Superconductivity

Perfect Diamagnetism
Landau-Ginzburg Equations
Type I and Type II Superconductors
Flux Quantization
Josephson Effect
(®) Superconducting Quantum Interference Devices (SQUIDS)
Isotope Effect and Fröhlich Hamiltonian
Cooper Problem
Bardeen Cooper Schrieffer (BCS) Theory
Bogoliubov Theory
High-Temperature Superconductors

Idea of Superconductivity

Expulsion of magnetic fields, not infinite conductivity, is the key.

Figure 1: Flux threading a current loop

Wave function is rigid

$$
\begin{align*}
m \dot{\vec{v}} & =-e \vec{E} \tag{L1}\\
\Rightarrow \frac{\partial \vec{j}}{\partial t} & =\frac{n e^{2}}{m} \vec{E} \tag{L2}\\
\Rightarrow \frac{\partial}{\partial t} \vec{\nabla} \times \vec{\nabla} \times \frac{\vec{B}}{\mu} & =\frac{4 \pi n e^{2}}{m c} \vec{\nabla} \times \vec{E} \tag{L3}\\
\Rightarrow \vec{\nabla} \times \vec{\nabla} \times \frac{\vec{B}}{\mu} & =-\frac{4 \pi n e^{2}}{m c^{2}}\left(\vec{B}-\vec{B}_{0}\right) . \tag{L4}
\end{align*}
$$

London Penetration

$$
\begin{gather*}
\vec{B}+\lambda_{L}^{2} \vec{\nabla} \times \vec{\nabla} \times \vec{B}=0 \tag{L5}\\
\lambda_{L}=\sqrt{\frac{m c^{2}}{4 \pi \mu n e^{2}}} . \tag{L6}\\
\vec{B}+\lambda_{L}^{2}\left(\vec{\nabla}(\vec{\nabla} \cdot \vec{B})-\nabla^{2} \vec{B}\right)=0 . \tag{L7}\\
B_{z}=0 . \tag{L8}\\
B_{x}=\lambda_{L}^{2} \frac{\partial^{2} B_{x}}{\partial z^{2}} \Rightarrow B_{x} \propto e^{-z / \lambda_{L}} . \tag{L9}
\end{gather*}
$$

Phenomenological Free Energy

$$
\begin{equation*}
\mathcal{F}=\int d \vec{r} d \vec{r}^{\prime} \sum_{\alpha \beta} \frac{1}{2} A_{\alpha}(\vec{r}) G_{\alpha \beta}\left(\vec{r}-\vec{r}^{\prime}\right) A_{\beta}\left(\vec{r}^{\prime}\right)+\delta\left(\vec{r}-\vec{r}^{\prime}\right) \frac{1}{8 \pi} \vec{B}(\vec{r}) \cdot \vec{B}\left(\vec{r}^{\prime}\right) . \tag{L10}
\end{equation*}
$$

$$
\begin{gather*}
{\left[\vec{\nabla} \times \vec{\nabla} \times \frac{\vec{A}(\vec{r})}{4 \pi}\right]_{\alpha}=-\int d \vec{r}^{\prime} \sum_{\beta} G_{\alpha \beta}\left(\vec{r}-\vec{r}^{\prime}\right) A_{\beta}\left(\vec{r}^{\prime}\right)} \tag{L11}\\
\Rightarrow j_{\alpha}(\vec{r})=\frac{c}{4 \pi}[\vec{\nabla} \times \vec{B}]_{\alpha}=-c \int d \vec{r}^{\prime} \sum_{\beta} G_{\alpha \beta}\left(\vec{r}-\vec{r}^{\prime}\right) A_{\beta}\left(\vec{r}^{\prime}\right) . \tag{L12}\\
\sum_{\beta}\left\{G_{\alpha \beta}(\vec{k})+\frac{1}{4 \pi}\left(k^{2} \delta_{\alpha \beta}-k_{\alpha} k_{\beta}\right)\right\} A_{\beta}=0 . \tag{L13}\\
G_{\alpha \beta} \rightarrow\left(\frac{1}{\mu}-1\right) \frac{1}{4 \pi}\left[k^{2} \delta_{\alpha \beta}-k_{\alpha} k_{\beta}\right] . \tag{L1}
\end{gather*}
$$

