Optical Properties of Insulators

Definitions

Polarization

Optical Modes

Polaritons

Polarons

Point Defects

Color Centers

- Electron Spin Resonance
- Franck–Condon Effect
- Urbach Tails

Polarization

Figure 1: Ambiguity of dielectric

Ferroelectrics

Figure 2: Measuring the spontaneous electric polarization of a sample.

Clausius–Mossotti Relation

Figure 3: A dielectric sphere placed in a uniform electric field \vec{E}_0 .

Clausius–Mossotti Relation

$$\vec{E}_1 = -\sum_{\vec{R}\neq 0} \vec{\nabla}_{\vec{R}} \frac{\vec{p} \cdot \vec{R}}{R^3} = \sum_{\vec{R}\neq 0} 3 \frac{\vec{R}(\vec{R} \cdot \vec{p})}{R^5} - \frac{\vec{p}}{R^3}$$
(L2)

$$\vec{p} = \alpha \vec{E}_{\text{cell}} \Rightarrow \vec{p} = \alpha \vec{E}_0.$$
 (L3)

$$\vec{P} = n\alpha \vec{E}_0. \tag{L4}$$

$$\frac{E+4\pi P}{E} = ? ? (L5)$$

$$\Rightarrow \epsilon = ? ?. (L6)$$

$$\vec{E} = \vec{E}_0 - N\vec{P}, (L7)$$

21st September 2003 © 2003, Michael Marder

$$\vec{E}_{cell} = \vec{E}_0 - N\vec{P} + \frac{4\pi}{3}\vec{P} = \vec{E} + \frac{4\pi}{3}\vec{P} \qquad (L8)$$

$$\Rightarrow \vec{E}_{cell} = \frac{4\pi}{3}\frac{\epsilon+2}{\epsilon-1}\vec{P} \qquad (L9)$$

$$= \frac{4\pi}{3}\frac{\epsilon+2}{\epsilon-1}n\alpha\vec{E}_{cell} \qquad (L10)$$

$$\Rightarrow \alpha = \frac{3}{4\pi n}\left(\frac{\epsilon-1}{\epsilon+2}\right) \qquad (L11)$$

$$\Rightarrow \epsilon = \frac{3 + 8\pi n\alpha}{3 - 4\pi n\alpha}.$$
 (L12)

Optical Modes in Ionic Crystals

$$\vec{u} = \vec{u}_1 - \vec{u}_2 \tag{L13}$$

$$\bar{\omega} \equiv \sqrt{\frac{2\mathcal{K}}{M}}, \text{ where } M = \frac{M_1 M_2}{(M_1 + M_2)}.$$
 (L14)

$$M\ddot{\vec{u}} = -M\bar{\omega}^2\vec{u} - M\dot{\vec{u}}/\tau + e^{\star}\vec{E}_{\text{cell}}.$$
 (L15)

$$\Rightarrow \vec{u} = -\frac{e^{\star}}{M(\omega^2 - \bar{\omega}^2 + i\omega/\tau)} \vec{E}_{\text{cell}}.$$
 (L16)

$$\vec{p} = e^* \vec{u} + \alpha^\infty \vec{E}_{\text{cell}}.$$
(L17)

$$\vec{P} = n \left[\frac{(e^{\star})^2}{M(\bar{\omega}^2 - \omega^2 - i\omega/\tau)} + \alpha^{\infty} \right] \vec{E}_{cell}$$
(L18)
$$\Rightarrow \frac{3}{4\pi} \frac{\epsilon(\omega) - 1}{\epsilon(\omega) + 2} = n \left[\frac{(e^{\star})^2}{M(\bar{\omega}^2 - \omega^2 - i\omega/\tau)} + \alpha^{\infty} \right].$$
(L19)

