

```
Boltzmann Equation
Relaxation Time Approximation
Onsager Relations
## Holes
Wiedemann-Franz Law
Seebeck, Peltier, and Thomson Effects
Classical Hall Effect
Magnetoresistance
Fermi Liquid Theory
Quasi-Particles
Zero Sound
```


Boltzmann Equation

Suppose have Hamiltonian structure:

$$
\begin{equation*}
\dot{\vec{r}}=\frac{\partial \mathcal{H}}{\partial \vec{p}}, \quad \dot{\vec{p}}=-\frac{\partial \mathcal{H}}{\partial \vec{r}}, \tag{L1}
\end{equation*}
$$

In particular case of electrons in semi-classical approximation (discard anomalous velocity)

$$
\begin{align*}
& \mathcal{H}(\vec{r}, \vec{p})=\mathcal{E}(\vec{p}+\vec{A} e / c)-e V(\vec{r}), \tag{L2}\\
& \dot{\vec{r}}=\frac{\partial \varepsilon}{\partial \hbar \vec{k}} \equiv \vec{v} \tag{L3a}\\
& \dot{\hbar \overrightarrow{\vec{k}}}=-e \vec{E}-\frac{e \vec{v}}{c} \times \vec{B} \tag{L3b}
\end{align*}
$$

where $\hbar \vec{k}$ is defined by

$$
\begin{equation*}
\hbar \vec{k}=\vec{p}+e \vec{A} / c \tag{L3c}
\end{equation*}
$$

Continuity Equation

Figure 1:
Let $g(x)$ be the number of particles per volume. Then the number entering volume $A d x$ minus the number leaving it is

$$
?
$$

$$
\begin{equation*}
\frac{\partial g}{\partial t}=? \tag{L5}
\end{equation*}
$$

Continuity Equation

For a system with flows in more than one dimension,

$$
\begin{equation*}
\frac{\partial g}{\partial t}=-\sum_{l} \frac{\partial}{\partial x_{l}} v_{l}(\vec{x}) g(\vec{x}, t) . \tag{LL}
\end{equation*}
$$

$$
\begin{gather*}
g_{\overrightarrow{r k}}(t) d \vec{r} D_{\vec{k}} d \vec{k}=2 \frac{d \vec{k} d \vec{r}}{(2 \pi)^{3}} g_{\vec{r} k}(t) \tag{L7}\\
G=\int[d \vec{k}] d \vec{r} g_{\overrightarrow{r k}} G_{\vec{r} \vec{k}} \tag{L8}\\
g_{\vec{k} k}=f_{\vec{r} k}+\text { corrections } \tag{L9}\\
g_{\vec{r} k} \approx f_{\vec{r} \vec{k}}-\tau e \frac{\partial f}{\partial \mu} \vec{v}_{\vec{k}} \cdot \vec{E} \tag{L10}
\end{gather*}
$$

$$
\begin{gather*}
\frac{\partial g}{\partial t}=-\frac{\partial}{\partial \vec{r}} \cdot \dot{\vec{r}} g-\frac{\partial}{\partial \vec{k}} \cdot \dot{\vec{k}} g \tag{LL1}\\
\frac{\partial g}{\partial t}=-\dot{\vec{r}} \frac{\partial}{\partial \vec{r}} g-\dot{\vec{k}} \frac{\partial}{\partial \vec{k}} g \tag{L21}\\
\frac{\partial g}{\partial t}=-\dot{\vec{r}} \cdot \frac{\partial}{\partial \vec{r}^{2}} g-\dot{\vec{k}} \frac{\partial}{\partial \vec{k}} g+\left.\frac{d g}{d t}\right|_{\text {coll. }}, \tag{L13}\\
\left.\frac{d g}{d t}\right|_{\text {coll. }} \tag{L14}
\end{gather*}
$$

Relaxation Time Approximation

$$
\begin{equation*}
\left.\frac{d g}{d t}\right|_{\text {coll. }}=-\frac{1}{\tau}\left[g_{\vec{r} \vec{k}}-f_{\vec{r} \vec{k}}\right], \tag{L15}
\end{equation*}
$$

Expand about Fermi function appropriate for local conditions:

$$
\begin{gather*}
f_{\vec{r} \vec{k}}=\frac{1}{e^{\beta_{\vec{r}}\left(\varepsilon_{\vec{k}}-\mu_{\vec{r}}\right)+1}} \tag{L1}\\
\frac{d g}{d t}=\frac{\partial g}{\partial t}+\dot{\vec{r}} \cdot \frac{\partial g}{\partial \vec{r}}+\dot{\vec{k}} \cdot \frac{\partial g}{\partial \vec{k}} \tag{L17}\\
\frac{d g}{d t}=-\frac{g-f}{\tau_{\varepsilon}} \tag{L18}\\
\Rightarrow g_{\vec{r} \vec{k}}(t)=\int_{-\infty}^{t} d t^{\prime} f\left(t^{\prime}\right) \frac{e^{-\left(t-t^{\prime}\right) / \tau_{\varepsilon}}}{\tau_{\varepsilon}} \tag{L19}
\end{gather*}
$$

Relaxation Time Approximation

Figure 2: Electrons that at time t end up at \vec{r} and \vec{k}.

$$
\begin{gather*}
g_{\overrightarrow{r k}}(t)=f_{\vec{r} \vec{k}}-\int_{-\infty}^{t} d t^{\prime} e^{-\left(t-t^{\prime}\right) / \tau \varepsilon} \frac{d}{d t^{\prime}} f\left(t^{\prime}\right) \tag{L20}\\
g_{\vec{r} \vec{k}}=f_{\vec{r} \vec{k}}-\int_{-\infty}^{t} d t^{\prime} e^{-\left(t-t^{\prime}\right) / \tau_{\varepsilon}}\left[\dot{\vec{r}}_{t^{\prime}} \frac{\partial}{\partial \vec{r}}+\overrightarrow{\vec{k}_{t^{\prime}}} \frac{\partial}{\partial \vec{k}}\right] f\left(t^{\prime}\right) . \tag{L21}\\
\frac{\partial f}{\partial \vec{r}}=\frac{\partial f}{\partial \varepsilon}\left[-\vec{\nabla} \mu-(\varepsilon-\mu) \frac{\vec{\nabla} T}{T}\right] \tag{L22}
\end{gather*}
$$

and

$$
\begin{gather*}
\frac{\partial f}{\partial \vec{k}}=\frac{\partial f}{\partial \varepsilon} \frac{\partial \varepsilon}{\partial \vec{k}}=\frac{\partial f}{\partial \varepsilon} \hbar \vec{v}, \tag{L23}\\
g=f-\int_{-\infty}^{t} d t^{\prime} e^{-\left(t-t^{\prime}\right) / \tau \varepsilon} \vec{v}_{\vec{k}} \cdot\left\{e \vec{E}+\vec{\nabla} \mu+\frac{\varepsilon_{\vec{k}}-\mu}{T} \vec{\nabla} T\right\} \frac{\partial f\left(t^{\prime}\right)}{\partial \mu} . \tag{L24}\\
g=f-\tau_{\varepsilon} \vec{v}_{\vec{k}} \cdot\left\{e \vec{E}+\vec{\nabla} \mu+\frac{\varepsilon_{\vec{k}}-\mu}{T} \vec{\nabla} T\right\} \frac{\partial f}{\partial \mu} . \tag{L25}
\end{gather*}
$$

