

$$
\begin{gather*}
\vec{v}(\vec{r}+\vec{v} d t, t+d t)=\vec{v}(\vec{r}, t)+\vec{f}(\vec{r}, t) d t / \rho \tag{L1}\\
\Rightarrow \quad \frac{\partial \vec{v}}{\partial t}+(\vec{v} \cdot \vec{\nabla}) \vec{v}=\frac{\vec{f}}{\rho} . \tag{L2}\\
\frac{\partial \vec{v}}{\partial t}+(\vec{v} \cdot \vec{\nabla}) \vec{v}+\frac{\vec{\nabla} P}{\rho}=0 . \tag{L3}\\
\frac{\partial \rho}{\partial t}=-\vec{\nabla} \cdot \rho \vec{v} . \tag{L4}\\
0=\frac{\partial \rho v_{\alpha}}{\partial t}-v_{\alpha} \frac{\partial \rho}{\partial t}+\rho \sum_{\beta} v_{\beta} \frac{\partial}{\partial r_{\beta}} v_{\alpha}+\frac{\partial}{\partial r_{\alpha}} P \tag{L5}\\
=\frac{\partial \rho v_{\alpha}}{\partial t}+v_{\alpha} \sum_{\beta} \frac{\partial}{\partial r_{\beta}} \rho v_{\beta}+\rho \sum_{\beta} v_{\beta} \frac{\partial}{\partial r_{\beta}} v_{\alpha}+\frac{\partial}{\partial r_{\alpha}} P \tag{L6}\\
=\frac{\partial \rho v_{\alpha}}{\partial t}+\sum_{\beta} \frac{\partial}{\partial r_{\beta}}\left\{\rho v_{\alpha} v_{\beta}+\delta_{\alpha \beta} P\right\} . \tag{L7}
\end{gather*}
$$

$$
\begin{gather*}
\sigma_{\alpha \beta}=-\rho v_{\alpha} v_{\beta}-\delta_{\alpha \beta} P \tag{L8}\\
\frac{\partial \rho v_{\alpha}}{\partial t}=\sum_{\beta} \frac{\partial}{\partial r_{\beta}} \sigma_{\alpha \beta} \tag{L9}\\
\vec{\nabla} \cdot \vec{v}=0 \tag{L10}
\end{gather*}
$$

Navier-Stokes Equation

Figure 1: When liquid is sheared between two plates, the force is proportional to the shearing speed and is inversely proportional to the separation d.

$$
\begin{equation*}
\frac{F}{A}=\eta \frac{\partial v_{x}}{\partial y} \tag{L11}
\end{equation*}
$$

Gas	η $(\mathrm{g} /[\mathrm{cm} \cdot \mathrm{sec}])$	Liquid	η $(\mathrm{g} /[\mathrm{cm} \cdot \mathrm{sec}])$
He	$1.99 \cdot 10^{-4}$	NH_{3}	$14 \cdot 10^{-4}$
Ne	$3.17 \cdot 10^{-4}$	$\mathrm{H}_{2} \mathrm{O}$	$82 \cdot 10^{-4}$
Ar	$2.27 \cdot 10^{-4}$	CO_{2}	$6.0 \cdot 10^{-4}$
Kr	$2.55 \cdot 10^{-4}$	Hg	$160 \cdot 10^{-4}$
Xe	$2.33 \cdot 10^{-4}$	Glycerine	$85000 \cdot 10^{-4}$
H_{2}	$0.89 \cdot 10^{-4}$		
$\mathrm{~N}_{2}$	$1.79 \cdot 10^{-4}$		
O_{2}	$2.07 \cdot 10^{-4}$		
$\mathrm{~F}_{2}$	$2.36 \cdot 10^{-4}$		
Cl_{2}	$1.37 \cdot 10^{-4}$		
CO_{2}	$1.78 \cdot 10^{-4}$		
CO_{2}	$1.50 \cdot 10^{-4}$		
Air^{4}	$1.85 \cdot 10^{-4}$		

Navier-Stokes Equation

$$
\begin{gather*}
\sigma_{\alpha \beta}^{\prime}=\eta\left[\frac{\partial v_{\alpha}}{\partial r_{\beta}}+\frac{\partial v_{\beta}}{\partial r_{\alpha}}\right]+\left[\zeta-\frac{2}{3} \eta\right] \delta_{\alpha \beta} \sum_{\gamma} \frac{\partial v_{\gamma}}{\partial r_{\gamma}} \tag{L12}\\
\sigma_{\alpha \beta}=-\rho v_{\alpha} v_{\beta}-\delta_{\alpha \beta} P+\eta\left[\frac{\partial v_{\alpha}}{\partial r_{\beta}}+\frac{\partial v_{\beta}}{\partial r_{\alpha}}\right] \tag{L13}\\
\rho \frac{\partial \vec{v}}{\partial t}+\rho(\vec{v} \cdot \vec{\nabla}) \vec{v}=-\vec{\nabla} P+\eta \nabla^{2} \vec{v} \tag{L14}
\end{gather*}
$$