Optical Modes in Ionic Crystals

$$\alpha^{\infty} = \frac{3}{4\pi n} \left(\frac{\epsilon^{\infty} - 1}{\epsilon^{\infty} + 2} \right).$$
 (L20)

$$\vec{u} = \frac{e^{\star}\vec{E}_{\text{cell}}}{M\bar{\omega}^2} \tag{L21}$$

$$(e^{\star})^2 = \frac{9M\bar{\omega}^2}{4\pi n} \left(\frac{\epsilon^0 - \epsilon^\infty}{(\epsilon^0 + 2)(\epsilon^\infty + 2)}\right). \tag{L22}$$

$$\epsilon(\omega) = \epsilon^{\infty} + \frac{\epsilon^{\infty} - \epsilon^{0}}{\left(\frac{\omega^{2}}{\bar{\omega}^{2}} + i\frac{\omega}{\tau\bar{\omega}^{2}}\right) \left(\frac{\epsilon^{0} + 2}{\epsilon^{\infty} + 2}\right) - 1}.$$
 (L23)

Figure 4: Dielectric function for CdS, deduced from reflection data by Balkanski (1972).

$$\omega_T^2 = \bar{\omega}^2 \left(\frac{\epsilon^\infty + 2}{\epsilon^0 + 2}\right)$$
(L24)
$$\omega_L^2 = \omega_T^2 \left[\frac{\epsilon^0}{\epsilon^\infty}\right]$$
(L25)
$$(\omega_L^2) = \omega_T^2 \left[\frac{\omega^2 + i\omega/\tau - \omega_L^2}{\omega_L^2}\right]$$
(L26)

$$\Rightarrow \epsilon(\omega) = \epsilon^{\infty} \left[\frac{\omega^2 + i\omega/\tau - \omega_{\rm L}^2}{\omega^2 + i\omega/\tau - \omega_{\rm T}^2} \right].$$
(L26)

$$\frac{\omega^2 \epsilon(\omega)}{c^2} = q^2, \tag{L27}$$

$$\epsilon(\omega) = 0. \tag{L28}$$

Figure 5: Frequency ω of transverse waves as a function of complex wave vector q.

Compound	ϵ^{∞}	ϵ^0	$\frac{\omega_{\rm T}}{2\pi c}$ (cm ⁻¹)	$\frac{\omega_{\rm L}}{2\pi c}$ (cm ⁻¹)	$\frac{m^{\star}}{m}$	$lpha_{ m p}$	$\frac{m^{\star}}{m}\left(1+\frac{\alpha_{\rm p}}{6}\right)$	$\frac{m_{\text{pol}}^{\star}}{m}$
LiF	1 93	8.50	318	667				
LiH	3.60	12.90	590	1116				
NaF	1.75	4.73	262	431				
NaI	3.08	6.60	124	182				
KE	1.86	5 1 1	202	331				
KI KI	2.68	J.11 4.68	102	144	0 325	2 51	0.461	0.540
ιχι	2.00	4.00	102	144	0.525	2.31	0.401	0.540
RbF	1.94	5.99	163	286				
RbI	2.61	4.55	76	108	0.368	3.16	0.562	0.720
a b			101					
CsF	2.17	7.27	134	245				
CsCl	2.67	6.68	107	168				
CsBr	2.83	6.38	78	118				
CsI	3.09	6.32	66	94	0.420	3.67	0.677	0.960
GaAs	10.90	12.83	273	296	0.066	0.07	0.067	0.066
GaSb	14.40	15.69	231	240	0.047	0.03	0.047	0.047
GaP	8.46	10.28	365	403	0.338	0.20	0.349	0.350
InAs	11.80	14.61	219	243	0.023	0.05	0.023	0.023
InSb	15.68	17.88	185	197	0.014	0.02	0.014	0.013
ing c	10100	11100	100		01011	0.02	0.011	0.010
CdS	5.27	8.42	244	308	0.155	0.53	0.169	0.170
CdSe	6.10	9.30	174	214	0.130	0.46	0.140	0.140
CdTe	7.21	10.23	141	168	0.091	0.32	0.096	0.096
ZnS	5.14	8	282	352	0.280	0.65	0.310	0.313
ZnSe	5.90	8.33	207	246	0.171	0.43	0.183	0.184
7nTa	7 79	0.86	177	205	0.160	0.22	0 160	0 160
	1.20	9.00 9.15	1 / / / 1 /	203	0.100	0.55	0.109	0.109
Dhs	4	0.15 100	414 67	391 214	0.240	0.85	0.274	0.279
rus DhSa	10.30	190	07	∠14 147	0.082	0.52	0.000	0.007
ruse DhTa	25.20	280 450	44	14/	0.047	0.21	0.049	0.049
ruie	30.90	430	32	110	0.034	0.15	0.055	0.055

