Marder

Stresses Around an Elliptical Hole

$$\phi(\omega) \to -i\Sigma\omega \quad \text{for } \omega \to \infty.$$
 (L94)

$$\bar{\phi}(1/\omega) \to -i\Sigma\omega \quad \text{for } \omega \to \infty,$$
 (L95)

$$\bar{\phi}(\omega) \rightarrow \frac{-i\Sigma}{\omega} \quad \text{for } \omega \to 0 \qquad (L96)$$

$$\phi(\omega) \rightarrow \frac{i\Sigma}{\omega} \quad \text{for } \omega \to 0. \qquad (L97)$$

$$\phi(\omega) = -i\Sigma\omega + i\frac{\Sigma}{\omega}$$
(L98)
$$\Rightarrow \phi(\zeta) = -i\Sigma\frac{\zeta}{2}(1 + \sqrt{1 - 4p/\zeta^2}) + i\Sigma\frac{\zeta}{2p}(1 - \sqrt{1 - 4p/\zeta^2}).$$
(L99)

$$\sigma_{yz} = \mu \frac{\partial u}{\partial y} = \frac{\mu \Sigma x}{\sqrt{x - 2}\sqrt{x + 2}} \to \frac{\mu \Sigma}{\sqrt{x - 2}} \quad \text{as } x \to 2.$$
(L100)

$$K = \lim_{r \to 0} \sqrt{2\pi r} \sigma_{yz}.$$
 (L101)

Atomic Aspects of Fracture

$$e^{i\vec{k}\cdot(\vec{r}+\vec{R})-i\omega(t+a/v)} = e^{i\vec{k}\cdot\vec{r}-i\omega t}$$
(L103)

$$\Rightarrow e^{i\vec{k}\cdot\vec{R}-i\omega a/v} = 1 \tag{L104}$$

$$\Rightarrow \quad (\vec{k} + \vec{K}) \cdot \vec{v} = \omega(\vec{k}) \tag{L105}$$

$$\Rightarrow \quad \vec{k} \cdot \vec{v} = \omega(\vec{k}). \tag{L106}$$