Polymeric Solutions

Figure 2:

Polymeric Solutions

Figure 3:

Polymeric Solutions

$$
\begin{gather*}
g\left(\vec{R}^{l}, \vec{R}^{l+1}\right)=\frac{1}{\mathcal{V}} g\left(\vec{R}^{l+1}-\vec{R}^{l}\right) . \tag{L15}\\
\sigma_{z \beta}=\frac{1}{A} \int d \vec{R}^{l} d \vec{R}^{l+1} \frac{1}{\mathcal{V}} g\left(\vec{R}^{l+1}-\vec{R}^{l}\right) \theta\left(R_{z}^{l+1}\right) \theta\left(-R_{z}^{l}\right) F_{\beta}^{l+1, l} \tag{L16}\\
=\frac{1}{A \mathcal{V}} \int d \vec{s} d \vec{t} g(\vec{s}) \theta\left(s_{z} / 2+t_{z}\right) \theta\left(s_{z} / 2-t_{z}\right) F_{\beta}^{l+1, l} \tag{L17}\\
=\frac{1}{\mathcal{V}} \int d \vec{s} g(\vec{s}) s_{z} \theta\left(s_{z}\right) F_{\beta}^{l+1, l} \tag{L18}\\
=\frac{1}{\mathcal{V}}\left\langle\left[R_{z}^{l+1}-R_{z}^{l}\right] \theta\left(R_{z}^{l+1}-R_{z}^{l}\right) F_{\beta}^{l+1, l}\right\rangle \tag{L19}\\
\frac{1}{\mathcal{V}}\left\langle\left[R_{z}^{l+1}-R_{z}^{l}\right] \theta\left(R_{z}^{l}-R_{z}^{l+1}\right) F_{\beta}^{l+1, l}\right\rangle \tag{L20}\\
\sigma_{z \beta}^{l, l+1}=\frac{1}{\mathcal{V}}\left\langle\left[R_{z}^{l+1}-R_{z}^{l}\right] F_{\beta}^{l+1, l}\right\rangle \tag{L21}\\
\hline
\end{gather*}
$$

Polymeric Solutions

$$
\begin{gather*}
=\frac{1}{\mathcal{V}}\left\langle\left[R_{z}^{l+1} F_{\beta}^{l+1, l}\right\rangle+\frac{1}{\mathcal{V}}\left\langle R_{z}^{l} F_{\beta}^{l, l+1}\right\rangle\right. \tag{L22}\\
=\frac{1}{\mathcal{V}}\left\langle\left[R_{z}^{l+1} F_{\beta}^{l+1, l}\right\rangle+\frac{1}{\mathcal{V}}\left\langle R_{z}^{l-1} F_{\beta}^{l-1, l}\right\rangle\right. \tag{L23}\\
\sigma_{\alpha \beta}=\frac{1}{\mathcal{V}} \sum_{l l^{\prime}}\left\langle R_{\alpha}^{l^{\prime}} F_{\beta}^{l^{\prime}, l}\right\rangle \tag{L24}\\
\ddot{\vec{R}}^{l}=\frac{1}{m} \sum_{l^{\prime}} \vec{F}^{l^{\prime}, l}-b\left(\dot{\vec{R}}^{l}-\vec{v}\right)+\vec{\xi}^{l} \tag{L25}\\
\left\langle\xi_{\alpha}(0) \xi_{\beta}(t)\right\rangle=\frac{2 b \delta_{\alpha \beta} k_{B} T \delta(t)}{m} \tag{L26}\\
\dot{\vec{R}^{l}}=\vec{v}+\frac{\mathcal{K}}{b m}\left[\vec{R}^{l+1}-2 \vec{R}^{l}+\vec{R}^{l-1}\right]+\frac{\vec{\xi}^{l}}{b} \tag{L27}\\
v \tag{L28}\\
v=\vec{v}_{\alpha}^{0}+\sum_{\beta} W_{\alpha \beta} R_{\beta}^{l}
\end{gather*}
$$

Polymeric Solutions

$$
\begin{gather*}
\dot{\vec{R}}^{l}=\vec{v}^{0}+W \vec{R}^{l}+\frac{\mathcal{K}}{b m}\left[\vec{R}^{l+1}-2 \vec{R}^{l}+\vec{R}^{l-1}\right]+\frac{\vec{\xi}^{l}}{b} . \tag{L29}\\
\vec{\psi}^{k}=\frac{1}{\sqrt{N}} \sum_{l=1}^{N} e^{2 \pi i l k / N}\left[\vec{R}^{l}-\vec{v}^{0} t\right] . \tag{L30}\\
\dot{\vec{\psi}^{k}}=\left\{W-\omega_{k}\right\} \vec{\psi}^{k}+\frac{\vec{\xi}^{k}}{b} \tag{L31}
\end{gather*}
$$

with

$$
\begin{equation*}
\omega_{k}=\frac{2 \mathcal{K}}{m b}(1-\cos [2 \pi k / N]) . \tag{L32}
\end{equation*}
$$

