## Quantum Mechanics of Interacting Magnetic Moments


$\mathrm{F}=$ Ferromagnetic
$\mathrm{FC}=$ Short-range ferromagnetic correlations
$\mathrm{AF}=$ Antiferromagnetic
$\mathrm{AFC}=$ Short-range antiferromagnetic correlations
$\mathrm{P}=$ Paramagnetic
FI=Ferrimagnetic
IC=Incommensurate, $\mathrm{S}=$ Spiral
$\mathrm{G}=$ Correlated state of Gutzwiller type

## Definitions

Heitler-London Calculation for Ferromagnetism
Heisenberg Model of Ferromagnets
Néel State
Indirect Exchange
Spin Waves
Sto Schwinger Bosons
Holstein-Primakoff Transformation
Stoner Model
Anderson Model
Kondo Effect and Scaling Theory
Hubbard Model

$$
\begin{gather*}
\vec{B}=\vec{\nabla}\left[\vec{m}_{1} \cdot \vec{\nabla} \frac{1}{r}\right]=\frac{3 \hat{r}\left(\vec{m}_{1} \cdot \hat{r}\right)-\vec{m}_{1}}{r^{3}},  \tag{L1}\\
\frac{\vec{m}_{1} \cdot \vec{m}_{2}-3\left(\vec{m}_{2} \cdot \hat{r}_{12}\right)\left(\vec{m}_{1} \cdot \hat{r}_{12}\right)}{r_{12}^{3}},  \tag{L2}\\
\frac{1}{4} \frac{m_{1}}{\mu_{B}} \frac{m_{2}}{\mu_{B}}\left(\frac{2 a_{0}}{r_{12}}\right)^{3} \frac{\mu_{B}^{2}}{a_{0}^{3}}=0.9 \cdot 10^{-4} \mathrm{eV} \cdot \frac{m_{1}}{\mu_{B}} \frac{m_{2}}{\mu_{B}}\left(\frac{2 a_{0}}{r_{12}}\right)^{3} . \tag{L3}
\end{gather*}
$$

## Heitler-London Calculation



Figure 1: Setting for the calculation of Heitler and London (1927).

$$
\begin{equation*}
l \equiv\left\|\int d \vec{r} \phi_{1}^{*}(\vec{r}) \phi_{2}(\vec{r})\right\| \tag{L4}
\end{equation*}
$$

Singlet:

$$
\begin{equation*}
\frac{1}{\sqrt{2}}\left(\chi_{\uparrow}\left(\sigma_{1}\right) \chi_{\downarrow}\left(\sigma_{2}\right)-\chi_{\downarrow}\left(\sigma_{1}\right) \chi_{\uparrow}\left(\sigma_{2}\right)\right), \tag{L5}
\end{equation*}
$$

## Heitler-London Calculation

Triplet:

$$
\begin{array}{ccl}
\chi_{\uparrow}\left(\sigma_{1}\right) \chi_{\uparrow}\left(\sigma_{2}\right) & S=1 & ; S_{z}=1 \\
\frac{1}{\sqrt{2}}\left(\chi_{\uparrow}\left(\sigma_{1}\right) \chi_{\downarrow}\left(\sigma_{2}\right)+\chi_{\downarrow}\left(\sigma_{1}\right) \chi_{\uparrow}\left(\sigma_{2}\right)\right) & S=1 & ; S_{z}=0 \\
\chi_{\downarrow}\left(\sigma_{1}\right) \chi_{\downarrow}\left(\sigma_{2}\right) & S=1 & ; S_{z}=-1 . \\
\phi_{s}\left(\vec{r}_{1}, \vec{r}_{2}\right)=\frac{1}{\sqrt{2+2 l^{2}}}\left[\phi_{1}\left(\vec{r}_{1}\right) \phi_{2}\left(\vec{r}_{2}\right)+\phi_{1}\left(\vec{r}_{2}\right) \phi_{2}\left(\vec{r}_{1}\right)\right], \\
\phi_{t}\left(\vec{r}_{1}, \vec{r}_{2}\right)=\frac{1}{\sqrt{2-2 l^{2}}}\left[\phi_{1}\left(\vec{r}_{1}\right) \phi_{2}\left(\vec{r}_{2}\right)-\phi_{1}\left(\vec{r}_{2}\right) \phi_{2}\left(\vec{r}_{1}\right)\right] . \\
{\left[\frac{\hat{P}_{1}^{2}}{2 m}-\frac{e^{2}}{\left|\vec{r}_{1}-\vec{R}_{1}\right|}\right] \phi_{1}\left(\vec{r}_{1}\right)=\varepsilon_{0} \phi_{1}\left(\vec{r}_{1}\right) .} \tag{L8}
\end{array}
$$

## Heitler-London Calculation

$$
\begin{align*}
\hat{\mathcal{H}}=\quad & \frac{\hat{P}_{1}^{2}}{2 m}-\frac{e^{2}}{\left|\vec{r}_{1}-\vec{R}_{1}\right|}+\frac{\hat{P}_{2}^{2}}{2 m}-\frac{e^{2}}{\left|\vec{r}_{2}-\vec{R}_{2}\right|} \\
+ & \frac{e^{2}}{\left|\vec{r}_{1}-\vec{r}_{2}\right|}+\frac{e^{2}}{\left|\vec{R}_{1}-\vec{R}_{2}\right|}-\frac{e^{2}}{\left|\vec{r}_{1}-\vec{R}_{2}\right|}-\frac{e^{2}}{\left|\vec{r}_{2}-\vec{R}_{1}\right|} .  \tag{L9}\\
& \int d \vec{r}_{1} d \vec{r}_{2} \phi_{1}^{*}\left(\vec{r}_{1}\right) \phi_{2}^{*}\left(\vec{r}_{2}\right) \hat{\mathcal{H}} \phi_{1}\left(\vec{r}_{1}\right) \phi_{2}\left(\vec{r}_{2}\right) \\
= & \int d \vec{r}_{1} d \vec{r}_{2} \phi_{2}^{*}\left(\vec{r}_{1}\right) \phi_{1}^{*}\left(\vec{r}_{2}\right) \hat{\mathcal{H}} \phi_{2}\left(\vec{r}_{1}\right) \phi_{1}\left(\vec{r}_{2}\right)  \tag{L10}\\
= & 2 \varepsilon_{0}+U, \tag{L11}
\end{align*}
$$

where

$$
U=\int d \vec{r}_{1} d \vec{r}_{2}\left[\begin{array}{l}
\left|\phi_{1}\left(\vec{r}_{1}\right)\right|^{2}  \tag{L12}\\
\left|\phi_{2}\left(\vec{r}_{2}\right)\right|^{2}
\end{array}\right]\left[\frac{e^{2}}{\left|\vec{r}_{1}-\vec{r}_{2}\right|}+\frac{e^{2}}{\left|\vec{R}_{1}-\vec{R}_{2}\right|}-\frac{e^{2}}{\left|\vec{r}_{1}-\vec{R}_{2}\right|}-\frac{e^{2}}{\left|\vec{r}_{2}-\vec{R}_{1}\right|}\right]
$$