$$\vec{P} = n[e^{\star}\vec{u} + \alpha^{\infty}\vec{E}_{\text{cell}}].$$
(L29)

$$\vec{E} = -4\pi\vec{P},\tag{L30}$$

$$\vec{E}_{\text{cell}} = \frac{2}{3}\vec{E} = -\frac{8\pi}{3}\vec{P} \qquad (L31)$$
$$\vec{R} = \frac{ne^{\star}}{3}\vec{P} \qquad (L31)$$

$$\Rightarrow \vec{P} = \frac{ne}{1 + n\alpha^{\infty} 8\pi/3} \vec{u}.$$
 (L32)

$$\frac{ne^{\star}}{1+n\alpha^{\infty}8\pi/3} = n\frac{\sqrt{\frac{9M\bar{\omega}^2}{4\pi n}}\frac{\epsilon^0-\epsilon^{\infty}}{(\epsilon^0+2)(\epsilon^{\infty}+2)}}{1+2(\epsilon^{\infty}-1)/(\epsilon^{\infty}+2)}$$
(L33)
$$= \sqrt{\frac{M\omega_{\rm L}^2n}{4\pi}\left(\frac{1}{\epsilon^{\infty}}-\frac{1}{\epsilon^0}\right)}.$$
(L34)

21st September 2003 © 2003, Michael Marder

$$\vec{P} = \beta \vec{u},$$
 (L35)

$$\beta = \sqrt{\frac{M\omega_L^2 n}{4\pi} \left(\frac{1}{\epsilon^{\infty}} - \frac{1}{\epsilon^0}\right)}.$$
 (L36)

$$\hat{U}_{\rm el-phon} = e \int d\vec{r}' \, \vec{P}(\vec{r}') \cdot \nabla_{\vec{r}'} \frac{1}{|\hat{R} - \vec{r}'|}.$$
(L37)

$$\hat{U}_{el-phon} = e\beta \int d\vec{r}' \sqrt{\frac{\hbar}{2M\omega_L N}} \sum_{\vec{k}} \frac{\vec{k}}{k} \cdot \left[\nabla_{\vec{r}'} \frac{1}{|\vec{r}' - \hat{R}|} \right] \left[e^{i\vec{k}\cdot\vec{r}'} \hat{a}_{\vec{k}} + e^{-i\vec{k}\cdot\vec{r}'} \hat{a}_{\vec{k}}^{\dagger} \right] \quad (L38)$$

$$= -e\beta \int d\vec{r}' \sqrt{\frac{\hbar}{2M\omega_L N}} \sum_{\vec{k}} \frac{i\vec{k}\cdot\vec{k}}{k} \frac{1}{|\vec{r}' - \hat{R}|} \left[e^{i\vec{k}\cdot\vec{r}'} \hat{a}_{\vec{k}} - e^{-i\vec{k}\cdot\vec{r}'} \hat{a}_{\vec{k}}^{\dagger} \right]. \quad (L39)$$

$$\hat{U}_{\text{el-phon}} = e\beta 4\pi i \sum_{\vec{k}} \sqrt{\frac{\hbar}{2M\omega_L N}} \frac{1}{k} \left[e^{-i\vec{k}\cdot\hat{R}} \hat{a}_{\vec{k}}^{\dagger} - e^{i\vec{k}\cdot\hat{R}} \hat{a}_{\vec{k}} \right].$$
(L40)