Relation to Rate of Production of Entropy 11

$$
\begin{array}{r}
T \frac{\partial S}{\partial t}=\frac{\partial \varepsilon}{\partial t}-\mu \frac{\partial N}{\partial t} \\
\vec{J}_{N}=N \vec{v} \text { and } \vec{J}_{\varepsilon}=\varepsilon \frac{\vec{J}_{N}}{N} \\
\frac{\partial N}{\partial t}+\vec{\nabla} \cdot \vec{J}_{N}=0 \\
\frac{\partial \varepsilon}{\partial t}+\vec{\nabla} \cdot \vec{J}_{\varepsilon}=\vec{F} \cdot \vec{J}_{N}, \\
T \frac{\partial S}{\partial t}-\mu \vec{\nabla} \cdot \vec{J}_{N}+\vec{\nabla} \cdot \vec{J}_{\varepsilon}=\vec{F} \cdot \vec{J}_{N} \tag{L30}
\end{array}
$$

so the rate \dot{S} at which entropy is generated is

$$
\begin{equation*}
\dot{\mathcal{S}} \equiv \frac{\partial S}{\partial t}+\vec{\nabla} \cdot\left[\frac{\vec{J}_{\varepsilon}-\mu \vec{J}_{N}}{T}\right]=\frac{\vec{F} \cdot \vec{J}_{N}}{T}-\vec{\nabla}\left(\frac{\mu}{T}\right) \cdot \vec{J}_{N}+\vec{\nabla}\left(\frac{1}{T}\right) \cdot \vec{J}_{\varepsilon} \tag{LL3}
\end{equation*}
$$

Relation to Rate of Production of Entropy 12

$$
\begin{equation*}
\Rightarrow \dot{Q} \equiv T \frac{\dot{\bar{s}}}{\vec{V}}=\left[-e \vec{E}-\vec{\nabla} \mu-\frac{\vec{\nabla} T}{T}\left(\frac{\varepsilon}{N}-\mu\right)\right] \cdot \frac{\vec{J}_{N}}{V} . \tag{L32}
\end{equation*}
$$

$$
\begin{gather*}
\dot{Q}_{\vec{k} \vec{k}}=\left[-e \vec{E}-\vec{\nabla} \mu-\frac{\vec{\nabla} T}{T}\left(\varepsilon_{\vec{k}}-\mu\right)\right] \cdot \vec{v}_{\vec{k}} f_{\vec{k}} \tag{L33}\\
g_{\vec{r} \vec{k}}=f_{\overrightarrow{r k}}+\int_{-\infty}^{t} d t^{\prime} e^{-\left(t-t^{\prime}\right) / \tau \varepsilon} \dot{Q}\left(t^{\prime}\right) \frac{\partial}{\partial \mu} \ln f\left(t^{\prime}\right) . \tag{L34}
\end{gather*}
$$

Forces and fluxes;

$$
X_{\alpha}=\frac{d \dot{Q}}{d x_{\alpha}} .
$$

Flux associated with electric field is

$$
-e \frac{\vec{J}_{N}}{V}=\vec{j} .
$$

Flux associated with temperature gradient is

$$
\begin{equation*}
-\frac{1}{T}(\mathcal{E}-\mu) \frac{\vec{J}_{N}}{V} . \tag{L37}
\end{equation*}
$$

Onsager Relations

$$
\begin{gather*}
X_{\alpha}=\sum_{\beta} L_{\alpha \beta} x_{\beta} . \tag{L38}\\
L_{\alpha \beta}(B)=L_{\beta \alpha}(-B) . \tag{L39}
\end{gather*}
$$

The flux of β in response to force α is the same as the flux of α in response to force β, (provided that one also reverses the sign of the magnetic induction B.)

Heat flux produced by electric field equals electric current produced by temperature gradient.

Derivation:

$$
\begin{gather*}
L_{\alpha \beta}=\int\left[d \vec{k}_{t}\right] d \vec{r}_{t} \int_{-\infty}^{t} d t^{\prime} \frac{d \dot{Q}(t)}{d x_{\alpha}} e^{-\left(t-t^{\prime}\right) / \tau \varepsilon}\left[\frac{\partial}{\partial \mu} \ln f\left(t^{\prime}\right)\right] \frac{d \dot{Q}\left(t^{\prime}\right)}{d x_{\beta}} . \tag{L40}\\
\mathcal{E}_{\vec{k}}=\mathcal{E}_{\vec{k}_{t^{\prime}}} \Rightarrow f(t)=f\left(t^{\prime}\right) \tag{L41}
\end{gather*}
$$

$$
\begin{align*}
t & \rightarrow t^{\prime} ; t^{\prime} \rightarrow t \\
\vec{B} & \rightarrow-\vec{B} \tag{L42a}\\
\vec{k}_{t^{\prime}} & \rightarrow-\vec{k}_{-t^{\prime}} \\
\vec{r}_{t^{\prime}} & \rightarrow \vec{r}_{-t^{\prime}} \tag{L42b}
\end{align*}
$$

Electrical Current

$$
\begin{align*}
\vec{j} & =\frac{\vec{J}}{\mathcal{V}}=-e \int[d \vec{k}] \vec{v}_{\vec{k}} g_{\vec{r}} \cdot \tag{L43}\\
\frac{\partial j_{\alpha}}{\partial E_{\beta}} & \equiv \sigma_{\alpha \beta} \tag{L44}\\
& =? \tag{L45}
\end{align*}
$$

Electrical Current

$$
\begin{align*}
\sigma_{\alpha \beta} & =e^{2} \tau \int[d \vec{k}] v_{\alpha}\left(-\frac{\partial f_{\vec{k}}}{\partial \hbar k_{\beta}}\right) \tag{L46}\\
\Rightarrow \sigma_{\alpha \beta} & =e^{2} \tau \int[d \vec{k}] f_{\vec{k}} \frac{\partial v_{\alpha}}{\partial \hbar k_{\beta}} \tag{L47}\\
& =e^{2} \tau \int[d \vec{k}] f_{\vec{k}}\left(\mathbf{M}^{-1}\right)_{\alpha \beta} \tag{L48}\\
\sigma & =\frac{n e^{2} \tau}{m^{\star}} \tag{L49}
\end{align*}
$$

in cubic crystals

$$
\begin{equation*}
\frac{1}{m^{\star}}=\frac{1}{3 n} \int[d \vec{k}] f_{\vec{k}} \operatorname{Tr}\left(\mathbf{M}^{-1}\right) \tag{L50}
\end{equation*}
$$

Conductivity related to effective mass

$$
\begin{equation*}
\sigma_{\alpha \beta}=e^{2} \int \frac{d \Sigma}{4 \pi^{3} \hbar v} \tau_{\varepsilon} v_{\alpha} v_{\beta} \tag{L51}
\end{equation*}
$$

Alternative form as Fermi surface average.
Conductivity of filled bands is zero.