and

## Heitler-London Calculation

$$
\begin{align*}
& \int d \vec{r}_{1} d \vec{r}_{2} \phi_{2}^{*}\left(\vec{r}_{1}\right) \phi_{1}^{*}\left(\vec{r}_{2}\right) \hat{\mathcal{H}} \phi_{1}\left(\vec{r}_{1}\right) \phi_{2}\left(\vec{r}_{2}\right) \\
= & \int d \vec{r}_{1} d \vec{r}_{2} \phi_{1}^{*}\left(\vec{r}_{1}\right) \phi_{2}^{*}\left(\vec{r}_{2}\right) \hat{\mathcal{H}} \phi_{2}\left(\vec{r}_{1}\right) \phi_{1}\left(\vec{r}_{2}\right)  \tag{L13}\\
= & 2 \varepsilon_{0} l^{2}+V, \tag{L14}
\end{align*}
$$

with

$$
V=\int d \vec{r}_{1} d \vec{r}_{2}\left[\begin{array}{c}
\phi_{1}^{*}\left(\vec{r}_{1}\right) \phi_{2}^{*}\left(\vec{r}_{2}\right)  \tag{L15}\\
\phi_{2}\left(\vec{r}_{1}\right) \phi_{1}\left(\vec{r}_{2}\right)
\end{array}\right]\left[\frac{e^{2}}{\left|\vec{r}_{1}-\vec{r}_{2}\right|}+\frac{e^{2}}{\left|\vec{R}_{1}-\vec{R}_{2}\right|}-\frac{e^{2}}{\left|\vec{r}_{1}-\vec{R}_{1}\right|}-\frac{e^{2}}{\left|\vec{r}_{2}-\vec{R}_{2}\right|}\right] .
$$

$$
\begin{equation*}
\varepsilon_{s}=\left\langle\phi_{s}\right| \hat{\mathcal{H}}\left|\phi_{s}\right\rangle=2 \frac{2 \varepsilon_{0}+U+2 l^{2} \varepsilon_{0}+V}{2+2 l^{2}}=2 \varepsilon_{0}+\frac{U+V}{1+l^{2}} \tag{L16a}
\end{equation*}
$$

and

## Heitler-London Calculation

$$
\begin{gather*}
\varepsilon_{t}=\left\langle\phi_{t}\right| \hat{\mathcal{H}}\left|\phi_{t}\right\rangle=2 \frac{2 \varepsilon_{0}+U-2 l^{2} \varepsilon_{0}-V}{2-2 l^{2}}=2 \varepsilon_{0}+\frac{U-V}{1-l^{2}}  \tag{L16b}\\
\varepsilon_{t}-\varepsilon_{s}=\frac{2 l^{2} U-2 V}{1-l^{4}} \equiv-J . \tag{L17}
\end{gather*}
$$

## Lieb-Mattis Theorem

$$
\begin{equation*}
\mathcal{F}\{\phi\}=\frac{\int d \vec{r}_{1} d \vec{r}_{2} \frac{\hbar^{2}}{2 m}\left|\nabla_{1} \phi\right|^{2}+\frac{\hbar^{2}}{2 m}\left|\nabla_{2} \phi\right|^{2}+U\left(\vec{r}_{1}, \vec{r}_{2}\right)\left|\phi\left(\vec{r}_{1}, \vec{r}_{2}\right)\right|^{2}}{\int d \vec{r}_{1} d \vec{r}_{2}\left|\phi\left(\vec{r}_{1}, \vec{r}_{2}\right)\right|^{2}} . \tag{L18}
\end{equation*}
$$



Figure 2: The energy of a wave function with a cusp is always lowered by smoothing out the cusp.

## Spin Hamiltonian

$$
\begin{align*}
\hat{\mathcal{H}} & =a+b \hat{S}_{1} \cdot \hat{S}_{2}  \tag{L19}\\
& =a+b\left(\hat{S}_{1}^{z} \hat{S}_{2}^{z}+\frac{1}{2}\left[\hat{S}_{1}^{+} \hat{S}_{2}^{-}+\hat{S}_{2}^{+} \hat{S}_{1}^{-}\right]\right) .  \tag{L20}\\
& \hat{\mathcal{H}}=2 \varepsilon_{0}+\frac{U-V}{1-l^{2}}+\left(\frac{1}{4}-\hat{S}_{1} \cdot \hat{S}_{2}\right) J . \tag{LL2}
\end{align*}
$$

## Heisenberg Model

$$
\begin{gather*}
\hat{\mathcal{H}}=-\sum_{\left\langle l l^{\prime}\right\rangle} J_{l l^{\prime}} \hat{S}_{l} \cdot \hat{S}_{l^{\prime}}  \tag{L22}\\
\sum_{l=1}^{N} \frac{\hat{P}_{l}^{2}}{2 m}+\hat{U}=\hat{\mathcal{H}}_{\text {kinetic }}+\hat{\mathcal{H}}_{\mathrm{int}}  \tag{L23}\\
\hat{\mathcal{H}}_{\mathrm{int}}=\sum_{\sum_{l l^{\prime} l^{\prime \prime} l^{\prime \prime \prime}}}\left\langle\vec{R}_{l} \vec{R}_{l^{\prime}}\right| \hat{U}^{\prime}\left|\vec{R}_{l^{\prime \prime}} \vec{R}_{l^{\prime \prime \prime}}\right\rangle \hat{c}_{l \sigma}^{\dagger} \hat{c}_{l^{\prime} \sigma^{\prime}}^{\dagger} \hat{c}_{l^{\prime \prime \prime} \sigma^{\prime}} \hat{c}_{l^{\prime \prime} \sigma}  \tag{L24}\\
\hat{\mathcal{H}}_{\mathrm{int}}=\sum_{\sum_{l l^{\prime}}^{\prime}}+\sum_{\sigma \sigma^{\prime}}\left\langle\vec{R}_{l} \vec{R}_{l^{\prime}}\right| \hat{U}\left|\vec{R}_{l^{\prime}} \vec{R}_{l}\right\rangle \hat{c}_{l \sigma}^{\dagger} \hat{c}_{l^{\prime} \sigma^{\prime}}^{\dagger} \hat{c}_{l \sigma^{\prime}} \hat{c}_{l^{\prime} \sigma}  \tag{L25}\\
\left.=\sum_{l_{l l^{\prime}}^{\prime}}+\vec{R}_{l} \vec{R}_{l^{\prime}}|\hat{U}| \vec{R}_{l} \vec{R}_{l^{\prime}}\right\rangle \hat{c}_{l \sigma}^{\dagger} \hat{c}_{l^{\prime} \sigma^{\prime}}^{\dagger} \hat{c}_{l^{\prime} \sigma^{\prime}} \hat{c}_{l \sigma}  \tag{L26}\\
\left\langle\vec{R}_{l} \vec{R}_{l^{\prime}}\right| \hat{U}\left|\vec{R}_{l} \vec{R}_{l^{\prime}}\right\rangle \hat{c}_{l \sigma}^{\dagger} \hat{c}_{l^{\prime} \sigma^{\prime}}^{\dagger} \hat{c}_{l^{\prime} \sigma^{\prime}} \hat{c}_{l \sigma} \\
\left\langle\hat{R}_{l^{\prime}}\right| \hat{U}\left|\vec{R}_{l^{\prime}} \vec{R}_{l}\right\rangle\left[\hat{n}_{l \sigma} \delta_{l l^{\prime}}-\hat{c}_{l \sigma}^{\dagger} \hat{c}_{l \sigma^{\prime}} \hat{c}_{l^{\prime} \sigma^{\prime}}^{\dagger} \hat{c}_{l^{\prime} \sigma}\right]
\end{gather*}
$$