If W is independent of time, one can write

$$
\begin{gather*}
\vec{\psi}^{k}=\int_{-\infty}^{t} d t^{\prime} e^{-\left(t^{\prime}-t\right)\left[W-\omega_{k}\right]} \frac{\xi^{k}\left(t^{\prime}\right)}{b} \tag{L33}\\
\psi_{\alpha}^{(0) k}=\int_{-\infty}^{t} d t^{\prime} e^{\left(t^{\prime}-t\right) \omega_{k}} \frac{\xi^{k}\left(t^{\prime}\right)}{b} \tag{L34}
\end{gather*}
$$

$$
\begin{align*}
& \Rightarrow\left\langle\psi_{\alpha}^{(0) k}(t) \psi_{\beta}^{(0) k^{*}}\left(t^{\prime}\right)\right\rangle=e^{-\left|t-t^{\prime}\right| \omega_{k}} \frac{k_{B} T}{m b \omega_{k}} \delta_{\alpha \beta} \tag{L35}\\
& \psi_{\alpha}^{k} \approx \psi_{\alpha}^{(0) k}+\int_{-\infty}^{t} d t^{\prime} \sum_{\beta} W_{\beta}\left(t^{\prime}\right) \psi_{\beta}^{(0) k}\left(t^{\prime}\right) \tag{L36}\\
& \Rightarrow\left\langle\psi_{\alpha}^{k}(t) \psi_{\beta}^{* k}(t)\right\rangle \approx \frac{k_{B} T}{m b \omega_{k}} \delta_{\alpha \beta} \\
&+\int_{-\infty}^{t} d t^{\prime} \sum_{\alpha^{\prime}}\left\langle\psi_{\alpha}^{(0) k}(t) W_{\beta \alpha^{\prime}}\left(t^{\prime}\right) \psi_{\alpha^{\prime}}^{(0) k *}\left(t^{\prime}\right)\right\rangle \\
&+\int_{-\infty}^{t} d t^{\prime} \sum_{\alpha^{\prime}}\left\langle\psi_{\beta}^{(0) k *}(t) W_{\alpha \alpha^{\prime}}\left(t^{\prime}\right) \psi_{\alpha^{\prime}}^{(0) k}\left(t^{\prime}\right)\right\rangle . \tag{L37}\\
&= \frac{k_{B} T}{m b \omega_{k}}\left\{\delta_{\alpha \beta}+\int_{-\infty}^{t} d t^{\prime} e^{\left.-\left(t-t^{\prime}\right) \omega_{k}\left[W_{\beta \alpha}\left(t^{\prime}\right)+W_{\alpha \beta}\left(t^{\prime}\right)\right]\right\} .} \begin{array}{rl}
\sigma_{\alpha \beta}= & \frac{1}{\mathcal{V}} \sum_{l l^{\prime}}\left\langle F_{\beta}^{l, l^{\prime}} R_{\alpha}^{l}\right\rangle=-\frac{\mathcal{K}}{\mathcal{V}} \sum_{l}\left\langle R_{\alpha}^{l}\left(R_{\beta}^{l+1}-2 R_{\beta}^{l}+R_{\beta}^{l-1}\right)\right\rangle
\end{array}\right. \tag{L38}\\
& \tag{L39}
\end{align*}
$$

$$
\begin{align*}
& =\frac{\mathcal{K}}{\mathcal{V}} \sum_{k=1}^{N-1}(2-2 \cos 2 \pi k / N)\left\langle\psi_{\alpha}^{k} \psi_{\beta}^{k *}\right\rangle \tag{L40}\\
& =\frac{m b}{\mathcal{V}} \sum_{k=1}^{N-1} \omega_{k}\left\langle\psi_{\alpha}^{k} \psi_{\beta}^{k *}\right\rangle \tag{L41}
\end{align*}
$$

$$
\begin{equation*}
=\frac{k_{B} T}{\mathcal{V}} \sum_{k=1}^{N-1}\left[\delta_{\alpha \beta}+\frac{W_{\alpha \beta}+W_{\beta \alpha}}{\omega_{k}}\right] \tag{L42}
\end{equation*}
$$

$$
\begin{equation*}
=\frac{k_{B} T}{\mathcal{V}}\left[N \delta_{\alpha \beta}+2 \sum_{k=1}^{N / 2} \frac{W_{\alpha \beta}+W_{\beta \alpha}}{\omega_{k}}\right] \tag{L43}
\end{equation*}
$$