Effective Mass and Holes

$$
\begin{gather*}
\sigma_{\alpha \beta}=e^{2} \tau \int_{\substack{\text { occupied } \\
\text { levels }}}[d \vec{k}]\left(\mathbf{M}^{-1}\right)_{\alpha \beta} \tag{L52}\\
=-e^{2} \tau \int_{\substack{\text { unoccupied } \\
\text { levels }}}[d \vec{k}]\left(\mathbf{M}^{-1}\right)_{\alpha \beta} \tag{L53}\\
\mathcal{E}_{\vec{k}} \approx \varepsilon_{c}+\frac{\hbar^{2} k^{2}}{2 m_{n}^{\star}} \tag{L54}\\
\sigma=\frac{n e^{2} \tau}{m_{n}^{\star}} \tag{L55}\\
\mathcal{E}_{\vec{k}} \approx \mathcal{E}_{v}-\frac{\hbar^{2} k^{2}}{2 m_{p}^{\star}} \tag{L56}\\
\sigma=\frac{p e^{2} \tau}{m_{p}^{\star}} \tag{L57}
\end{gather*}
$$

Mixed Thermal and Electrical Gradients

$$
\begin{equation*}
\vec{G}=\vec{E}+\frac{\vec{\nabla} \mu}{e} \tag{L58}
\end{equation*}
$$

Force Flux

$$
\begin{array}{lll}
\vec{G} & \vec{j}=-e \vec{J}_{N} / \mathcal{V} & =-e \int \frac{d \vec{r}}{\mathcal{V}} \int[d \vec{k}] \vec{v}_{\vec{r} k} g_{\vec{r} \vec{k}} \\
\frac{-\vec{\nabla} T}{T} & \vec{j}_{Q}=\left(\vec{J}_{\varepsilon}-\mu \vec{J}_{N}\right) / \mathcal{V} & =\int \frac{d \vec{r}}{\mathcal{V}} \int[d \vec{k}]\left(\varepsilon_{\vec{k}}-\mu\right) \vec{v}_{\vec{r} \vec{k}} g_{\vec{k}} . \tag{L59}
\end{array}
$$

$$
\begin{equation*}
\vec{j}=\mathbf{L}^{11} \vec{G}+\mathbf{L}^{12}\left(\frac{-\vec{\nabla} T}{T}\right) \tag{L60}
\end{equation*}
$$

$$
\begin{equation*}
\vec{j}_{Q}=\mathbf{L}^{21} \vec{G}+\mathbf{L}^{22}\left(\frac{-\vec{\nabla} T}{T}\right) \tag{L61}
\end{equation*}
$$

$$
\begin{equation*}
\mathbf{L}^{11}=\mathcal{L}^{(0)}, \mathbf{L}^{12}=\mathbf{L}^{21}=-\frac{1}{e} \mathcal{L}^{(1)}, \mathbf{L}^{22}=\frac{1}{e^{2}} \mathcal{L}^{(2)}, \tag{L62}
\end{equation*}
$$

$$
\begin{equation*}
\mathcal{L}_{\alpha \beta}^{(\nu)}=e^{2} \int[d \vec{k}] \tau_{\varepsilon} \frac{\partial f}{\partial \mu} v_{\alpha} v_{\beta}\left(\mathcal{E}_{\vec{k}}-\mu\right)^{\nu} \tag{L63}
\end{equation*}
$$

$$
\begin{align*}
\sigma_{\alpha \beta}(\mathcal{E})= & \tau_{\mathcal{E}} e^{2} \int[d \vec{k}] v_{\alpha} v_{\beta} \delta\left(\mathcal{E}-\mathcal{E}_{\vec{k}}\right) \tag{L64}\\
\mathcal{L}_{\alpha \beta}^{(\nu)}= & \int d \mathcal{E} \frac{\partial f}{\partial \mu}(\mathcal{E}-\mu)^{\nu} \sigma_{\alpha \beta}(\mathcal{E}) . \tag{L65}\\
& \frac{\partial f}{\partial \mu} \approx \delta\left(\mathcal{E}-\mathcal{E}_{F}\right) \tag{L66}\\
\mathcal{L}_{\alpha \beta}^{(0)}= & \sigma_{\alpha \beta}\left(\mathcal{E}_{F}\right) \tag{L67}\\
\mathcal{L}_{\alpha \beta}^{(1)}= & \frac{\pi^{2}}{3}\left(k_{B} T\right)^{2} \sigma_{\alpha \beta}^{\prime}\left(\mathcal{E}_{F}\right) \tag{L68}\\
\mathcal{L}_{\alpha \beta}^{(2)}= & \frac{\pi^{2}}{3}\left(k_{B} T\right)^{2} \sigma_{\alpha \beta}\left(\mathcal{E}_{F}\right) . \tag{L69}
\end{align*}
$$

Wiedemann-Franz Law

$$
\begin{gather*}
\vec{j}_{Q}=\kappa(-\vec{\nabla} T) \tag{L70}\\
0=\mathbf{L}^{11} \vec{G}+\mathbf{L}^{12}\left(\frac{-\vec{\nabla} T}{T}\right) \tag{L71}\\
\Rightarrow \vec{G}=\left(\mathbf{L}^{11}\right)^{-1} \mathbf{L}^{12} \frac{\vec{\nabla} T}{T}, \tag{L72}\\
\vec{j}_{Q}=\left[\mathbf{L}^{21}\left(\mathbf{L}^{11}\right)^{-1} \mathbf{L}^{12}-\mathbf{L}^{22}\right]\left(\frac{\vec{\nabla} T}{T}\right) \tag{L73}\\
\Rightarrow \kappa=\frac{\mathbf{L}^{22}}{T}+\mathcal{O}\left(\frac{k_{B} T}{\mathcal{E}_{F}}\right)^{2} \tag{L77}\\
\Rightarrow \kappa_{\alpha \beta}=\frac{\pi^{2}}{3} \frac{k_{B}^{2} T}{e^{2}} \sigma_{\alpha \beta} . \tag{L77}\\
L_{0}=\frac{\pi^{2}}{3} \frac{k_{B}^{2}}{e^{2}}=2.72 \cdot 10^{-13} \mathrm{ergcm}^{-1} \mathrm{~K}^{-2}=2.43 \cdot 10^{-8} \mathrm{~W} \cdot \Omega \cdot \mathrm{~K}^{-2} \tag{L76}
\end{gather*}
$$

Thermopower-Seebeck Effect

Figure 3: Geometry for Thermopower

$$
\begin{align*}
\vec{G} & =\alpha \vec{\nabla} T \tag{L77}\\
\Rightarrow \alpha & =\left(\mathbf{L}^{11}\right)^{-1} \frac{\mathbf{L}^{12}}{T}=-\frac{\pi^{2}}{3} \frac{k_{B}^{2} T}{e} \sigma^{-1} \sigma^{\prime} . \tag{L78}
\end{align*}
$$