## Heisenberg Model

$$
\begin{align*}
& \hat{S}^{z}=\frac{1}{2}\left[\hat{c}_{\uparrow}^{\dagger} \hat{c}_{\uparrow}-\hat{c}_{\downarrow}^{\dagger} \hat{c}_{\downarrow}\right]=\frac{1}{2}\left[\hat{n}_{\uparrow}-\hat{n}_{\downarrow}\right]  \tag{L27a}\\
& \hat{S}^{+}=\hat{c}_{\uparrow}^{\dagger} c_{\downarrow} ; \hat{S}^{-}=\hat{c}_{\downarrow}^{\dagger} c_{\uparrow} .  \tag{L27b}\\
& \hat{n}_{l \uparrow} \hat{n}_{l^{\prime} \uparrow}+\hat{n}_{l \downarrow} \hat{n}_{l^{\prime} \downarrow}  \tag{L28}\\
& =\frac{1}{2}\left\{\left(\hat{n}_{l \uparrow}+\hat{n}_{l \downarrow}\right)\left(\hat{n}_{l^{\prime} \uparrow}+\hat{n}_{l^{\prime} \downarrow}\right)+\left(\hat{n}_{l \uparrow}-\hat{n}_{l \downarrow}\right)\left(\hat{n}_{l^{\prime} \uparrow}-\hat{n}_{l^{\prime} \downarrow}\right)\right\}  \tag{L29}\\
& =\frac{1}{2}\left\{1+4 \hat{S}_{l}^{z} \cdot \hat{S}_{l^{\prime}}^{z}\right\} \text {. }  \tag{L30}\\
& \hat{\mathcal{H}}_{\text {exch }}=-\left\langle\vec{R}_{l} \vec{R}_{l^{\prime}}\right| \hat{U}\left|\vec{R}_{l^{\prime}} \vec{R}_{l}\right\rangle\left\{\begin{array}{r}
\hat{n}_{l \uparrow} \hat{n}_{l^{\prime} \uparrow}+\hat{c}_{\dagger \uparrow}^{\dagger} \hat{c}_{l_{l}} c_{l^{\prime}}^{\dagger} \hat{c}_{l^{\prime} \uparrow} \\
+\hat{c}_{l_{\downarrow}}^{\dagger} \hat{c}_{l \uparrow} c_{l^{\prime} \uparrow}^{\dagger} \hat{c}_{l^{\prime} \downarrow}+\hat{n}_{l \downarrow} \hat{n}_{l^{\prime} \downarrow}
\end{array}\right\}  \tag{L31}\\
& =-2\left\langle\vec{R}_{l} \vec{R}_{l^{\prime}}\right| \hat{U}\left|\vec{R}_{l^{\prime}} \vec{R}_{l}\right\rangle\left\{\frac{1}{4}+\hat{S}_{l}^{z} \hat{S}_{l^{\prime}}^{z}+\frac{1}{2}\left[\hat{S}_{l}^{+} \hat{S}_{l^{\prime}}^{-}+\hat{S}_{l}^{-} \hat{S}_{l^{\prime}}^{+}\right]\right\} \tag{L32}
\end{align*}
$$

$$
\begin{align*}
&=-2\left\langle\vec{R}_{l} \vec{R}_{l^{\prime}}\right| \hat{U}\left|\vec{R}_{l^{\prime}} \vec{R}_{l}\right\rangle\left\{\frac{1}{4}+\hat{S}_{l^{\prime}} \cdot \hat{S}_{l^{\prime}}\right\},  \tag{L33}\\
&-4 \sum_{\left\langle l l^{\prime}\right\rangle}\left\langle\vec{R}_{l} \vec{R}_{l^{\prime}}\right| \hat{U}\left|\vec{R}_{l^{\prime}} \vec{R}_{l}\right\rangle \hat{S}_{l} \cdot \hat{S}_{l^{\prime}} \tag{L34}
\end{align*}
$$

Ground State

$$
\begin{equation*}
\langle\uparrow \uparrow \uparrow \ldots| \hat{\mathcal{H}}|\uparrow \uparrow \uparrow \ldots\rangle=-\sum_{\left\langle l l^{\prime}\right\rangle} \frac{J_{l l^{\prime}}}{4} . \tag{L35}
\end{equation*}
$$

$$
\begin{gather*}
\hat{S}^{\alpha}=\frac{1}{2} \sum_{l l^{\prime}} a_{l}^{\dagger} \sigma_{l l^{\prime}}^{\alpha} a_{l^{\prime}}  \tag{L36}\\
\hat{S}^{z}=\frac{1}{2}\left(\hat{a}_{1}^{\dagger} \hat{a}_{1}-\hat{a}_{2}^{\dagger} \hat{a}_{2}\right)  \tag{L37a}\\
\hat{S}^{x}=  \tag{L37b}\\
\frac{1}{2}\left(\hat{a}_{1}^{\dagger} \hat{a}_{2}+\hat{a}_{2}^{\dagger} \hat{a}_{1}\right)  \tag{L37c}\\
\hat{S}^{y}=i \frac{1}{2}\left(\hat{a}_{2}^{\dagger} \hat{a}_{1}-\hat{a}_{1}^{\dagger} \hat{a}_{2}\right) . \\
{\left[\hat{S}^{x}, \hat{S}^{y}\right]=i \frac{1}{4}\left[\hat{a}_{1}^{\dagger} \hat{a}_{2}+\hat{a}_{2}^{\dagger} \hat{a}_{1}, \hat{a}_{2}^{\dagger} \hat{a}_{1}-\hat{a}_{1}^{\dagger} \hat{a}_{2}\right]}  \tag{L38}\\
= \\
i \hat{S}^{z} .
\end{gather*}
$$

$$
\begin{equation*}
\hat{S}^{+}=\hat{a}_{1}^{\dagger} \hat{a}_{2} ; \hat{S}^{-}=\hat{a}_{2}^{\dagger} \hat{a}_{1} . \tag{L39}
\end{equation*}
$$

$$
\begin{array}{r}
\frac{1}{2}\left(\hat{a}_{1}^{\dagger} \hat{a}_{1}+\hat{a}_{2}^{\dagger} \hat{a}_{2}\right)=S . \\
\hat{a}_{2}^{\dagger} \hat{a}_{2}=2 S-\hat{a}_{1}^{\dagger} \hat{a}_{1} \\
\hat{a}_{2}=\sqrt{2 S-\hat{a}_{1}^{\dagger} \hat{a}_{1}} . \\
\hat{S}^{+}=a_{1}^{\dagger} \sqrt{2 S-\hat{a}_{1}^{\dagger} \hat{a}_{1}} \\
\hat{S}^{-}=\sqrt{2 S-\hat{a}_{1}^{\dagger} \hat{a}_{1}} \hat{a}_{1} \\
\hat{S}^{z}=\left(\hat{a}_{1}^{\dagger} \hat{a}_{1}-S\right) . \\
 \tag{L44}\\
{\left[\hat{S}^{+}, \hat{S}^{-}\right]=2 \hat{S}^{z} .}
\end{array}
$$