$$
\begin{gather*}
\frac{1 / \mu-1}{8 \pi} \int d \vec{r} d \vec{r}^{\prime} \delta\left(\vec{r}-\vec{r}^{\prime}\right) \vec{A} \cdot \vec{\nabla} \times \vec{\nabla} \times \vec{A} \tag{L15}\\
=\frac{1 / \mu-1}{8 \pi} \int d \vec{r} B(\vec{r})^{2} \tag{L16}\\
\mathcal{F}=\frac{1}{8 \pi \mu} \int d \vec{r} B^{2}(\vec{r}) \tag{L17}\\
\lim _{k \rightarrow 0} G_{\alpha \beta}=\frac{1}{4 \pi \lambda_{L}^{2}} \delta_{\alpha \beta} \\
\frac{1}{8 \pi} \int d \vec{r} \frac{1}{\lambda_{L}^{2}} A^{2}(\vec{r})+|\vec{\nabla} \times \vec{A}|^{2} \tag{L19}\\
\frac{1}{\lambda_{L}^{2}} \vec{A}+\vec{\nabla} \times \vec{\nabla} \times \vec{A}=0 \tag{L20}\\
\vec{B}+\lambda_{L}^{2} \vec{\nabla} \times \vec{\nabla} \times \vec{B}=0 \tag{L21}
\end{gather*}
$$

$$
\begin{gather*}
\mathcal{F}=\mathcal{F}_{\text {normal }}+\frac{1}{8 \pi \mu} B_{c}^{2} . \\
\tilde{\mathcal{G}}=\mathcal{F}-\vec{B} \cdot \frac{\delta \mathcal{F}}{\delta \vec{B}}=\mathcal{F}_{\text {normal }}-\frac{1}{8 \pi \mu} B_{c}^{2} . \\
\Delta \mathcal{F} \equiv \mathcal{F}_{\text {normal }}-\mathcal{F}_{\text {superconducting }}=\frac{B_{c}^{2}}{8 \pi \mu} . \\
\Delta \mathcal{F}=\frac{H_{c}^{2}}{8 \pi} . \tag{L25}\\
\Delta S=\frac{\partial}{\partial T} \Delta \mathcal{F}=\frac{H_{c}}{4 \pi} \frac{\partial H_{c}}{\partial T} . \tag{L26}
\end{gather*}
$$

$$
\begin{gather*}
\mathcal{F}=\int \frac{d \vec{r}}{\mathcal{V}} \alpha|\Psi|^{2}+\frac{\beta}{2}\left|\Psi^{4}\right|+\frac{1}{8 \pi} B^{2}+\frac{1}{2 m^{\star}}\left|\left[\frac{\hbar}{i} \vec{\nabla}+\frac{2 e}{c} \vec{A}(\vec{r})\right] \Psi(\vec{r})\right|^{2} . \tag{L27}\\
\vec{\nabla} \times \vec{B}=\frac{4 \pi}{c} \vec{j}, \tag{L28}\\
\vec{j}(\vec{r})=-\frac{2 e \hbar}{2 i m^{\star}}\left[\Psi^{*} \vec{\nabla} \Psi-\Psi \vec{\nabla} \Psi^{*}\right]-\frac{4 e^{2}}{m^{\star} c} \vec{A} \Psi^{*} \Psi . \tag{L29a}
\end{gather*}
$$

Minimizing with respect to Ψ^{*} leads to

$$
\begin{gather*}
0=\left[\alpha+\beta|\Psi|^{2}+\frac{1}{2 m^{\star}}\left(\frac{\hbar}{i} \vec{\nabla}+\frac{2 e}{c} \vec{A}\right)^{2}\right] \Psi . \tag{L29b}\\
\hat{n} \cdot\left(\frac{\hbar}{i} \vec{\nabla}+\frac{2 e}{c} \vec{A}\right) \Psi=0 \tag{L30}
\end{gather*}
$$

Type I and Type II Superconductors

Compare the following lengths:

$$
\begin{gather*}
\xi^{2}=\frac{\hbar^{2}}{2 m^{\star}|\alpha|} . \tag{L31}\\
\lambda_{L}^{2}=\frac{m^{\star} c^{2} \beta}{4 \pi|\alpha|(2 e)^{2}} . \tag{L32}
\end{gather*}
$$