Thermopower-Seebeck Effect

Element	Z	L / L_{0}	L / L_{0}	α	($\mu \mathrm{VK}{ }^{-1}$)	α	($\mu \mathrm{VK}{ }^{-1}$)	\mathcal{R} nec	\mathcal{R} пес
		300 K	20 K		300 K		100 K	300 K	100 K
Li	1	0.90	0.22		10.6		4.3	-1.02	-0.16
Na	1	0.91	0.30		-5.8		-2.6	-0.54	-0.50
K	1	0.92			-13.7		-5.2	-0.89	-0.95
Rb	1				-10.2		-3.6	-0.86	-0.91
Cs	1				-0.9			-0.99	
Cu	1	0.91	0.31		1.9		1.2	-0.72	-0.78
Ag	1	0.96	0.70		1.5		0.7	-0.84	-0.84
Au	1	0.96	0.76		1.9		0.8	-0.69	-0.68
Be	2	0.97	0.23		1.7		-2.5	-30.49	-30.49
Mg	2	0.97	0.78		-1.5		-2.1	-1.15	
Ca	2				10.3		1.1		
Sr	2				1.1		-3.0		
Ba	2				12.1		-4.0		
Zn	2	0.92	0.67		2.4		0.7	3.03	3.89
Cd	2	0.97	0.65		2.6		-0.1	2.06	1.48
Hg	2	1.49	0.65					-1.97	
Al	3	0.89	0.72		-1.7		-2.2	-0.96	-0.84
Ga	3				1.8		0.5	-0.96	
In	3				1.7		0.6	-1.00	-0.50
Sn	4				-0.9		-0.0	-0.05	
Pb	4				-1.3		-0.6	0.21	
Sb	5	1.58							
Bi	5	1.07							
Mn	4				-10.0		-2.5	4.41	-23.51
Fe	2	1.36	0.98		16.2		11.6		
Co	2				-30.8		-8.4		
Ni	2	0.83			-19.2		-8.5		

Peltier Effect

$$
\begin{gather*}
\vec{j}_{Q}=\Pi \vec{j} . \tag{L77}\\
\Pi=\mathbf{L}^{21}\left(\mathbf{L}^{11}\right)^{-1}=T \alpha . \tag{L80}\\
Z=\frac{\alpha^{2}}{R \kappa}, \tag{L8}
\end{gather*}
$$

Thomson Effect

$$
\begin{gather*}
-T \frac{d \alpha}{d T} \vec{\nabla} T \cdot \vec{j} \equiv-\mu \vec{\nabla} T \cdot \vec{j} \tag{L82}\\
T \frac{d \alpha}{d T} \tag{L83}
\end{gather*}
$$

Hall Effect

Figure 4: Geometry of the Hall effect.

$$
\begin{align*}
\dot{\hbar} \dot{\vec{k}} & =-e \frac{\vec{v}}{c} \times \vec{B}-e \vec{E} \tag{L84}\\
\Rightarrow \vec{B} \times \hbar \dot{\vec{k}}+e \vec{B} \times \vec{E} & =-e \vec{B} \times\left(\frac{\vec{v}}{c} \times \vec{B}\right)=-\frac{e}{c} \vec{v}_{\perp} B^{2} \tag{L85}\\
\Rightarrow \vec{v}_{\perp} & =-\frac{\hbar c}{e} \frac{\vec{B} \times \overrightarrow{\vec{k}}}{B^{2}}-c \frac{\vec{B} \times \vec{E}}{B^{2}} \tag{L86}
\end{align*}
$$

$$
\begin{align*}
g-f & =\int_{-\infty}^{t} d t^{\prime} e^{-\left(t-t^{\prime}\right) / \tau \varepsilon}\left[\frac{c \hbar}{e} \frac{\vec{B} \times \dot{\vec{k}}}{B^{2}}\right] \cdot e \vec{E} \frac{\partial f}{\partial \mu} \tag{L87}\\
& =\int_{-\infty}^{t} d t^{\prime} e^{-\left(t-t^{\prime}\right) / \tau \varepsilon} \frac{c \hbar}{B^{2}} \dot{\vec{k}} \cdot[\vec{E} \times \vec{B}] \frac{\partial f}{\partial \mu} \tag{L88}\\
& =\frac{c \hbar}{B^{2}}(\vec{k}-\langle\vec{k}\rangle) \cdot[\vec{E} \times \vec{B}] \frac{\partial f}{\partial \mu} \tag{L89}
\end{align*}
$$

where

$$
\begin{equation*}
\langle\vec{k}\rangle=\frac{1}{\tau_{\varepsilon}} \int_{-\infty}^{t} d t^{\prime} e^{-\left(t-t^{\prime}\right) / \tau_{\varepsilon}} \vec{k}_{\left(t^{\prime}\right)} . \tag{L90}
\end{equation*}
$$

Hall Effect

Figure 5: Electron-like, hole-like, and open orbits for the Hall effect.

$$
\begin{align*}
\vec{j} & =-e \int[d \vec{k}] \overrightarrow{v_{k}} \frac{\partial f}{\partial \mu} \frac{\hbar c}{B^{2}} \vec{k} \cdot(\vec{E} \times \vec{B}) \tag{L91}\\
& =e \int[d \vec{k}] \frac{\partial f}{\partial \hbar \vec{k}} \frac{\hbar c}{\overrightarrow{B^{2}}} \cdot(\vec{E} \times \vec{B}) \tag{L92}\\
& =\left\{\frac{e c}{B^{2}} \int[d \vec{k}] \frac{\partial}{\partial \vec{k}}(f \vec{k} \cdot(\vec{E} \times \vec{B}))\right\}-\frac{n e c}{B^{2}}(\vec{E} \times \vec{B}) \tag{L93}
\end{align*}
$$

Hall Effect

$$
\begin{gather*}
\vec{j}=-\frac{n e c}{B^{2}}(\vec{E} \times \vec{B}) . \tag{L94}\\
\vec{j}=\frac{p e c}{B^{2}}(\vec{E} \times \vec{B}), \tag{L95}\\
p=\int[d \vec{k}]\left(1-f_{\vec{k}}\right) \tag{L96}\\
\mathcal{R}=-\frac{E_{x}}{B j_{y}} . \tag{L97}
\end{gather*}
$$

$$
\begin{gather*}
\vec{E}=\rho \vec{j} \tag{L98}\\
\sigma \propto\left(\begin{array}{cc}
\mathcal{C} \frac{\mathcal{T}}{\tau_{\mathcal{E}}} \frac{\mathcal{R}}{B} & \frac{\mathcal{R}}{B} \\
-\frac{\mathcal{R}}{B} & \varrho \frac{\mathcal{T}}{\tau_{\mathcal{E}}} \frac{\mathcal{R}}{B}
\end{array}\right) \tag{L99}
\end{gather*}
$$

Figure 6: [Source: Alekseevskii and Gaidukhov (1960), p. 673.]
Giant Magnetoresistance (GMR) and Collossal Magnetoresistance (CMR)...new read heads.