21st September 2003 © 2003, Michael Marder

$$\alpha_{\rm p} \equiv \frac{e^2}{2} \sqrt{\frac{2m^{\star}\omega_L}{\hbar}} \frac{1}{\hbar\omega_L} \left(\frac{1}{\epsilon^{\infty}} - \frac{1}{\epsilon^0}\right) = 1.44 \cdot 10^8 \left(\frac{1}{\epsilon^{\infty}} - \frac{1}{\epsilon^0}\right) \sqrt{\frac{m^{\star}/m}{\omega_{\rm L} \cdot \rm s}}.$$
 (L41)

$$\hat{U}_{\text{el-phon}} = i\sqrt{4\pi\alpha_{\text{p}}} \frac{1}{\sqrt{\mathcal{V}}} \left(\frac{\hbar^{5}\omega_{L}^{3}}{2m^{\star}}\right)^{1/4} \sum_{\vec{k}} \frac{1}{k} \left[e^{-i\vec{k}\cdot\hat{R}}\hat{a}_{\vec{k}}^{\dagger} - e^{i\vec{k}\cdot\hat{R}}\hat{a}_{\vec{k}}\right].$$
(L42)

$$\hat{U}_{\rm el-phon} = \sum_{\vec{q}\vec{q}'} \hat{c}^{\dagger}_{\vec{q}'} \langle \vec{q}' | \hat{U}_{\rm el-phon} | \vec{q} \rangle \hat{c}_{\vec{q}}$$
(L43)

$$\hat{U}_{\rm el-phon} = i\sqrt{4\pi\alpha_{\rm p}} \frac{1}{\sqrt{\mathcal{V}}} \left(\frac{\hbar^5 \omega_L^3}{2m^*}\right)^{1/4} \sum_{\vec{q}''\vec{k}} \frac{1}{k} [\hat{c}^{\dagger}_{\vec{q}''-\vec{k}} \hat{c}_{\vec{q}''} \hat{a}^{\dagger}_{\vec{k}} - \hat{c}^{\dagger}_{\vec{q}''+\vec{k}} \hat{c}_{\vec{q}''} \hat{a}_{\vec{k}}].$$
(L44)

$$\Delta \mathcal{E}^{(2)} = \sum_{\Phi'\vec{q}'} \frac{|\langle \vec{q} | \langle \Phi_0 | \hat{U}_{el-phon} | \Phi' \rangle | \vec{q}' \rangle|^2}{\mathcal{E}(\vec{q}, \Phi_0) - \mathcal{E}(\vec{q}', \Phi')}.$$
 (L45)

$$\Delta \mathcal{E}^{(2)} = 4\pi \alpha_{\rm p} \frac{1}{\mathcal{V}} \sqrt{\frac{\hbar^5 \omega_{\rm L}^3}{2m^{\star}}} \sum_{\vec{q}'} \frac{1}{|\vec{q} - \vec{q}'|^2} \left[\frac{1}{\frac{\hbar^2 q^2}{2m^{\star}} - \left(\frac{\hbar^2 {q'}^2}{2m^{\star}} + \hbar \omega_{\rm L}\right)} \right]$$
(L46)

$$= 4\pi \alpha_{\rm p} \frac{1}{\mathcal{V}} \sqrt{\frac{\hbar^5 \omega_{\rm L}^3}{2m^{\star}}} \int dq' \frac{d(\cos\theta)}{(2\pi)^3} \frac{2\pi \mathcal{V}}{\frac{\hbar^2 q^2}{2m^{\star}} - \left(\frac{\hbar^2 |\vec{q}' + \vec{q}|^2}{2m^{\star}} + \hbar \omega_{\rm L}\right)}$$
(L47)

$$= \frac{\alpha_{\rm p}}{\pi} \sqrt{\frac{\hbar^5 \omega_{\rm L}^3}{2m^{\star}}} \int_{-1}^{1} ds \int_{0}^{\infty} dq' \frac{1}{\frac{\hbar^2 q^2}{2m^{\star}} - \left(\frac{\hbar^2 (q'^2 + q^2 + 2qq's)}{2m^{\star}} + \hbar \omega_{\rm L}\right)}$$
(L48)
$$= -\alpha_{\rm p} \sqrt{m^{\star} \hbar \omega_{\rm L}^3} \frac{\sqrt{2}}{q} \sin^{-1} \sqrt{\frac{\hbar^2 q^2}{2m^{\star} \hbar \omega_{\rm L}}}.$$
(L49)

$$\Delta \mathcal{E}^{(2)} = -\alpha_{\rm p} \hbar \omega_{\rm L} - \alpha_{\rm p} \frac{\hbar^2 q^2}{12m^{\star}}.$$
(L50)