$$
\begin{equation*}
\approx \frac{k_{B} T}{\mathcal{V}}\left[N \delta_{\alpha \beta}+2 \sum_{k=1}^{\infty} \frac{W_{\alpha \beta}+W_{\beta \alpha}}{\frac{2 \mathcal{K}}{m b} \frac{1}{2}\left(\frac{2 \pi k}{N}\right)^{2}}\right] \tag{L44}
\end{equation*}
$$

$$
\begin{equation*}
=\frac{k_{B} T}{\mathcal{V}}\left[N \delta_{\alpha \beta}+\left(W_{\alpha \beta}+W_{\beta \alpha}\right) \frac{m b N^{2}}{12 \mathcal{K}}\right] \tag{L45}
\end{equation*}
$$

$$
\begin{align*}
\sigma_{x y} & =\frac{k_{B} T}{\mathcal{V}} m b \frac{N^{2}}{12 \mathcal{K}} \frac{\partial v_{x}}{\partial y} \tag{L46}\\
\delta \eta & =\frac{c}{N} k_{B} T m b \frac{N^{2}}{12 \mathcal{K}} \tag{L47}\\
& =\frac{c}{N} m b \frac{N^{2} a^{2}}{12} \tag{L48}
\end{align*}
$$

Figure 4: [Source: Ferry (1980), p. 197.]

$$
\begin{gather*}
\sigma_{x y}=\sum_{k=1}^{N-1} \frac{W_{0} k_{B} T}{\mathcal{V}\left(\omega_{k}^{2}+\omega^{2}\right)}\left[\omega_{k} \cos \omega t+\omega \sin \omega t\right] \tag{L49}\\
G(\omega)=\frac{k_{B} T}{\mathcal{V}} \sum_{k=1}^{N-1} \frac{\omega\left(\omega+i \omega_{k}\right)}{\omega_{k}^{2}+\omega^{2}} \tag{L50}
\end{gather*}
$$

$$
\begin{equation*}
\operatorname{det}|\sigma-\lambda I|=-\lambda^{3}+\lambda^{2} I_{1}+\lambda I_{2}+I_{3}=0 \tag{L51a}
\end{equation*}
$$

with

$$
\begin{align*}
& I_{1}= \sum_{\alpha} \sigma_{\alpha \alpha} \tag{L51b}\\
& I_{2}= \frac{1}{2} \sum_{\alpha \beta}\left\{\sigma_{\alpha \beta} \sigma_{\alpha \beta}-\sigma_{\alpha \alpha} \sigma_{\beta \beta}\right\} \tag{L51c}\\
& I_{3}= \operatorname{det}|\sigma| . \tag{L51d}\\
& \sigma=\frac{1}{3} \sum_{\alpha} \sigma_{\alpha \alpha} \tag{L52}\\
& s_{\alpha \beta}=\sigma_{\alpha \beta}-\sigma \delta_{\alpha \beta} . \tag{L53}\\
& J_{2}=\frac{1}{2} \sum_{\alpha \beta} s_{\alpha \beta} s_{\alpha \beta} \tag{L54a}
\end{align*}
$$

$$
J_{3}=\operatorname{det}|s| .
$$

$$
\begin{gather*}
\sqrt{J_{2}}=\kappa . \tag{L55}\\
\dot{e}_{\alpha \beta}^{\mathrm{p}}= \begin{cases}w\left[\sqrt{J_{2}}-\kappa\right] s_{\alpha \beta} & \text { if } \sqrt{J_{2}}-\kappa>0 \\
0 & \text { otherwise. }\end{cases} \tag{L56}\\
W=\int d t^{\prime} \sum_{\alpha \beta} \dot{e}_{\alpha \beta}^{\mathrm{p}} \sigma_{\alpha \beta} . \tag{L57}\\
d e_{\alpha \beta}^{\mathrm{p}}=C d s_{\alpha \beta} . \tag{L58}\\
d W=C \sum_{\alpha \beta} \sigma_{\alpha \beta} d s_{\alpha \beta} \tag{L59}\\
=C \sum_{\alpha \beta} s_{\alpha \beta} d s_{\alpha \beta} \tag{L60}
\end{gather*}
$$

Plasticity

$$
\begin{gather*}
=C d J_{2}, \tag{L61}\\
d \kappa=\kappa^{\prime} C d J_{2} . \tag{L62}\\
C=\frac{1}{2 \kappa^{\prime} \sqrt{J_{2}}} \tag{L63}\\
\Rightarrow d e_{\alpha \beta}^{\mathrm{p}}=\frac{d s_{\alpha \beta}}{2 \kappa^{\prime} \sqrt{J_{2}}} . \tag{L64}
\end{gather*}
$$