Figure 7: Fermi sea

Lifetime of quasiparticles large near Fermi surface

$$
\begin{gather*}
\hat{U}_{\text {int }}=\sum_{\substack{\vec{k}^{\prime} \vec{G} \vec{k} \\
\sigma \sigma^{\prime}}} U_{\vec{k}^{\prime} \vec{q} \overrightarrow{k^{\prime}}} \hat{\vec{k}}_{\vec{k}^{\prime}-\vec{q}, \sigma^{\prime}}^{\dagger} \hat{c}_{\vec{k}+\vec{q}, \sigma}^{\dagger} \hat{c}_{\vec{k}, \sigma} \hat{c}_{\vec{k}^{\prime}, \sigma^{\prime}} . \tag{L100}\\
\left.\mathcal{P}\left(\vec{k} \rightarrow \vec{k}^{\prime}\right)=\int\left(\prod_{l=2}^{4} d \varepsilon_{l} D\left(\varepsilon_{l}\right)\right) \frac{2 \pi}{\hbar} \delta\left(\varepsilon_{1}+\varepsilon_{2}-\varepsilon_{3}-\varepsilon_{4}\right)\left|\left\langle\Psi^{\mathrm{f}}\right| \hat{U}_{\mathrm{int}}\right| \Psi^{\mathrm{i}}\right\rangle\left.\right|^{2} . \tag{L101}\\
\mathcal{P}\left(\vec{k} \rightarrow \vec{k}^{\prime}\right) \propto \int_{2 \varepsilon_{F}-\varepsilon_{1}}^{\varepsilon_{F}} d \varepsilon_{2} \int_{\varepsilon_{F}}^{\varepsilon_{1}+\varepsilon_{2}-\varepsilon_{F}} d \varepsilon_{3} \propto\left(\varepsilon_{1}-\varepsilon_{F}\right)^{2} \propto \tau^{-1} . \tag{L102}
\end{gather*}
$$

Statistical Mechanics of Quasi-Particles

$$
\begin{gather*}
\mathcal{E}[\delta f]=\varepsilon_{0}+\sum_{\vec{k} \sigma} \varepsilon_{\vec{k}}^{(0)} \delta f_{\vec{k}}+\frac{1}{2} \sum_{\substack{\vec{k}, \vec{k}^{\prime} \\
\sigma, \sigma^{\prime}}} \delta f_{\vec{k}} u_{\vec{k} \vec{k}^{\prime}} \delta f_{\vec{k}^{\prime}} \ldots, \tag{L103}\\
\mathcal{E}_{\vec{k}} \equiv \varepsilon_{\vec{k}}^{(0)}+\sum_{\vec{k}^{\prime} \sigma^{\prime}} u_{\vec{k} \vec{k}^{\prime}} \delta f_{\vec{k}^{\prime}} . \tag{L104}\\
f_{\vec{k}}^{(0)} \equiv \theta\left(\varepsilon_{F}-\varepsilon_{\vec{k}}\right) . \tag{L105}\\
N=\sum_{\vec{k} \sigma} f_{\vec{k}} \Rightarrow n=\frac{N}{\mathcal{V}}=\frac{1}{3 \pi^{2}} k_{F}^{3} . \tag{L106}\\
Z_{\mathrm{gr}}=\sum_{\delta n_{\vec{k}_{1}} \cdots \delta n_{\vec{k}_{N}}} \exp \left\{-\beta\left[\sum_{\vec{k} \sigma}\left(\varepsilon_{\vec{k}}^{(0)}-\mu\right) \delta n_{\vec{k}}+\frac{1}{2} \sum_{\substack{\vec{k} k^{\prime} \\
\sigma \sigma^{\prime}}} \delta n_{\vec{k}} u_{\vec{k} \vec{k}^{\prime}} \delta n_{\vec{k}^{\prime}}\right]\right\} . \tag{L107}\\
\delta n_{\vec{k}}=\delta f_{\vec{k}}+\left(\delta n_{\vec{k}}-\delta f_{\vec{k}}\right) \tag{L108}
\end{gather*}
$$

Statistical Mechanics of Quasi-Particles

$$
\begin{align*}
& Z_{\mathrm{gr}}=\sum_{\delta n_{\vec{k}_{1}}=0,1 \ldots} e^{-\beta\left[\sum_{\vec{k} \sigma} \varepsilon_{\vec{k}}^{(0)}-\mu+\sum_{\vec{k}^{\prime} \sigma^{\prime}} u_{\vec{k} \vec{k}^{\prime}} \delta f_{\vec{k}^{\prime}}\right] \delta n_{\vec{k}}+\beta \frac{1}{2} \sum_{\substack{\vec{k} \sigma^{\prime} \\
\sigma \sigma^{\prime}}} \delta f_{\vec{k}} u_{\vec{k} \vec{k}^{\prime}} \delta f_{\vec{k}^{\prime}}} \tag{L109}\\
& =\prod_{\substack{\vec{k} \vec{k}^{\prime} \\
\sigma \sigma^{\prime}}} e^{\frac{1}{2} \beta \delta f_{\vec{k}} u_{\vec{k}^{\prime}} \delta f_{\vec{k}^{\prime}}} \sum_{\delta n_{\vec{k}_{1}} \cdots \vec{k} \sigma} \prod_{\vec{k}} e^{-\beta\left[\varepsilon_{\vec{k}}-\mu\right] \delta n_{\vec{k}}} \tag{L110}\\
& =\prod_{\substack{\vec{k} \vec{k}^{\prime} \\
\sigma \sigma^{\prime}}} e^{\frac{1}{2} \beta \delta f_{\vec{k}} u_{\vec{k} k^{\prime}} \delta f_{\vec{k}^{\prime}}} \prod_{\vec{k} \sigma}\left(1+e^{-\beta\left[\varepsilon_{\vec{k}}-\mu\right] h_{\vec{k}}}\right), \tag{L111}\\
& \delta f_{\vec{k}}=\prod_{\substack{\vec{k} \vec{k}^{\prime} \\
\sigma \sigma^{\prime}}} e^{\frac{1}{2} \beta \delta f_{\vec{k}} u_{\vec{k} \vec{k}^{\prime}} \delta f_{\vec{k}^{\prime}}}\left[\sum_{\delta n_{\vec{k}_{1}}=0,1 \ldots}\right] \delta n_{\vec{k}} \prod_{\overrightarrow{k^{\prime}} \sigma^{\prime}} e^{-\beta\left[\varepsilon_{\vec{k}^{\prime}}-\mu\right] \delta n_{\vec{k}^{\prime}}} / Z_{\mathrm{gr}}, \tag{L112}\\
& \delta f_{\vec{k}}=\frac{h_{\vec{k}}}{e^{\beta h_{\vec{k}}\left(\varepsilon_{\vec{k}}-\mu\right)}+1}=\frac{1}{e^{\beta\left(\varepsilon_{\vec{k}}-\mu\right)}+1}-f_{\vec{k}}^{(0)} . \tag{L113}
\end{align*}
$$