21st September 2003 © 2003, Michael Marder

$$\frac{m_{\rm pol}^{\star}}{m^{\star}} = 1 + \frac{\alpha_{\rm p}}{6}$$
. Table of data.

$$\Delta \mathcal{E}^{(2)} = -\alpha_{\rm p} \sqrt{m^{\star} \hbar \omega_{\rm L}^3} \frac{\sqrt{2}}{q} \left[\pi/2 + i \cosh^{-1} \sqrt{\frac{\hbar^2 q^2}{2m^{\star} \hbar \omega_{\rm L}}} \right].$$
(L51)

$$\exp\left[-\frac{i}{\hbar}(\mathcal{E}^{(0)}+\Delta\mathcal{E}^{(2)})t\right],\tag{L52}$$

$$\exp\left[\frac{2}{\hbar}\operatorname{Im}(\Delta\mathcal{E}^{(2)})t\right].$$
(L53)

$$2\alpha_{\rm p}\sqrt{m^{\star}\hbar\omega_{\rm L}^{3}}\frac{\sqrt{2}}{\hbar q}\cosh^{-1}\sqrt{\frac{\hbar^{2}q^{2}}{2m^{\star}\hbar\omega_{\rm L}}}.$$
 (L54)

Vacancies

Crystal	Cohesive Energy \mathcal{E}/N	Vacancy Energy		
	(eV)	(eV)		
Na	1.16	0.42		
Au	3.8	0.97		
Al	3.4	0.76		
Pt	5.3	1.4		
Ne	0.021	0.020		
Kr	0.11	0.077		
Ge	3.9	2.0		

F Centers

Figure 6: The F center is a halogen ion vacancy that has trapped an electron.

F Centers

Compound	\mathcal{E}_{abs} (eV)	\mathcal{E}_{em} (eV)	Compound	\mathcal{E}_{abs} (eV)	\mathcal{E}_{em} (eV)
NaF	3.72	1.67	RbCl	2.05	1.09
NaCl	2.77	0.98	RbBr	1.86	0.87
KF	2.85	1.66	RbI	1.71	0.81
KCl	2.31	1.22	CsF	1.89	1.42
KBr	2.06	0.92	CsCl	2.17	1.26
KI	1.87	0.83	CsBr	1.96	0.91
RbF	2.43	1.33	CsI	1.68	0.74

Electron Spin Resonance and Electron Nuclear Double Resonance

Figure 7: Electron spin resonance in RbCl F centers at a temperature of 90 K. [Source: Pick (1972)]

$$\vec{B} = \vec{B}_0 + \sum_l \vec{B}_l,\tag{L55}$$

Electron Spin Resonance and Electron Nuclear Double Resonance

Figure 8: Electron density versus distance from vacancy center [Seidel and Wolf (1968)]

Color Centers

Figure 9: The F_2 or M center.

Color Centers

Figure 10: F₃ center [Lüty (1961)]

Franck–Condon Effect

$$\hat{\mathcal{H}}_{\mathrm{F}}|F_0\rangle = \mathcal{E}_0|F_0\rangle = 0$$
 (L56a)

$$\hat{\mathcal{H}}_{\mathrm{F}}|F_1\rangle = \mathcal{E}_1|F_1\rangle.$$
 (L56b)

$$\hat{\mathcal{H}}_{\rm ion} = \frac{\hat{P}^2}{2M} + \frac{M\omega_{\rm i}^2}{2}\hat{x}^2.$$
(L57)