Figure 5:

$$
\begin{equation*}
\omega=\sqrt{\frac{\mathcal{K}}{I_{0}+I_{F}}} . \tag{L65}
\end{equation*}
$$

Figure 6:

$$
\begin{align*}
0= & \frac{\partial G}{\partial N_{1}}=\left.\frac{\partial G_{1}\left(N_{1}\right)+G_{2}\left(N-N_{1}\right)}{\partial N_{1}}\right|_{T P} \tag{L66}\\
\Rightarrow & \frac{\partial G_{1}}{\partial N_{1}}=\frac{\partial G_{2}}{\partial N_{2}} \Rightarrow \mu_{1}\left(T_{1}, P_{1}\right)=\mu_{2}\left(T_{2}, P_{2}\right) \tag{L67}\\
& \frac{\partial \varepsilon_{1}\left(S_{1}, \mathcal{V}_{1}\right)}{\partial S_{1}}=\frac{\partial \varepsilon_{2}\left(S_{2}, \mathcal{V}_{2}\right)}{\partial S_{2}} \Rightarrow T_{1}=T_{2} \tag{L68}
\end{align*}
$$

Superfluid ${ }^{4} \mathrm{He}$

$$
\begin{gather*}
\quad \frac{\partial \mu_{2}}{\partial T_{2}} \Delta T+\frac{\partial \mu_{2}}{\partial P_{2}} \Delta P=0 \tag{L69}\\
\Rightarrow \quad s \Delta T=\frac{1}{\rho} \Delta P \Rightarrow \frac{\Delta P}{\Delta T}=\rho s . \tag{L77}
\end{gather*}
$$

Two-Fluid Hydrodynamics

$$
\begin{gather*}
\frac{\partial \vec{v}_{s}}{\partial t}+\left(\vec{v}_{s} \cdot \vec{\nabla}\right) \vec{v}_{s}=-\frac{\vec{\nabla} \mu}{m} . \tag{L71}\\
d \mu=\frac{\nu}{N} d P-\frac{S}{N} d T, \tag{L72}\\
\frac{\partial \vec{v}_{s}}{\partial t}+\left(\vec{v}_{s} \cdot \vec{\nabla}\right) \vec{v}_{s}=-\frac{\vec{\nabla} P}{\rho}+s \vec{\nabla} T . \tag{L73}\\
\rho_{s}\left\{\frac{\partial \vec{v}_{s}}{\partial t}+\left(\vec{v}_{s} \cdot \vec{\nabla}\right) \vec{v}_{s}\right\}+\rho_{n}\left\{\frac{\partial \vec{v}_{n}}{\partial t}+\left(\vec{v}_{n} \cdot \vec{\nabla}\right) \vec{v}_{n}\right\}=-\vec{\nabla} P+\eta \nabla^{2} \vec{v}_{n} . \tag{L74}
\end{gather*}
$$

Second Sound

$$
\frac{\partial \rho}{\partial t}+\vec{\nabla} \cdot\left(\rho_{n} \vec{v}_{n}+\rho_{s} \vec{v}_{s}\right)=0
$$

$$
\begin{equation*}
\frac{\partial \rho s}{\partial t}=-\vec{\nabla} \cdot \rho s \vec{v}_{n} \tag{L76}
\end{equation*}
$$

$$
\begin{align*}
\frac{\partial \vec{v}_{s}}{\partial t} & =-\frac{\vec{\nabla} P}{\rho}+s \vec{\nabla} T \tag{L77}\\
\rho_{s} \frac{\partial \vec{v}_{s}}{\partial t}+\rho_{n} \frac{\partial \vec{v}_{n}}{\partial t} & =-\vec{\nabla} P . \tag{L77}
\end{align*}
$$

$$
\begin{align*}
\frac{\partial s}{\partial t} & =\frac{1}{\rho} \frac{\partial s \rho}{\partial t}-\frac{s}{\rho} \frac{\partial \rho}{\partial t} \tag{L80}\\
& =\frac{-1}{\rho} \vec{\nabla} \cdot \rho s \vec{v}_{n}+\frac{s}{\rho} \vec{\nabla} \cdot\left(\rho_{n} \vec{v}_{n}+\rho_{s} \vec{v}_{s}\right) \tag{L8}
\end{align*}
$$

$$
\begin{equation*}
\frac{\partial^{2} \rho}{\partial t^{2}}=\nabla^{2} P \tag{L79}
\end{equation*}
$$

Second Sound

$$
\begin{equation*}
=\frac{s \rho_{s}}{\rho} \vec{\nabla} \cdot\left(\vec{v}_{s}-\vec{v}_{n}\right) \tag{L82}
\end{equation*}
$$