Effective Mass

$$
\begin{gather*}
\left.v_{F} \equiv\left|\frac{\partial \varepsilon_{\vec{k}}}{\partial \hbar \vec{k}}\right|_{k_{F}} \right\rvert\, \equiv \frac{\hbar k_{F}}{m^{\star}} . \\
\vec{J}_{N}=\sum_{\alpha}\langle\Psi| \frac{\hat{P}_{\alpha}}{m}|\Psi\rangle \tag{L115}\\
=\sum_{\vec{k} \sigma} \frac{\vec{k} \hbar}{m} f_{\vec{k}}=\sum_{\vec{k} \sigma} \frac{\vec{k} \hbar}{m} \delta f_{\vec{k}} . \tag{L116}\\
1+\sum_{l} \vec{p} \cdot \frac{\partial}{\partial \hat{P}_{l}}=1+i \sum_{l} \vec{p} \cdot \hat{R}_{l} / \hbar . \tag{L117}\\
{\left[1-i \sum_{l} \vec{p} \cdot \hat{R}_{l} / \hbar\right]\left\{\sum_{l} \frac{\hat{P}_{l}^{2}}{2 m}+\frac{1}{2} \sum_{\beta} \hat{U}_{\mathrm{int}}\left(\hat{R}_{l}, \hat{R}_{\beta}\right)\right\}\left[1+i \sum_{l} \vec{p} \cdot \hat{R}_{l} / \hbar\right]} \tag{L118}\\
=\hat{\mathcal{H}}+\sum_{l} \vec{p} \cdot \frac{\hat{P}_{l}}{m} . \tag{L119}
\end{gather*}
$$

$$
\begin{align*}
& \sum_{\vec{k} \sigma} \varepsilon_{\vec{k}}^{(0)}\left[f_{\vec{k}-d \vec{k}}-f_{\vec{k}}^{(0)}\right]+\frac{1}{2} \sum_{\substack{\vec{k} k^{\prime} \\
\sigma \sigma^{\prime}}}\left[f_{\vec{k}-d \vec{k}}-f_{\vec{k}}^{(0)}\right] u_{\vec{k} \vec{k}^{\prime}}\left[f_{\vec{k}^{\prime}-d \vec{k}}-f_{\overrightarrow{k^{\prime}}}^{(0)}\right] \tag{L120}\\
= & d \vec{k} \cdot \sum_{\vec{k} \sigma} f_{\vec{k}} \frac{\partial \varepsilon_{\vec{k}}}{\partial \vec{k}}+\sum_{\vec{k} \sigma} \varepsilon_{\vec{k}}^{(0)} \delta f_{\vec{k}}+\frac{1}{2} \sum_{\substack{\vec{k} k^{\prime} \\
\sigma \sigma^{\prime}}} \delta f_{\vec{k}} u_{\vec{k} k^{\prime}} \delta f_{\vec{k}^{\prime}} . \tag{L121}
\end{align*}
$$

$$
\begin{equation*}
\vec{J}_{N}=\sum_{\vec{k} \sigma} v_{\vec{k}} f_{\vec{k}} \tag{L122}
\end{equation*}
$$

with

$$
\begin{equation*}
\vec{v}_{k}=\frac{\partial \varepsilon_{\vec{k}}}{\partial \hbar \vec{k}} . \tag{L123}
\end{equation*}
$$

$$
\begin{align*}
\vec{J}_{N} & =\sum_{\vec{k} \sigma} \frac{\partial \varepsilon_{\vec{k}}^{(0)}}{\partial \hbar \vec{k}} f_{\vec{k}}+\sum_{\substack{\vec{k} k^{\prime} \\
\sigma \sigma^{\prime}}} f_{\vec{k}} \frac{\partial}{\partial \hbar \vec{k}} u_{\vec{k} \vec{k}^{\prime}} \delta f_{\vec{k}^{\prime}} \tag{L124}\\
& =\sum_{\vec{k} \sigma} \frac{\partial \varepsilon_{\vec{k}}^{(0)}}{\partial \hbar \vec{k}} \delta f_{\vec{k}}+\sum_{\substack{\vec{k} k^{\prime} \\
\sigma \sigma^{\prime}}}\left[\delta f_{\vec{k}}+f_{\vec{k}}^{(0)}\right] \frac{\partial}{\partial \hbar \vec{k}} u_{\overrightarrow{\vec{k}} \vec{k}^{\prime}} \delta f_{\vec{k}^{\prime}} \tag{L125}\\
& =\sum_{\vec{k} \sigma} \frac{\partial \varepsilon_{\vec{k}}}{\partial \hbar \vec{k}} \delta f_{\vec{k}}-\sum_{\substack{\overrightarrow{k k}^{\prime} \\
\sigma \sigma^{\prime}}} \frac{\partial f_{\vec{k}}^{(0)}}{\partial \hbar \vec{k}} u_{\vec{k} \vec{k}^{\prime}} \delta f_{\vec{k}^{\prime}} \tag{L126}\\
& =\sum_{\vec{k} \sigma} \vec{v}_{\vec{k}} \delta f_{\vec{k}}+\sum_{\substack{\vec{k} \vec{k}^{\prime} \\
\sigma \sigma^{\prime}}} u_{\vec{k} \vec{k}^{\prime}} \overrightarrow{\vec{k}}_{\vec{k}^{\prime}} \delta\left(\varepsilon_{\vec{k}^{\prime}}^{(0)}-\mathcal{E}_{F}\right) \delta f_{\vec{k}} \tag{L127}\\
\frac{\hbar \vec{k}}{m} & =\vec{v}_{\vec{k}}+\sum_{\vec{k}^{\prime} \sigma^{\prime}} u_{\vec{k} \vec{k}^{\prime}} \vec{v}_{\vec{k}^{\prime}} \delta\left(\varepsilon_{\vec{k}^{\prime}}^{(0)}-\mathcal{E}_{F}\right) \tag{L128}
\end{align*}
$$

$$
\begin{align*}
& =\frac{\hbar \vec{k}}{m^{\star}}+\sum_{\overrightarrow{k^{\prime}} \sigma^{\prime}} u_{\vec{k} \vec{k}^{\prime}} \frac{\overrightarrow{k^{\prime}}}{m^{\star}} \delta\left(\mathcal{E}_{\overrightarrow{k^{\prime}}}^{(0)}-\mathcal{E}_{F}\right) \tag{L129}\\
\frac{m^{\star}}{m} & =1+\sum_{\overrightarrow{\vec{k}^{\prime}} \sigma^{\prime}} u_{\vec{k} k^{\prime}} \frac{\vec{k}^{\prime} \cdot \vec{k}}{k_{F}^{2}} \delta\left(\mathcal{E}_{\vec{k}^{\prime}}^{(0)}-\mathcal{E}_{F}\right) \tag{L130}\\
& =1+\nu \int d k^{\prime} D_{\vec{k}^{\prime}} d \Sigma \delta\left(\varepsilon_{\overrightarrow{k^{\prime}}}^{(0)}-\varepsilon_{F}\right) u_{\vec{k} k^{\prime}} \hat{k} \cdot \hat{k}^{\prime} \tag{L131}\\
& =1+\nu \int d \Sigma \frac{D\left(\mathcal{E}_{F}\right)}{4 \pi} u_{\vec{k} \vec{k}^{\prime}} \cos \theta \tag{L132}\\
& =1+v D\left(\mathcal{E}_{F}\right) \frac{1}{2} \int_{-1}^{1} d(\cos \theta) u_{\vec{k} k^{\prime}} \cos \theta . \tag{L133}
\end{align*}
$$