$$
\begin{align*}
& \hat{S}_{l} \cdot \hat{S}_{l^{\prime}}=\frac{1}{2}\left(\hat{S}_{l}^{+} \hat{S}_{l^{\prime}}^{-}+\hat{S}_{l^{\prime}}^{+} \hat{S}_{l}^{-}\right)+\hat{S}_{l}^{z} \hat{S}_{l^{\prime}}^{z}  \tag{L45}\\
& =\quad \frac{1}{2} \hat{a}_{l}^{\dagger} \sqrt{2 S-\hat{a}_{l}^{\dagger} \hat{a}_{l}} \sqrt{2 S-\hat{a}_{l^{\prime}}^{\dagger} \hat{a}_{l^{\prime}}} \hat{a}_{l^{\prime}} \\
& +\frac{1}{2} \hat{a}_{l^{\prime}}^{\dagger} \sqrt{2 S-\hat{a}_{l^{\prime}}^{\dagger} \hat{a}_{l^{\prime}}} \sqrt{2 S-\hat{a}_{l}^{\dagger} \hat{a}_{l}} \hat{a}_{l}+\left(S-\hat{a}_{l}^{\dagger} \hat{a}_{l}\right)\left(S-\hat{a}_{l^{\prime}}^{\dagger} \hat{a}_{l^{\prime}}\right) \text {. }  \tag{L46}\\
& \hat{a}_{l}=\sqrt{S} b_{l}+\left(\hat{a}_{l}-\sqrt{S} b_{l}\right),  \tag{L47}\\
& \hat{\mathcal{H}}=-\sum_{l l^{\prime}} J_{l l^{\prime}} S^{2}\left[\begin{array}{r}
\frac{1}{2}\left(b_{l} b_{l^{\prime}}^{*}+b_{l^{\prime}} b_{l}^{*}\right) \sqrt{2-\left|b_{l}\right|^{2}} \sqrt{2-\left|b_{l^{\prime}}\right|^{2}} \\
+ \\
+\left(1-\left|b_{l}\right|^{2}\right)\left(1-\left|b_{l^{\prime}}\right|^{2}\right)
\end{array}\right] .  \tag{L48}\\
& \mathcal{E}_{0}=-J N z S^{2}\left(|b|^{2}\left(2-|b|^{2}\right)+\left(1-|b|^{2}\right)^{2}\right)=-J N z S^{2},  \tag{L49}\\
& \hat{\mathcal{H}} \approx-N J z S^{2}-2 J \sum_{\left\langle l l^{\prime}\right\rangle} S\left(\hat{a}_{l}^{\dagger} \hat{a}_{l^{\prime}}+\hat{a}_{l^{\prime}}^{\dagger} \hat{a}_{l}-\hat{a}_{l}^{\dagger} \hat{a}_{l}-\hat{a}_{l^{\prime}}^{\dagger} \hat{a}_{l^{\prime}}\right) . \tag{L50}
\end{align*}
$$

$$
\begin{gather*}
\hat{a}_{l}=\frac{1}{\sqrt{N}} \sum_{\vec{k}} \hat{a}_{k} e^{-i \vec{k} \cdot \vec{r}_{l}}  \tag{L52}\\
\hat{\mathcal{H}}=-N J z S^{2}-2 J S \sum_{\vec{k}} \sum_{\vec{\delta}}[\cos (\vec{k} \cdot \vec{\delta})-1] \hat{a}_{\vec{k}}^{\dagger} \hat{a}_{\vec{k}}  \tag{L53}\\
=-N J z S^{2}+\sum_{\vec{k}} \hbar \omega_{\vec{k}} \hat{n}_{\vec{k}}, \tag{L54}
\end{gather*}
$$

where

$$
\begin{equation*}
\hbar \omega=2 S J \sum_{\vec{\delta}}(1-\cos (\vec{\delta} \cdot \vec{k})) \tag{L55}
\end{equation*}
$$



Figure 3: The Néel state.

$$
\begin{equation*}
S_{l^{\prime}}^{ \pm} \rightarrow S_{l^{\prime}}^{\mp} \quad S_{l^{\prime}}^{z} \rightarrow-S_{l^{\prime}}^{z} . \tag{L56}
\end{equation*}
$$

$$
\begin{align*}
& \hat{\mathcal{H}}=2|J| \sum_{\left\langle l l^{\prime}\right\rangle} \frac{1}{2}\left[\hat{S}_{l}^{+} \hat{S}_{l^{\prime}}^{+}+\hat{S}_{l}^{-} \hat{S}_{l^{\prime}}^{-}\right]-\hat{S}_{l^{z}}^{z} \hat{S}_{l^{\prime}}^{z}  \tag{L57}\\
& =2|J| \sum_{\left\langle l l^{\prime}\right\rangle}+\frac{1}{2} \sqrt{\frac{1}{2} \hat{a}_{l}^{\dagger} \sqrt{2 S-\hat{a}_{l}^{\dagger} \hat{a}_{l}} \hat{a}_{l^{\prime}}^{\dagger} \sqrt{2 S-\hat{a}_{l^{\prime}}^{\dagger} \hat{a}_{l^{\prime}}}}  \tag{L58}\\
& \hat{\mathcal{H}} \approx-N z|J| S^{2}\left[\left(1-b^{2}\right)^{2}-b^{2}\left(2-b^{2}\right)\right],  \tag{L59}\\
& b=0 .  \tag{L60}\\
& \hat{\mathcal{H}} \approx 2|J| \sum_{\left\langle l l^{\prime}\right\rangle}\left[-S^{2}+S\left\{\hat{a}_{l}^{\dagger} \hat{a}_{l}+\hat{a}_{l^{\prime}}^{\dagger} \hat{a}_{l^{\prime}}+\hat{a}_{l}^{\dagger} \hat{a}_{l^{\prime}}^{\dagger}+\hat{a}_{l} \hat{a}_{l^{\prime}}\right\}\right] .  \tag{L61}\\
& \hat{a}_{\vec{k}}=\frac{1}{\sqrt{N}} \sum_{l} e^{i \vec{k} \cdot \vec{R}_{l}} \hat{a}_{l} \tag{L62}
\end{align*}
$$

$$
\begin{gather*}
\hat{\mathcal{H}}=-|J| N z S^{2}+|J| S \sum_{\vec{k} \vec{\delta}}\left[\left(\hat{a}_{\vec{k}}^{\dagger} \hat{a}_{-\vec{k}}^{\dagger}+\hat{a}_{\vec{k}} \hat{a}_{-\vec{k}}\right) \cos (\vec{k} \cdot \vec{\delta})+2 \hat{a}_{\vec{k}}^{\dagger} \hat{a}_{\vec{k}}\right]  \tag{L63}\\
\hat{a}_{\vec{k}}=\cosh \alpha_{\vec{k}} \hat{\gamma}_{\vec{k}}+\sinh \alpha_{\vec{k}} \hat{\gamma}_{-\vec{k}}^{\dagger}  \tag{L64}\\
\tanh 2 \alpha_{\vec{k}}=-\frac{1}{z} \sum_{\vec{\delta}} \cos (\vec{k} \cdot \vec{\delta})  \tag{L65}\\
\begin{array}{r}
\hat{\mathcal{H}}=-N z|J| S(S+1)+2|J| z S \sum_{\vec{k}}\left(\hat{\gamma}_{\vec{k}}^{\dagger} \hat{\gamma}_{\vec{k}}+\frac{1}{2}\right) \sqrt{1-\tanh ^{2} 2 \alpha_{\vec{k}}} \\
-N S^{2}|J| z\left(1+\frac{\Gamma}{z S}\right) \\
\mathcal{E}_{\vec{k}}=2|J| S \sqrt{z^{2}-\left(\sum_{\vec{\delta}} \cos \vec{k} \cdot \vec{\delta}\right)^{2}}
\end{array} \tag{L66}
\end{gather*}
$$