Solving Eqs. (L77) and (78) for $\partial\left(\vec{v}_{s}-\vec{v}_{n}\right) / \partial t$ gives

$$
\begin{align*}
& \frac{\partial}{\partial t}\left(\vec{v}_{s}-\vec{v}_{n}\right)=s \frac{\rho}{\rho_{n}} \vec{\nabla} T \tag{L83}\\
& \Rightarrow \frac{\partial^{2} s}{\partial t^{2}}=s^{2} \frac{\rho_{s}}{\rho_{n}} \nabla^{2} T \tag{L84}\\
&\left.\frac{\partial \rho}{\partial P}\right|_{T} \frac{\partial^{2} P^{(1)}}{\partial t^{2}}+\left.\frac{\partial \rho}{\partial T}\right|_{P} \frac{\partial^{2} T^{(1)}}{\partial t^{2}}=\nabla^{2} P^{(1)} \tag{L85}\\
&\left.\frac{\partial s}{\partial P}\right|_{T} \frac{\partial^{2} P^{(1)}}{\partial t^{2}}+\left.\frac{\partial s}{\partial T}\right|_{P} \frac{\partial^{2} T^{(1)}}{\partial t^{2}}=s^{2} \frac{\rho_{s}}{\rho_{n}} \nabla^{2} T^{(1)} \tag{L86}
\end{align*}
$$

$$
\begin{equation*}
\left.\frac{\partial \rho}{\partial P}\right|_{T} P^{(1)}+\left.\frac{\partial \rho}{\partial T}\right|_{P} T^{(1)}=c^{-2} P^{(1)} \tag{L87a}
\end{equation*}
$$

$$
\begin{equation*}
\left.\frac{\partial s}{\partial P}\right|_{T} P^{(1)}+\left.\frac{\partial s}{\partial T}\right|_{P} T^{(1)}=c^{-2} s^{2} \frac{\rho_{s}}{\rho_{n}} T^{(1)} \tag{L87b}
\end{equation*}
$$

$$
\begin{align*}
& \left(1-\frac{c^{-2} s^{2} \rho_{s} / \rho_{n}}{\left.\frac{\partial s}{\partial T}\right|_{P}}\right)\left(1-\frac{c^{-2}}{\left.\frac{\partial \rho}{\partial P}\right|_{T}}\right)=\frac{\left.\left.\frac{\partial s}{\partial P}\right|_{T} \frac{\partial \rho}{\partial T}\right|_{P}}{\left.\left.\frac{\partial \rho}{\partial P}\right|_{T} \frac{\partial s}{\partial T}\right|_{P}} \tag{L88}\\
= & \frac{C_{P}-C_{V}}{C_{P}} \tag{L89}\\
\approx & 0 . \tag{L90}
\end{align*}
$$

$$
\begin{equation*}
c_{1}=\sqrt{\left.\frac{\partial P}{\partial \rho}\right|_{T}} \tag{L91}
\end{equation*}
$$

and

$$
\begin{equation*}
c_{2}=\sqrt{\frac{T s^{2}}{C_{P}} \frac{\rho_{s}}{\rho_{n}}} \tag{L92}
\end{equation*}
$$

Origin of Superfluidity

Figure 7: [Source: Donnelly (1991), p. 46.]

Origin of Superfluidity

$$
\begin{equation*}
\Psi(\vec{r})=\int d^{N} \vec{r} \psi_{N}^{*}\left(\vec{r}_{1} \ldots \vec{r}_{N}\right) \psi_{N+1}\left(\vec{r}_{1} \ldots \vec{r}_{N}, \vec{r}\right) \tag{L93}
\end{equation*}
$$

$$
\begin{equation*}
\hat{\mathcal{H}}_{N}=\sum_{l=1}^{N} \frac{\hat{P}_{l}^{2}}{2 m}+U\left(\vec{r}_{1} \ldots \vec{r}_{N}\right) \tag{L94}
\end{equation*}
$$

$$
\frac{-\hbar}{i} \frac{\partial \Psi}{\partial t}=\frac{-\hbar^{2} \nabla^{2}}{2 m} \Psi+\mu \Psi
$$

$$
\begin{equation*}
\Psi(\vec{r})=\sqrt{n} e^{i \phi} \tag{L98}
\end{equation*}
$$