Specific Heat

$$
\begin{gather*}
C_{\mathcal{V}}=\left.\frac{\partial \mathcal{E}}{\partial T}\right|_{\mathcal{V}}=\frac{\partial}{\partial T}\left[\sum_{\vec{k} \sigma} \mathcal{E}_{\vec{k}}^{(0)} \delta f_{\vec{k}}+\frac{1}{2} \sum_{\substack{\vec{k}^{\prime} \\
\sigma \sigma^{\prime}}} \delta f_{\vec{k}} u_{\vec{k} \vec{k}^{\prime}} \delta f_{\vec{k}^{\prime}}\right] \tag{L134}\\
=\sum_{\vec{k} \sigma} \mathcal{E}_{\vec{k}} \frac{\partial \delta f_{\vec{k}}}{\partial T} . \tag{L135}\\
\begin{aligned}
& \frac{\partial \delta f_{\vec{k}}}{\partial T}=\frac{h_{\vec{k}} e^{\beta h_{\vec{k}}\left(\varepsilon_{\vec{k}}-\mu\right)}}{\left[e^{h_{\vec{k}} \beta\left(\varepsilon_{\vec{k}}-\mu\right)}+1\right]^{2}}\left\{\frac{h_{\vec{k}}}{k_{B} T^{2}}\left(\varepsilon_{\vec{k}}-\mu\right)-\frac{h_{\vec{k}}}{k_{B} T} \sum_{\vec{k}^{\prime} \sigma^{\prime}} u_{\vec{k} \vec{k}^{\prime}} \frac{\partial \delta f_{\vec{k}^{\prime}}}{\partial T}+\frac{h_{\vec{k}}}{k_{B} T} \frac{\partial \mu}{\partial T}\right\} . \\
& C_{v}=\nu \int[d \vec{k}] \frac{1}{k_{B} T^{2}}\left(\varepsilon_{\vec{k}}-\mu\right)^{2} \frac{e^{\beta\left(\varepsilon_{\vec{k}}-\mu\right)}}{\left[e^{\beta\left(\mathcal{E}_{\vec{k}}-\mu\right)}+1\right]^{2}} \\
&=\nu \int d \mathcal{E} D(\mathcal{E}) \frac{1}{k_{B} T^{2}}(\mathcal{E}-\mu)^{2} \frac{e^{\beta(\mathcal{E}-\mu)}}{\left[e^{\beta(\mathcal{E}-\mu)}+1\right]^{2}} \\
& \Rightarrow c_{\mathcal{V}}=\frac{\pi^{2}}{3} k_{B}^{2} T D\left(\mathcal{E}_{F}\right) .
\end{aligned} \tag{L136}\\
\hline \tag{L137}
\end{gather*}
$$

Specific Heat

$$
\begin{equation*}
D\left(\mathcal{E}_{F}\right)=\int[d \vec{k}] \delta\left(\mathcal{E}_{F}-\mathcal{E}_{\vec{k}}\right)=\int d \varepsilon \frac{k^{2} \delta\left(\mathcal{E}_{F}-\varepsilon\right)}{\pi^{2} \hbar\left|\partial \varepsilon_{\vec{k}} / \partial \hbar \vec{k}\right|}=\frac{k_{F}^{2}}{\pi^{2} \hbar v_{F}}=\frac{m^{\star} k_{F}}{\pi^{2} \hbar^{2}}, \tag{L140}
\end{equation*}
$$

Fermi Liquid Parameters

$$
\begin{gather*}
u_{\vec{k} \uparrow \vec{k}^{\prime} \uparrow}=u_{\vec{k} \downarrow \vec{k}^{\prime} \downarrow}=u_{\vec{k} \vec{k}^{\prime}}^{s}+u_{\vec{k} \vec{k}^{\prime}}^{a} \tag{L141}\\
u_{\vec{k} \uparrow \vec{k}^{\prime} \downarrow}=u_{\vec{k} \downarrow \vec{k}^{\prime} \uparrow}=u_{\vec{k} \vec{k}^{\prime}}^{s}-u_{\vec{k} \vec{k}^{\prime}}^{a}, \tag{L142}\\
u_{\vec{k} \vec{k}^{\prime}}^{s}=\sum_{l=0}^{\infty} u_{l}^{s} P_{l}(\cos \theta) \tag{L143}\\
u_{\vec{k} \vec{k}^{\prime}}^{a}=\sum_{l=0}^{\infty} u_{l}^{a} P_{l}(\cos \theta) . \tag{L144}\\
u_{l}^{s}=\frac{2 l+1}{2} \int_{-1}^{1} d(\cos \theta) P_{l}(\cos \theta) \frac{u_{\vec{k} \uparrow \vec{k}^{\prime} \uparrow}+u_{\vec{k} \uparrow \vec{k}^{\prime} \downarrow}^{2}}{2} \tag{L145}\\
u_{l}^{a}=\frac{2 l+1}{2} \int_{-1}^{1} d(\cos \theta) P_{l}(\cos \theta) \frac{u_{\vec{k} \uparrow \vec{k}^{\prime} \uparrow}-u_{\vec{k} \uparrow \vec{k}^{\prime} \downarrow}^{2}}{2} \tag{L146}\\
F_{l}^{a} \equiv V_{D}\left(\varepsilon_{F}\right) u_{l}^{a}, \quad F_{l}^{s} \equiv \nu D\left(\mathcal{E}_{F}\right) u_{l}^{s} \tag{L147}
\end{gather*}
$$

Fermi Liquid Parameters

$$
\begin{align*}
& \mathcal{V D}\left(\varepsilon_{F}\right) \frac{1}{2} \int_{-1}^{1} d(\cos \theta) \cos \theta u_{\vec{k} \vec{k}^{\prime}} \tag{L148}\\
&=\left(\frac{1}{3}\right)\left(\frac{3}{2}\right) \int_{-1}^{1} d(\cos \theta) P_{1}(\cos \theta) v D\left(\mathcal{E}_{F}\right) \frac{u_{\vec{k} \uparrow \vec{k}^{\prime} \uparrow}+u_{\vec{k} \uparrow \vec{k}^{\prime} \downarrow}}{2} \tag{L149}\\
&= \frac{1}{3} F_{1}^{s} . \tag{L150}\\
& \frac{m^{\star}}{m}=1+\frac{1}{3} F_{1}^{s} . \tag{L151}
\end{align*}
$$