## Comparison with Experiment

Fe

(A)

Wave number $k\left(\AA^{-1}\right)$

CuO


Figure 4: (A) Dispersion relation for ferromagnetic magnons in iron. [ Yethiraj et al. (1991), and Lynn (1975),.] (B) Dispersion relation for antiferromagnetic magnons in CuO. [ Aiin et al. (1989).]

$$
\begin{gather*}
\mathcal{E}=\int_{0}^{\varepsilon_{F}-\Delta} d \mathcal{E}^{\prime} D\left(\mathcal{E}^{\prime}\right) \mathcal{E}^{\prime}+\frac{1}{2} \int_{\mathcal{E}_{F}-\Delta}^{\mathcal{E}_{F}+\Delta} d \mathcal{E}^{\prime} D\left(\mathcal{E}^{\prime}\right) \mathcal{E}^{\prime}-\frac{1}{2} n J\langle S\rangle^{2}  \tag{L69}\\
\langle S\rangle=\frac{1}{2 n} \int_{\mathcal{E}_{F}-\Delta}^{\mathcal{E}_{F}+\Delta} d \mathcal{E}^{\prime} \frac{1}{2} D\left(\mathcal{E}^{\prime}\right)=\frac{1}{2 n} D\left(\mathcal{E}_{F}\right) \Delta  \tag{L70}\\
\left.\frac{\partial \mathcal{\varepsilon}}{\partial \Delta}\right|_{\varepsilon_{F}}=\Delta D\left(\mathcal{E}_{F}\right)-\frac{J}{4 n} D\left(\mathcal{E}_{F}\right)^{2} \Delta  \tag{L71}\\
\left.\frac{\partial \varepsilon}{\partial \Delta}\right|_{\varepsilon_{F}}=0 \Rightarrow \frac{J}{n} D\left(\mathcal{E}_{F}\right)=4  \tag{L72}\\
\mathcal{E}=\int_{0}^{\varepsilon_{F}-\Delta_{1}} d \varepsilon^{\prime} D\left(\mathcal{E}^{\prime}\right) \mathcal{E}^{\prime}+\frac{1}{2} \int_{\mathcal{E}_{F}-\Delta_{1}}^{\varepsilon_{F}+\Delta_{2}} d \varepsilon^{\prime} D\left(\mathcal{E}^{\prime}\right) \mathcal{E}^{\prime}-\frac{1}{2} J n\langle S\rangle^{2}  \tag{L73}\\
\frac{\partial \Delta_{2}}{\partial \Delta_{1}}=\frac{D\left(\mathcal{E}_{F}-\Delta_{1}\right)}{D\left(\mathcal{E}_{F}+\Delta_{2}\right)} \tag{L74}
\end{gather*}
$$

## Stoner Model

$$
\begin{align*}
\frac{\partial \varepsilon}{\partial \Delta_{1}} & \leq 0  \tag{L75}\\
\Rightarrow \Delta_{1}+\Delta_{2} & \leq \frac{J}{4 n} \int_{\mathcal{E}_{F}-\Delta_{1}}^{\varepsilon_{F}+\Delta_{2}} d \varepsilon^{\prime} D\left(\varepsilon^{\prime}\right)
\end{align*}
$$

(L76)

$$
\begin{equation*}
\mathcal{E}=\mathcal{E}_{\uparrow}+\mathcal{E}_{\downarrow} \tag{L77}
\end{equation*}
$$

where

$$
\begin{align*}
& \mathcal{E}_{\uparrow}=N_{\uparrow}\left[\frac{3}{5} \mathcal{E}_{F \uparrow}-\frac{3}{4} \frac{e^{2} k_{F \uparrow}}{\pi}\right]  \tag{L78}\\
& \mathcal{E}_{F \uparrow}=\frac{\hbar^{2} k_{F \uparrow}^{2}}{2 m}, \text { and } \frac{4 \pi}{3} \frac{1}{(2 \pi)^{3}} k_{F \uparrow}^{3}=\frac{N_{\uparrow}}{\mathcal{V}}  \tag{L79}\\
& \mathcal{E}_{\text {polarized }}=N\left[\frac{3}{5} \frac{\hbar^{2}}{2 m}\left(6 \pi^{2} n\right)^{2 / 3}-\frac{3}{4 \pi} e^{2}\left(6 \pi^{2} n\right)^{1 / 3}\right]  \tag{L80}\\
& \mathcal{E}_{\text {unpolarized }}=N\left[\frac{3}{5} \frac{\hbar^{2}}{2 m}\left(3 \pi^{2} n\right)^{2 / 3}-\frac{3}{4 \pi} e^{2}\left(3 \pi^{2} n\right)^{1 / 3}\right]  \tag{L81}\\
& \frac{2 \pi \hbar^{2}}{5 m}\left(\frac{1}{2^{1 / 3}}+1\right)<e^{2}\left(6 \pi^{2} n\right)^{-1 / 3} \tag{L82}
\end{align*}
$$

## Calculations Within Band Theory

$$
\begin{equation*}
\Rightarrow \quad \frac{r_{W}}{a_{0}}>\frac{2 \pi}{5}\left(\frac{1}{2^{1 / 3}}+1\right)\left(\frac{9 \pi}{2}\right)^{1 / 3}=5.45 \tag{L83}
\end{equation*}
$$

| Element: | Sc | Ti | V | Cr | Mn | Fe | Co | Ni |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Calculated $m / \mu_{B}(\mathrm{bcc}):$ | 0 | 0 | 0 | 0 | 0.70 | 2.15 | 1.68 | 0.38 |
| Experimental $m / \mu_{B}(\mathrm{bcc}):$ |  |  |  | 0 |  | 2.12 |  |  |
| Calculated $m / \mu_{B}$ (fcc): | 0 | 0 | 0 | 0 | 0 | 0 | 1.56 | 0.60 |
| Experimental $m / \mu_{B}$ (fcc): |  |  |  |  |  |  | 1.61 | 0.61 |



Figure 5: Resistivity data for $\mathrm{Mo}_{x} \mathrm{Nb}_{1-x}$ alloys. [Source: Sarachik et al. (1964).]

$$
\begin{equation*}
\hat{\mathcal{H}}=\epsilon_{0}\left[\hat{n}_{0 \uparrow}+\hat{n}_{0 \downarrow}\right]+U \hat{n}_{0 \uparrow} \hat{n}_{0 \downarrow}+\sum_{\vec{k} \sigma}\left[\epsilon_{\vec{k}} \hat{c}_{\vec{k} \sigma}^{\dagger} \hat{c}_{\vec{k} \sigma}+v_{\vec{k}} \hat{c}_{0 \sigma}^{\dagger} \hat{c}_{\vec{k} \sigma}+v_{\vec{k}}^{*} \hat{c}_{\vec{k} \sigma}^{\dagger} \hat{c}_{0 \sigma}\right] . \tag{L84}
\end{equation*}
$$



Figure 6: Conduction electrons placed in contact with an impurity site.