Origin of Superfluidity

$$
\begin{gather*}
\frac{\partial n}{\partial t}=-\vec{\nabla} \cdot \frac{\hbar}{m} \vec{\nabla} \phi n, \tag{L99}\\
\vec{v}_{s}=\frac{\hbar}{m} \vec{\nabla} \phi \tag{L100}\\
\hbar \frac{\partial \phi}{\partial t}=-\left(\mu+m v_{s}^{2} / 2\right)+\frac{\hbar^{2}}{2 m} \frac{\nabla^{2} \sqrt{n}}{\sqrt{n}} . \tag{L101}\\
m \frac{\partial \vec{v}_{s}}{\partial t}+m \vec{\nabla} \frac{v_{s}^{2}}{2}=-\vec{\nabla} \mu \tag{L102}\\
\Rightarrow \frac{\partial \vec{v}_{s}}{\partial t}+\left(\vec{v}_{s} \cdot \vec{\nabla}\right) \vec{v}_{s}=-\frac{\vec{\nabla} \mu}{m} \tag{L103}\\
\int_{\mathcal{e}} d \vec{s} \cdot \vec{v}_{s}=2 \pi l \hbar / m \tag{L104}\\
\Rightarrow \int_{\mathcal{A}} d^{2} r \hat{z} \cdot \vec{\nabla} \times \vec{v}_{s}=\kappa=l \frac{h}{m} . \tag{L105}
\end{gather*}
$$

Origin of Superfluidity

Figure 8: [Source, Karn et al. (1980), p. 1799.]

$$
\begin{equation*}
\mathcal{E}_{\mathrm{v}}=\int d \vec{r} \frac{1}{2} \rho v^{2}(\vec{r})=\frac{1}{2} \rho \kappa^{2} R\left(\eta-\frac{3}{2}\right), \quad \eta=\ln (8 R / a) \tag{L106}
\end{equation*}
$$

Origin of Superfluidity

$$
\begin{gather*}
P_{\mathrm{v}}=\left|\int d \vec{r} \rho \vec{v}(\vec{r})\right|=\rho \kappa \pi R^{2} \tag{L107}\\
v_{\mathrm{v}}=\frac{\partial \varepsilon_{\mathrm{v}}}{\partial P_{\mathrm{v}}}=\frac{\kappa\left(\eta-\frac{1}{2}\right)}{4 \pi R} \tag{L108}\\
\varepsilon_{\mathrm{tot}}=\varepsilon_{\mathrm{v}}-P_{\mathrm{v}} v_{\mathrm{s}} \tag{L109}\\
\frac{d \varepsilon_{\text {tot }}}{d R}=0 \Rightarrow \frac{\partial \varepsilon_{\mathrm{v}}}{\partial P_{\mathrm{v}}} \frac{\partial P_{\mathrm{v}}}{\partial R}-\frac{\partial P_{\mathrm{v}}}{\partial R} v_{\mathrm{s}}=0 \quad \Rightarrow v_{\mathrm{s}}=v_{\mathrm{v}} \tag{L110}
\end{gather*}
$$

Lagrangian Theory of Wave Function

$$
\begin{gather*}
i \hbar \frac{\partial}{\partial t} \phi=\left[\sum_{l}-\frac{\hbar^{2} \nabla_{l}^{2}}{2 m}+\hat{U}\right] \phi \tag{L111}\\
\phi \nabla_{l} \phi^{*}-\phi^{*} \nabla_{l} \phi=0 \tag{L112}\\
\psi\left(\vec{r}_{1} \ldots \vec{r}_{N}\right)=\exp \left[\sum_{l} \Psi\left(\vec{r}_{l}, t\right)\right] \phi\left(\vec{r}_{1} \ldots \vec{r}_{N}\right)=e^{\Sigma \Psi_{l}} \phi \tag{L113}\\
N=1 / \sqrt{\int d^{N} \vec{r}|\psi|^{2}} \tag{L114}\\
\mathcal{L}=\int d^{N} \vec{r}^{*} \phi^{*} \sum_{l^{\prime}} \Psi^{*}\left(\vec{r}_{l^{\prime}}\right) \tag{L115}\\
\left.\int i \hbar \frac{\partial}{\partial t}+\sum_{l} \frac{\hbar^{2} \nabla_{l}^{2}}{2 m}-\hat{U}^{2}\right] e^{\sum_{l^{\prime \prime}} \Psi\left(\vec{r}_{l^{\prime \prime}}\right)} \phi \tag{L116}\\
\\
\int e^{\sum \Psi_{l^{\prime}}^{*} \phi^{*} \nabla_{l}^{2} e^{\sum \Psi_{l^{\prime \prime}}} \phi}
\end{gather*}
$$