Traveling Waves

$$
\begin{equation*}
c^{2}=\left.\frac{\partial P}{\partial \rho}\right|_{S} \tag{L152}
\end{equation*}
$$

$$
\begin{align*}
c^{2} & =\left.\frac{\mathcal{V}}{m} \frac{\partial P}{\partial N}\right|_{T \mathcal{V}}=-\frac{\mathcal{V}}{m} \frac{\partial}{\partial N} \frac{\partial F}{\partial \mathcal{V}}=\left.\frac{-\mathcal{V}}{m} \frac{\partial \mu}{\partial \mathcal{V}}\right|_{N} \tag{L153}\\
& =\left.\frac{N}{m} \frac{\partial \mu}{\partial N}\right|_{\mathcal{V}}=\frac{N}{m} \frac{\partial^{2} F}{\partial N^{2}} \tag{L154}
\end{align*}
$$

$$
\begin{align*}
\delta f_{\vec{k}} & =\theta\left(\mu-\varepsilon_{\vec{k}}\right)-\theta\left(\mathcal{E}_{F}-\left.\mathcal{E}_{\vec{k}}\right|_{\mu=\varepsilon_{F}}\right) \tag{L155}\\
\Rightarrow \frac{\partial \delta f_{\vec{k}}}{\partial \mu} & =\delta\left(\varepsilon_{\vec{k}}-\mu\right)\left(1-\frac{\partial \varepsilon_{\vec{k}}}{\partial \mu}\right) \tag{L156}\\
& =\delta\left(\varepsilon_{\vec{k}}-\mu\right)\left[1-\sum_{\vec{k}^{\prime} \sigma^{\prime}} u_{\vec{k} \vec{k}^{\prime}} \frac{\partial \delta f_{\vec{k}^{\prime}}}{\partial \mu}\right] . \tag{L157}
\end{align*}
$$

$$
\begin{equation*}
A=\sum_{\vec{k}^{\prime} \sigma^{\prime}} u_{\vec{k} k^{\prime}} \frac{\partial \delta f_{\vec{k}^{\prime}}}{\partial \mu} \tag{L158}
\end{equation*}
$$

$$
\begin{align*}
A & =\int\left[d \vec{k}^{\prime}\right] u_{\vec{k} \vec{k}^{\prime}} \delta\left(\varepsilon_{\vec{k}^{\prime}}-\mu\right)(1-A) \tag{L159}\\
& =B(1-A), \quad \text { where } B=\sum_{\vec{k}^{\prime} \sigma^{\prime}} u_{\overrightarrow{k^{\prime}}} \delta\left(\varepsilon_{\vec{k}^{\prime}}-\mu\right)=F_{0}^{s} \tag{L160}\\
\Rightarrow A & =\frac{B}{1+B}=\frac{F_{0}^{s}}{1+F_{0}^{s}} . \tag{L161}
\end{align*}
$$

$$
\begin{align*}
\frac{\partial N}{\partial \mu} & =\sum_{\vec{k} \sigma} \frac{\partial \delta f_{\vec{k}}}{\partial \mu} \tag{L162}\\
& =\sum_{\vec{k} \sigma} \delta\left(\varepsilon_{\vec{k}}-\mu\right)(1-A) \tag{L163}\\
& =v D\left(\varepsilon_{F}\right) \frac{1}{1+F_{0}^{s}} \tag{L164}
\end{align*}
$$

$$
\begin{gather*}
\Rightarrow c=\sqrt{\frac{n}{m D\left(\varepsilon_{F}\right)}\left(1+F_{0}^{s}\right)} \\
=v_{F} \sqrt{\frac{m^{\star}}{3 m}\left(1+F_{0}^{s}\right) .} \\
\frac{\partial \delta f_{\overrightarrow{r k}}}{\partial t}+\vec{v}_{\vec{k}} \cdot \frac{\partial}{\partial \vec{r}}\left\{\delta f_{\overrightarrow{r k}}-\frac{\partial f_{\vec{k}}^{(0)}}{\partial \varepsilon_{\vec{k}}} \varepsilon_{\vec{r}{ }^{\prime}}\right\}=\left.\frac{d g}{d t}\right|_{\text {coll. }} . \\
\left(\omega-\vec{q} \cdot \vec{v}_{\vec{k}}\right) \delta f_{\vec{k}}-\delta\left(\varepsilon_{\vec{k}}-\varepsilon_{F}\right) \vec{q} \cdot \vec{v}_{\vec{k}}\left(\sum_{\vec{k}^{\prime} \sigma^{\prime}} u_{\vec{k} \vec{k}^{\prime}} \delta f_{\vec{k}^{\prime}}\right)=0 . \tag{L168}\\
\phi_{\vec{k}} \delta\left(\mathcal{E}_{F}-\varepsilon_{\vec{k}}\right)=\delta f_{\vec{k}} . \tag{L169}\\
{\left[\omega-\vec{q} \cdot \vec{r}_{\vec{k}}\right] \phi_{\vec{k}}-\vec{q} \cdot \vec{v}_{\vec{k}} \sum_{\vec{k}^{\prime} \sigma^{\prime}} u_{\vec{k} k^{\prime}} \phi_{\vec{k}^{\prime}}=0 .} \tag{L170}
\end{gather*}
$$

Traveling Waves

$$
\begin{align*}
& {\left[\omega-\vec{q} \cdot \vec{v}_{\vec{k}}\right] \phi_{\vec{k}}-\vec{q} \cdot \vec{v}_{\vec{k}} F_{0}^{s} \int \frac{d \Sigma}{4 \pi} \phi_{\vec{k}^{\prime}}=0 . } \tag{L171}\\
\Rightarrow \phi_{\vec{k}}= & \frac{\vec{q} \cdot \vec{v}_{\vec{k}}}{\omega-\vec{q} \cdot \vec{v}_{\vec{k}}} F_{0}^{s} \int \frac{d \Sigma}{4 \pi} \phi_{\vec{k}^{\prime}} . \tag{L172}\\
\phi(\cos \theta)= & \sum_{l=0}^{\infty} P_{l}(\cos \theta) \phi_{l} \tag{L173}\\
\Rightarrow \phi(\cos \theta)= & -\left[1-\frac{\omega}{\omega-q v_{F} \cos \theta}\right] F_{0}^{s} \phi_{0} \tag{L174}\\
\Rightarrow \phi_{0}= & -F_{0}^{s} \phi_{0} \frac{1}{2} \int_{-1}^{1} d(\cos \theta)\left[1-\frac{\omega}{\omega-q v_{F} \cos \theta}\right] \tag{L175}\\
= & -F_{0}^{s} \phi_{0}\left[1+\frac{1}{2} \frac{\omega}{q v_{F}} \ln \left(\frac{\omega-q v_{F}}{\omega+q v_{F}}\right)\right] \tag{L176}\\
\Rightarrow & 1+F_{0}^{s}\left[1+\frac{1}{2} \frac{\omega}{q v_{F}} \ln \left(\frac{\omega-q v_{F}}{\omega+q v_{F}}\right)\right]=0 . \tag{L177}
\end{align*}
$$

Traveling Waves

$$
\begin{equation*}
\left\{F_{0}^{s}\left(1+\frac{1}{3} F_{1}^{s}\right)+\left(\frac{\omega}{q v_{F}}\right)^{2} F_{1}^{s}\right\}\left[1+\frac{1}{2} \frac{\omega}{q v_{F}} \ln \left(\frac{\omega-q v_{F}}{\omega+q v_{F}}\right)\right]+1+\frac{F_{1}^{s}}{3}=0 . \tag{L178}
\end{equation*}
$$

Comparison with Experiment in ${ }^{3} \mathrm{He}$

$P($ bar $)$	F_{0}^{s}	F_{1}^{s}	F_{0}^{a}	F_{1}^{a}	m^{\star} / m	$v_{F}\left(\mathrm{~m} \mathrm{~s}^{-1}\right)$
0	9.15	5.27	-0.700	-0.55	2.76	59.7
3	15.83	6.40	-0.725	-0.73	3.13	54.3

Figure 8: [Source: Abel et al. (1966), p. 76.]