$$\hat{\mathcal{H}}_{\rm int} = g\hat{x}\hat{\mathcal{H}}_{\rm F},\tag{L58}$$

$$\left\{\hat{\mathcal{H}}_{\rm F}(1+g\hat{x})+\hat{\mathcal{H}}_{\rm ion}\right\}|\psi\rangle = \mathcal{E}_{\rm tot}|\psi\rangle. \tag{L59}$$

$$\phi_l(x) \equiv \langle x, \mathcal{E}_l | \psi \rangle. \tag{L60}$$

$$\left\{\mathcal{E}_l(1+gx) + \frac{-\hbar^2 \nabla^2}{2M} + \frac{M\omega_i^2}{2}x^2\right\}\phi_l(x) = \mathcal{E}_{\text{tot}}\phi_l(x).$$
(L61)

21st September 2003 © 2003, Michael Marder

$$\mathcal{D}_l = \frac{\mathcal{E}_l g}{M\omega_i^2}.$$
 (L62)

$$\left\{\mathcal{E}_{l} + \frac{-\hbar^{2}\nabla^{2}}{2M} + \frac{M\omega_{i}^{2}}{2}\left[(x + \mathcal{D}_{l})^{2} - \mathcal{D}_{l}^{2}\right]\right\}\phi_{l}(x) = \mathcal{E}_{tot}\phi_{l}(x).$$
(L63)

$$\mathcal{E}_{l,n} = \mathcal{E}_l + \hbar \omega_{\rm i} (n + \frac{1}{2}) - \frac{1}{2} \mathcal{D}_l^2 M \omega_{\rm i}^2.$$
 (L64)

Franck–Condon Effect

Franck–Condon Effect

$$\sum_{\text{fi nal}} \delta(\mathcal{E}_{\text{tot,fi nal}} - \mathcal{E}_{\text{tot,0}} - \hbar\omega) |\langle \psi_0 | \hat{U}_{\text{int}} | \psi_{\text{fi nal}} \rangle|^2, \qquad (L65)$$

$$\hbar\omega = \mathcal{E}_1 + n\hbar\omega_{\rm i} - \frac{1}{2}\mathcal{D}_1^2 M\omega_{\rm i}^2, \qquad (L66)$$

$$|\int dx \phi_0(x)\phi_n(x+\mathcal{D}_1)|^2.$$
 (L67)

$$x_{0} = \sqrt{\frac{\hbar}{M\omega_{i}}} \gg \mathcal{D}_{1}$$
(L68)
$$\Rightarrow 1 \gg \frac{\mathcal{E}_{1}g}{\sqrt{\hbar M\omega_{i}^{3}}}.$$
(L69)

 $\mathcal{D}_1 \gg x_0,$

(L70)

$$\int dx \phi_0(x) \phi_n(x + \mathcal{D}_1) \tag{L71}$$

$$= \int d\chi \sqrt{\frac{1}{\pi 2^{n} n!}} e^{\chi \mathcal{D}_{1}/x_{0} - (\mathcal{D}_{1}/x_{0})^{2}/2} (-1)^{n} \frac{d^{n}}{d\chi^{n}} e^{-\chi^{2}}$$
(L72)

$$= \int d\chi \sqrt{\frac{1}{\pi 2^{n} n!}} \left(\frac{\mathcal{D}_{1}}{x_{0}}\right)^{n} e^{\chi \mathcal{D}_{1}/x_{0} - (\mathcal{D}_{1}/x_{0})^{2}/2} e^{-\chi^{2}}$$
(L73)

$$= \sqrt{\frac{1}{2^{n}n!}} \left(\frac{\mathcal{D}_{1}}{x_{0}}\right)^{n} e^{-(\mathcal{D}_{1}/x_{0})^{2}/4}.$$
 (L74)

$$n = \frac{1}{2} (\mathcal{D}_1 / x_0)^2.$$
 (L75)

Urbach Tails

Figure 12: Urbach tails [Haupt (1959)]

$$\alpha \propto \exp\left[-\frac{(\mathcal{E}_g - \hbar\omega)}{k_B T}\right].$$
 (L76)