$$
\begin{gather*}
\hat{P}_{0}=\left(1-\hat{n}_{0 \downarrow}\right)\left(1-\hat{n}_{0 \uparrow}\right)  \tag{L85}\\
\left|\psi_{0}\right\rangle=\hat{P}_{0}|\psi\rangle,\left|\psi_{1}\right\rangle=\hat{P}_{1}|\psi\rangle, \text { and }\left|\psi_{2}\right\rangle=\hat{P}_{2}|\psi\rangle  \tag{L86}\\
\hat{\mathcal{H}}_{l l^{\prime}}=\hat{P}_{l} \hat{\mathcal{H}} \hat{P}_{l^{\prime}}
\end{gather*}
$$

## Anderson Model

so $\hat{\mathcal{H}}|\psi\rangle=\mathcal{E}|\psi\rangle$ can be rewritten as

$$
\begin{gather*}
\left(\begin{array}{ccc}
\hat{\mathcal{H}}_{00} & \hat{\mathcal{H}}_{01} & 0 \\
\hat{\mathcal{H}}_{10} & \hat{\mathcal{H}}_{11} & \mathcal{H}_{12} \\
0 & \hat{\mathcal{H}}_{21} & \hat{\mathcal{H}}_{22}
\end{array}\right)\left(\begin{array}{l}
\left|\psi_{0}\right\rangle \\
\left|\psi_{1}\right\rangle \\
\left|\psi_{2}\right\rangle
\end{array}\right)=\varepsilon\left(\begin{array}{l}
\left|\psi_{0}\right\rangle \\
\left|\psi_{1}\right\rangle \\
\left|\psi_{2}\right\rangle
\end{array}\right)  \tag{L88}\\
\hat{\mathcal{H}}_{00}\left|\psi_{0}\right\rangle+\hat{\mathscr{H}}_{01}\left|\psi_{1}\right\rangle=\mathcal{E}\left|\psi_{0}\right\rangle  \tag{L89}\\
\Rightarrow \quad\left|\psi_{0}\right\rangle=\left(\varepsilon-\hat{\mathcal{H}}_{00}\right)^{-1} \hat{\mathcal{H}}_{01}\left|\psi_{1}\right\rangle  \tag{L90}\\
\text { and } \quad\left|\psi_{2}\right\rangle=\left(\varepsilon-\hat{\mathcal{H}}_{22}\right)^{-1} \hat{\mathcal{H}}_{21}\left|\psi_{1}\right\rangle ;  \tag{L91}\\
\left\{\hat{\mathcal{H}}_{10}\left(\varepsilon-\hat{\mathcal{H}}_{00}\right)^{-1} \hat{\mathcal{H}}_{01}+\left(\hat{\mathcal{H}}_{11}-\varepsilon\right)+\hat{\mathcal{H}}_{12}\left(\varepsilon-\hat{\mathcal{H}}_{22}\right)^{-1} \hat{\mathcal{H}}_{21}\right\}\left|\psi_{1}\right\rangle=0 .  \tag{L92}\\
\sum_{\vec{k} \sigma} v_{k} \hat{c}_{0 \sigma}^{\dagger} \hat{c}_{\vec{k} \sigma} . \tag{L93}
\end{gather*}
$$

$$
\begin{gather*}
\hat{\mathcal{H}}_{10}=\sum_{\vec{k} \sigma} v_{\vec{k}} \hat{c}_{0 \sigma}^{\dagger} \hat{c}_{\vec{k} \sigma} \hat{P}_{0}  \tag{L94}\\
=\sum_{\vec{k} \sigma} v_{k} \hat{c}_{0 \sigma}^{\dagger} \hat{c}_{\vec{k} \sigma}\left(1-\hat{n}_{0 \downarrow}\right)\left(1-\hat{n}_{0 \uparrow}\right)  \tag{L95}\\
=\sum_{\vec{k} \sigma} v_{k} \hat{c}_{0 \sigma}^{\dagger} \hat{c}_{\vec{k} \sigma}\left(1-\hat{n}_{0,-\sigma}\right) .  \tag{L99}\\
\hat{\mathcal{H}}_{01}=\hat{\mathcal{H}}_{10}^{*}=\sum_{\vec{k} \sigma}\left(1-\hat{n}_{0,-\sigma}\right) v_{\vec{k}}^{*} c_{\vec{k} \sigma}^{\dagger} \hat{c}_{0 \sigma} .  \tag{L97}\\
\hat{\mathcal{H}}_{11}=\hat{P}_{1}\left[\epsilon_{0}+\sum_{\vec{k} \sigma} \epsilon_{\vec{k}} \hat{c}_{\vec{k} \sigma}^{\dagger} \hat{c}_{\vec{k} \sigma}\right] ; \hat{\mathcal{H}}_{00}=\hat{P}_{0} \sum_{\vec{k} \sigma} \epsilon_{\vec{k}} \hat{c}_{\vec{k} \sigma}^{\dagger} \hat{c}_{\vec{k} \sigma} \tag{L99}
\end{gather*}
$$

and

$$
\begin{equation*}
\hat{\mathcal{H}}_{21}=\hat{\mathscr{H}}_{12}^{*}=\sum_{\vec{k} \sigma} v_{\vec{k}} \hat{c}_{0 \sigma}^{\dagger} \hat{c}_{\vec{k} \sigma} \hat{n}_{0,-\sigma} . \tag{L99}
\end{equation*}
$$

$$
\begin{align*}
& \hat{\mathcal{H}}_{10}\left(\mathcal{E}-\hat{\mathcal{H}}_{00}\right)^{-1} \hat{\mathcal{H}}_{01}\left|\psi_{1}\right\rangle  \tag{L100}\\
= & \hat{\mathcal{H}}_{10} \sum_{\vec{k} \sigma}\left(1-\hat{n}_{0,-\sigma}\right) v_{\vec{k}}^{*} \hat{c}_{\vec{k} \sigma}^{\dagger} \hat{c}_{0 \sigma}\left(\mathcal{E}-\left[\hat{\mathcal{H}}_{11}-\epsilon_{0}+\epsilon_{\vec{k}}\right]\right)^{-1}\left|\psi_{1}\right\rangle \tag{L101}
\end{align*}
$$

$$
\begin{align*}
& \frac{\hat{\mathcal{H}}_{10}}{\epsilon_{0}-\mathcal{E}_{F}} \sum_{\vec{k} \sigma} v_{\vec{k}}^{*}\left(1-\hat{n}_{0,-\sigma}\right) \hat{c}_{\vec{k} \sigma}^{\dagger} \hat{c}_{0 \sigma}\left|\psi_{1}\right\rangle  \tag{L102}\\
= & \sum_{\vec{k} \vec{k}^{\prime} \sigma \sigma^{\prime}} \frac{v_{\vec{k}^{\prime}} v_{\vec{k}}^{*}}{\epsilon_{0}-\mathcal{E}_{F}} \hat{c}_{0 \sigma^{\prime}}^{\dagger} \hat{c}_{\vec{k}^{\prime} \sigma^{\prime}}\left(1-\hat{n}_{0,-\sigma^{\prime}}\right)\left(1-\hat{n}_{0,-\sigma}\right) \hat{c}_{\vec{k} \sigma}^{\dagger} \hat{c}_{0 \sigma}\left|\psi_{1}\right\rangle  \tag{L103}\\
= & \sum_{\vec{k} \vec{k}^{\prime} \sigma \sigma^{\prime}} \frac{v_{\vec{k}^{\prime}} v_{\vec{k}}^{*}}{\mathcal{E}_{F}-\epsilon_{0}} \hat{c}_{0 \sigma^{\prime}}^{\dagger} \hat{c}_{\vec{k} \sigma}^{\dagger} \hat{c}_{\overrightarrow{k^{\prime}}} \sigma^{\prime} \hat{c}_{0 \sigma}\left|\psi_{1}\right\rangle . \tag{L104}
\end{align*}
$$

$$
\begin{equation*}
\hat{n}_{0 \uparrow} \hat{c}_{\vec{k} \uparrow}^{\dagger} \hat{c}_{\vec{k}^{\prime} \uparrow}+\hat{n}_{0 \downarrow} \hat{c}_{\vec{k} \downarrow}^{\dagger} \hat{c}_{\vec{k}^{\prime} \downarrow} \tag{L105}
\end{equation*}
$$