$$
\begin{align*}
& =\int e^{\left.\Sigma \Psi_{l^{\prime}}^{*} \phi^{*}\left[\phi \nabla_{l}^{2} e^{\Sigma \Psi_{l^{\prime \prime}}}+2 \overrightarrow{2\left(\nabla_{l}\right.} e^{\Sigma \Psi_{l^{\prime \prime}}}\right) \cdot\left(\vec{\nabla}_{l} \phi\right)+e^{\Sigma \Psi_{l^{\prime \prime}}} \nabla_{l}^{2} \phi\right]} \tag{L117}\\
& =\int e^{\Sigma \Psi_{l^{\prime}}^{*}}\left[|\phi|^{2} \nabla_{l}^{2} e^{\Sigma \Psi_{l^{\prime \prime}}}+\left(\vec{\nabla}_{l} e^{\Sigma \Psi_{l^{\prime \prime}}}\right) \cdot\left(\vec{\nabla}_{l}|\phi|^{2}\right)+e^{\Sigma \Psi_{l^{\prime \prime}} \phi^{*}} \nabla_{l}^{2} \phi\right] \tag{L118}\\
& =\int e^{\Sigma \Psi_{l^{\prime}}^{*}}|\phi|^{2} \nabla_{l}^{2} e^{\Sigma \Psi_{l^{\prime}}}-|\phi|^{2} \vec{\nabla}_{l} \cdot e^{\Sigma \Psi_{l^{\prime}}^{*}\left(\vec{\nabla}_{l} e^{\Sigma \Psi_{l^{\prime \prime}}}\right)+e^{\Sigma \Psi_{l^{\prime}}^{*}+\Psi_{l^{\prime}}} \phi^{*} \nabla_{l}^{2} \phi} \tag{L119}\\
& =\int e^{\Sigma \Psi_{l^{\prime}}^{*}+\Psi_{l^{\prime}}\left[\phi^{*} \nabla_{l}^{2} \phi-|\phi|^{2}\left|\nabla_{l} \Psi_{l}\right|^{2}\right] .} \tag{L120}
\end{align*}
$$

$$
\begin{equation*}
\mathcal{L}=\int d^{N} \vec{r}|\phi|^{2} e^{\Sigma_{l^{\prime}} \Psi_{l^{\prime}}^{*}+\Psi_{l^{\prime}}} \sum_{l}\left[i \hbar \frac{\partial \Psi_{l}}{\partial t}-\frac{\hbar^{2}}{2 m}\left|\vec{\nabla}_{l} \Psi_{l}\right|^{\mid}\right] . \tag{L121}
\end{equation*}
$$

$$
\begin{equation*}
\frac{\delta}{\delta \Psi^{*}}\left[\mathcal{L}-\mu \int d^{N} \vec{r}\left|\phi^{2}\right| e^{\Sigma_{l^{\prime}} \Psi^{\prime},+\Psi_{l^{\prime}}}\right]=0 \tag{L122}
\end{equation*}
$$

Lagrangian Theory of Wave Function

$$
\begin{gather*}
n_{1}(\vec{r})=\int d^{N} \vec{r}|\phi|^{2} e^{\Sigma_{l^{\prime}} \Psi_{l^{\prime}}^{*}+\Psi_{l^{\prime}}} \sum_{l} \delta\left(\vec{r}-\vec{r}_{l}\right) \tag{L123}\\
S\left(\vec{r}, \vec{r}^{\prime}\right)= \tag{L124}\\
\frac{\mathcal{V}}{N} \int d^{N} \vec{r}|\phi|^{2} e^{\Sigma_{l^{\prime}} \Psi_{l^{\prime}}^{*}+\Psi_{l^{\prime}}} \sum_{l l^{\prime}} \delta\left(\vec{r}-\vec{r}_{l}\right) \delta\left(\vec{r}^{\prime}-\vec{r}_{l^{\prime}}\right) . \tag{L125}\\
-\frac{\hbar^{2}}{2 m} \vec{\nabla} \cdot n_{1} \vec{\nabla} \Psi(\vec{r}) \tag{L126}\\
=\sum_{l l^{\prime}} \int d^{N} \vec{r}|\psi|^{2} \delta\left(\vec{r}_{l^{\prime}}-\vec{r}\right)\left[i \hbar \frac{\partial \Psi_{l}}{\partial t}-\frac{\hbar^{2}}{2 m}\left|\nabla \Psi_{l}\right|^{2}-\mu\right] \tag{L127}\\
 \tag{L128}\\
=\frac{N}{V} \int d \vec{r}^{\prime}\left[i \hbar \frac{\partial \Psi\left(\vec{r}^{\prime}\right)}{\partial t}-\frac{\hbar^{2}}{2 m}\left|\nabla \Psi\left(\vec{r}^{\prime}\right)\right|^{2}-\mu\right] S\left(\vec{r}, \vec{r}^{\prime}\right) \\
\frac{\hbar^{2} k^{2}}{2 m} \Psi(\vec{q}, \omega)=[\hbar \omega \Psi(\vec{q}, \omega)-\mu \delta(\vec{q}) \delta(\omega)] S(\vec{q}) \\
\Rightarrow \hbar \omega(\vec{q})=\frac{\hbar^{2} q^{2}}{2 m S(\vec{q})}=\frac{6.02 k_{B}[q \cdot \AA]^{2}}{S(q)} \mathrm{K}
\end{gather*}
$$

Lagrangian Theory of Wave Function

Figure 9: The neutron scattering data are from Donnelly (1991) p. 46, and data for $S(q)$ are from Svensson et al. (1980).

Need something....