## Anderson Model

$$
\begin{align*}
& =\frac{1}{2}\left(\hat{n}_{0 \uparrow}-\hat{n}_{0 \downarrow}\right)\left(\hat{c}_{\vec{k} \uparrow}^{\dagger} \hat{c}_{\vec{k}^{\prime} \uparrow}-\hat{c}_{\vec{k} \downarrow}^{\dagger} \hat{c}_{\vec{k}^{\prime} \downarrow}\right) \\
& +\frac{1}{2}\left(\hat{n}_{0 \uparrow}+\hat{n}_{0 \downarrow}\right)\left(\hat{c}_{\vec{k} \uparrow}^{\dagger} \hat{c}_{\vec{k}^{\prime} \uparrow}+\hat{c}_{\vec{k} \downarrow}^{\dagger} \hat{c}_{\vec{k}^{\prime} \downarrow}\right)  \tag{L106}\\
& =\hat{S}^{z}\left(\hat{c}_{\vec{k} \uparrow}^{\dagger} \hat{c}_{\vec{k}^{\prime} \uparrow}-\hat{c}_{\vec{k} \downarrow}^{\dagger} \hat{c}_{\vec{k}^{\prime} \downarrow}\right)+\frac{1}{2} \sum_{\sigma} \hat{c}_{\vec{k} \sigma}^{\dagger} \hat{c}_{\vec{k}^{\prime} \sigma} .  \tag{L107}\\
& \sum_{\vec{k} \vec{k}^{\prime}} \frac{v_{\overrightarrow{k^{\prime}}} v_{\vec{k}}^{*}}{\varepsilon_{F}-\epsilon_{0}}\left[\hat{S}^{+} \hat{c}_{\vec{k} \downarrow}^{\dagger} \hat{c}_{\vec{k}^{\prime} \uparrow}+\hat{S}^{-} \hat{c}_{\vec{k} \uparrow}^{\dagger} \hat{c}_{\vec{k}^{\prime} \downarrow}+\hat{S}^{z}\left(\hat{c}_{\vec{k} \uparrow}^{\dagger} \hat{c}_{\vec{k}^{\prime} \uparrow}-\hat{c}_{\vec{k} \downarrow}^{\dagger} \hat{c}_{\vec{k}^{\prime} \downarrow}\right)+\frac{1}{2} \sum_{\sigma} \hat{c}_{\vec{k} \sigma}^{\dagger} \hat{c}_{\vec{k}^{\prime} \sigma \sigma}\right]\left|\psi_{1}\right\rangle .  \tag{L108}\\
& \hat{\mathcal{H}}_{\text {eff }}=\hat{\mathcal{H}}_{11}+\sum_{\overrightarrow{\vec{k}}{ }^{\prime}} J_{\vec{k} \vec{k}^{\prime}}\left[\hat{S}^{+} \hat{c}_{\vec{k} \downarrow}^{\dagger} \hat{c}_{\vec{k}^{\prime} \uparrow}+\hat{S}^{-} \hat{c}_{\vec{k} \uparrow}^{\dagger} \hat{\vec{k}}^{\prime} \downarrow+\hat{S}^{z}\left(\hat{c}_{\vec{k} \uparrow}^{\dagger} \hat{c}_{\hat{k}^{\prime} \uparrow}-\hat{c}_{\vec{k} \downarrow}^{\dagger} \hat{c}_{\vec{k}^{\prime} \downarrow}\right)\right] \\
& +K_{\vec{k} \vec{k}^{\prime}} \sum_{\sigma} \hat{c}_{\vec{k} \sigma}^{\dagger} \hat{c}_{\vec{k}^{\prime} \sigma}  \tag{L109a}\\
& J_{\vec{k} \vec{k}^{\prime}}=v_{\vec{k}^{\prime}} v_{\vec{k}}^{*}\left[\frac{1}{\varepsilon_{F}-\epsilon_{0}}+\frac{1}{U+\epsilon_{0}-\varepsilon_{F}}\right] . \tag{L109b}
\end{align*}
$$



Before


After

Figure 7: A small band of states, of width $|\delta \mathcal{W}|$ is eliminated from the upper and lower band edges.

$$
\begin{align*}
& \hat{\mathcal{H}}_{12}= J \sum_{\vec{k} \vec{q}} \hat{S}^{-} \hat{c}_{\vec{k} \uparrow}^{\dagger} \hat{c}_{\vec{q} \downarrow}+\hat{S}^{+} \hat{c}_{\vec{k} \downarrow}^{\dagger} \hat{c}_{\vec{q} \uparrow}+\hat{S}^{z}\left[\hat{c}_{\vec{k} \uparrow}^{\dagger} \hat{c}_{\vec{q} \uparrow}-\hat{c}_{\vec{k} \downarrow}^{\dagger} \hat{c}_{\vec{q}_{\downarrow}}\right],  \tag{L111a}\\
& \hat{\mathcal{H}}_{21}=J \sum_{\vec{k}^{\prime} \hat{q}^{\prime}} \hat{S}^{-} \hat{c}_{\vec{q}^{\prime} \uparrow}^{\dagger} \hat{c}_{\vec{k} \downarrow}+\hat{S}^{+} \hat{c}_{\vec{q}^{\prime} \downarrow}^{\dagger} \hat{c}_{\vec{k}^{\prime} \uparrow}+\hat{S}^{z}\left[\hat{c}_{\vec{q}^{\prime} \uparrow}^{\dagger} \hat{c}_{\vec{k}^{\prime} \uparrow}-\hat{c}_{\vec{q}^{\prime} \downarrow}^{\dagger} \hat{c}_{\vec{k}^{\prime} \downarrow}\right] .  \tag{L111b}\\
& \approx \hat{\mathcal{H}}_{12}\left(\varepsilon-\hat{\mathcal{H}}_{22}\right)^{-1} \hat{\mathcal{H}}_{21}\left|\psi_{1}\right\rangle  \tag{L112}\\
& \approx \hat{\mathcal{H}}_{12} \hat{\mathcal{H}}_{21}\left(\mathcal{E}-\hat{\mathcal{H}}_{22}-\left[\mathcal{W}-\varepsilon_{F}\right]\right)^{-1}\left|\psi_{1}\right\rangle  \tag{L113}\\
& \approx \hat{\mathcal{H}}_{12} \hat{\mathcal{H}}_{21}(-\mathcal{W})^{-1}\left|\psi_{1}\right\rangle . \tag{L114}
\end{align*}
$$

$$
\begin{align*}
\hat{\mathcal{H}}_{12} \hat{\mathcal{H}}_{21}=J^{2} D(\mathcal{W})[-\delta \mathcal{W}] \sum_{\vec{k} \mathbf{k}^{\prime}} \frac{3}{4} \sum_{\sigma} \hat{c}_{\vec{k} \sigma}^{\dagger} \hat{c}_{\vec{k}^{\prime} \sigma}- & \left\{\hat{S}^{-} \hat{c}_{\vec{k} \uparrow}^{\dagger} \hat{c}_{\vec{k}^{\prime} \downarrow}+\hat{S}^{+} \hat{c}_{\vec{k} \downarrow}^{\dagger} \hat{c}_{\vec{k}^{\prime} \uparrow}\right.  \tag{L115}\\
& \left.+\hat{S}^{z}\left[\hat{c}_{\vec{k} \uparrow}^{\dagger} \hat{c}_{\vec{k}^{\prime} \uparrow}-\hat{c}_{\vec{k} \downarrow}^{\dagger} \hat{c}_{\vec{k}^{\prime} \downarrow}\right]\right\} .
\end{align*}
$$

## Scaling Theory

$$
\begin{gather*}
J+\delta J=J-2 \frac{J^{2}}{\mathcal{W}} D(\mathcal{W}) \delta \mathcal{W}, \\
\frac{3}{2} J^{2} D(\mathcal{W}) \frac{\delta \mathcal{W}}{\mathcal{W}} \sum_{\overrightarrow{k k^{\prime} \sigma}} \hat{c}_{\vec{k} \sigma}^{\dagger} \hat{c}_{\vec{k}^{\prime} \sigma} . \\
\frac{d J}{d \mathcal{W}}=-2 \frac{J^{2}}{\mathcal{W}} D(\mathcal{W}) . \\
\mathcal{W} \exp \left[-\frac{1}{2 D_{0} J}\right]=\text { constant } \equiv k_{B} T_{K}, \\
\rho=\mathcal{F}\left(\frac{T}{T_{K}}\right) . \\
\mathcal{F}(x)=\left[\frac{1}{\ln (x)}\right]^{2} \tag{L121}
\end{gather*}
$$

$$
\begin{align*}
\Rightarrow \mathcal{F}\left(\frac{T}{T_{K}}\right) & =\rho=\left[\frac{2 D_{0} J}{1+2 D_{0} J \ln \left(k_{B} T / \mathcal{W}\right)}\right]^{2}  \tag{L122}\\
& \sim 4 D_{0}^{2} J^{2}\left(1-4 D_{0} J \ln \left(k_{B} T / \mathcal{W}\right)\right) . \tag{L123}
\end{align*}
$$

$$
\begin{equation*}
\rho \sim \mathcal{A} T^{5}-\mathcal{B} n_{\mathrm{mi}} \ln \left(k_{B} T / \mathcal{W}\right) \tag{L124}
\end{equation*}
$$

$$
\begin{equation*}
\frac{d \rho}{d T}=0 \Rightarrow T_{\min }=\left(\frac{\mathcal{B} n_{\mathrm{mi}}}{5 \mathcal{A}}\right)^{1 / 5} \tag{L125}
\end{equation*}
$$

$$
\begin{equation*}
\mathcal{F}\left(\frac{T}{T_{K}}\right)=\left[\frac{1}{\cosh ^{-1}\left(T / T_{K}\right)}\right]^{2}, \tag{L126}
\end{equation*}
$$

$$
\begin{equation*}
C_{\mathcal{V}} \propto n \frac{T}{T_{K}}=n \frac{k_{B} T}{\mathcal{W}} \exp \left[\frac{1}{2 D_{0} J}\right] . \tag{L127}
\end{equation*}
$$



Figure 8: Low-temperature specific heat of the heavy fermion compound $\mathrm{UBe}_{13}$. [Source Ott et al. (1983, 1984).]

## Hubbard Model

$$
\begin{equation*}
\hat{\mathcal{H}}=\sum_{\substack{\left\langle l^{\prime}\right\rangle \\ \sigma}}-\mathfrak{t}\left[\hat{c}_{l \sigma}^{\dagger} \hat{c}_{l^{\prime} \sigma}+\hat{c}_{l^{\prime} \sigma}^{\dagger} \hat{c}_{l \sigma}\right]+U \sum_{l} \hat{c}_{l \uparrow}^{\dagger} \hat{c}_{l \uparrow} \hat{c}_{l \downarrow}^{\dagger} \hat{c}_{l \downarrow} \tag{L128}
\end{equation*}
$$

Mean-Field Solution

$$
\begin{gather*}
\hat{\mathcal{H}}=\sum_{\left\langle l^{\prime}\right\rangle}-\mathfrak{t}\left[\hat{c}_{l \sigma}^{\dagger} \hat{c}_{l^{\prime} \sigma}+\hat{c}_{l^{\prime} \sigma}^{\dagger} \hat{c}_{l \sigma}\right]+U \sum_{l} \hat{n}_{l \uparrow} \hat{n}_{l \downarrow} .  \tag{L129}\\
\hat{n}_{l \sigma}=n_{\sigma}+\left(\hat{n}_{l \sigma}-n_{\sigma}\right) .  \tag{L130}\\
\hat{\mathcal{H}} \approx \sum_{\left\langle l^{\prime}\right\rangle}-\mathfrak{t}\left[\hat{c}_{l \sigma}^{\dagger} \hat{c}_{l^{\prime} \sigma}+\hat{c}_{l^{\prime} \sigma}^{\dagger} \hat{c}_{l \sigma}\right]+U \sum_{l} \hat{n}_{l \uparrow} n_{\downarrow}+n_{\uparrow} \hat{n}_{l \downarrow}-n_{\uparrow} n_{\downarrow} .  \tag{L131}\\
\sum_{\vec{k} \vec{\delta} \sigma}-\mathfrak{t} \hat{c}_{\vec{k} \sigma}^{\dagger} \hat{c}_{\vec{k} \sigma} \cos \vec{\delta} \cdot \vec{k}+U \sum_{\vec{k}} \hat{n}_{\vec{k} \uparrow} n_{\downarrow}+n_{\uparrow} \hat{n}_{\vec{k} \downarrow}-n_{\uparrow} n_{\downarrow} .  \tag{L132}\\
N n_{\uparrow}=N a \int_{-k_{F \uparrow}}^{k_{F \uparrow}} \frac{d k}{2 \pi} \tag{L133}
\end{gather*}
$$

## Hubbard Model

$$
\begin{equation*}
\Rightarrow \pi n_{\uparrow}=a k_{F \uparrow} \tag{L134}
\end{equation*}
$$

$$
\begin{gather*}
\mathcal{E}_{0}=\frac{N}{\pi}[-2 \mathfrak{t}]\left[\sin \pi n_{\uparrow}+\sin \pi n_{\downarrow}\right]+N U n_{\uparrow} n_{\downarrow} .  \tag{L135}\\
\mathcal{E}_{0}=\frac{-4 \mathfrak{t} N}{\pi} \sin \pi n_{\uparrow}+N U n_{\uparrow}\left(1-n_{\uparrow}\right) . \tag{L136}
\end{gather*}
$$

$$
\begin{equation*}
\frac{U}{\mathfrak{t}}>\frac{16}{\pi} \tag{L137}
\end{equation*}
$$

## An Unsolved Problem...



Figure 9: Six representative phase diagrams of the two-dimensional Hubbard model