Type I and Type II Superconductors

Compound	$\begin{gathered} T_{c} \\ (\mathrm{~K}) \end{gathered}$	H_{c} (G)	$\begin{gathered} \xi \\ (\AA) \end{gathered}$	$\begin{aligned} & \lambda_{L} \\ & (\AA \AA) \end{aligned}$
A1	1.18	105	13000-16000	160-500
$\mathrm{Ba}(P=20 \mathrm{GPa})$	5.3			
$\mathrm{Bi}(P=8 \mathrm{GPa})$	8.55			
$\underset{\mathrm{Ga}}{\mathrm{Ce}}(P=5 \mathrm{GPa})$	1.7			
Ga	1.09	58.9		
Hg	3.95	340		380-450
Ir	0.10	20.1		
Lu	0.1			
Mo	0.92	98		
$\mathrm{P}(P=17 \mathrm{GPa})$	5.8			
$\stackrel{\mathrm{Pb}}{ }$	7.20	803	510-960	390-630
$\mathrm{Si}_{\mathrm{Sn}}(P=12 \mathrm{GPa})$	7.1	308	$1000-3000$	340-750
$\mathrm{Te}(P=8 \mathrm{GPa})$	4.3			
Th	1.37	162		
Tl	2.4	180	4200	
U	1.8			
W	0.02	1.07		
Zn	0.85	52		
Zr	0.53	47		
$\mathrm{Nb}_{3} \mathrm{Sn}$	18.5	28	34	1600
${ }^{\mathrm{YBa}}{ }_{2} \mathrm{Cu}_{3} \mathrm{O}_{7-x}$	92	500	4-8	900-8000
$\mathrm{HgBa}_{2} \mathrm{Ca}_{2} \mathrm{Cu}_{3} \mathrm{O}_{\mathrm{y}}$	135			

Type I and Type II Superconductors

$$
\begin{gather*}
|\Psi|^{2}=\left\{\begin{array}{l}
\Psi_{0}^{2} \equiv-\frac{\alpha}{\beta} \quad \text { or } \\
0 . \\
\frac{\mathcal{F}}{\mathcal{V}}=-\frac{\alpha^{2}}{2 \beta} \\
H_{c}^{2}=\frac{4 \pi \alpha^{2}}{\beta} \\
\psi=\frac{\Psi}{\Psi_{0}} \\
-\xi^{2} \nabla^{2} \psi-\psi+\psi|\psi|^{2}=0 \\
-\xi^{2} \psi^{\prime \prime}-\psi+\psi^{3}=0
\end{array}\right. \tag{L33}
\end{gather*}
$$

Type I and Type II Superconductors

$$
\begin{gather*}
-\xi^{2}\left(\psi^{\prime}\right)^{2}-\psi^{2}+\frac{1}{2} \psi^{4}=\text { Const. } \tag{L39}\\
\psi^{\prime}=\frac{1}{\sqrt{2} \xi}\left(1-\psi^{2}\right) \tag{L40}\\
\psi=\tanh \frac{x}{\sqrt{2} \xi} . \tag{L41}\\
\vec{j}=\frac{c}{4 \pi} \vec{\nabla} \times \vec{B}=-\frac{4 e^{2}}{m^{\star} c} \Psi_{0}^{2} \vec{A} . \tag{L42}\\
\vec{\nabla} \times \vec{\nabla} \times \vec{B}=-\frac{4 \pi}{c} \frac{4 e^{2}}{m^{\star} c} \Psi_{0}^{2} \vec{B}=-\lambda_{L}^{-2} \vec{B} . \tag{L43}\\
\kappa=\lambda_{L} / \xi=\frac{m^{\star} c}{e \hbar} \sqrt{\frac{\beta}{8 \pi}} \tag{L44}
\end{gather*}
$$

Type I and Type II Superconductors

$$
\begin{gather*}
\vec{a}=\frac{4 e \vec{A}}{c \sqrt{2 m^{\star}|\alpha|}} \tag{L45}\\
\psi-\psi|\psi|^{2}-(-i \vec{\nabla}+\vec{a} / 2)^{2} \psi=0 \tag{L46}\\
\frac{\lambda_{L}^{2} \overrightarrow{\xi^{2}}}{2} \times \vec{\nabla} \times \vec{a}=-\frac{1}{i}\left(\psi^{*} \vec{\nabla} \psi-\psi \vec{\nabla} \psi^{*}\right)-|\psi|^{2} \vec{a} . \tag{L47}\\
\frac{1}{2 m^{\star}}\left(-i \hbar \vec{\nabla}+\frac{2 e \vec{A}}{c}\right)^{2} \Psi=-\alpha \Psi . \tag{L48}\\
\omega_{c}=\frac{2 e H_{c_{2}}}{m^{\star} c} \tag{L49}\\
-\alpha=|\alpha|=\frac{e \hbar H_{c_{2}}}{m^{\star} c} \tag{L50}\\
\frac{H_{c_{2}}}{H_{c}}=\sqrt{2} \kappa
\end{gather*}
$$

Type I and Type II Superconductors

$$
\begin{gather*}
\frac{\tilde{\mathcal{G}}}{A}=\frac{H_{c}^{2}}{4 \pi} \sqrt{2} \xi \frac{2}{3} \tag{L52}\\
\frac{\tilde{\mathcal{G}}}{A}=-\frac{H_{c}^{2}}{8 \pi} \lambda_{L} \tag{L53}
\end{gather*}
$$

Figure 2: A Type II superconductor is unstable to the formation of flux tubes (A) Magnetic flux entering a lead film [Tonomura et al. (1986)] (B) Top view of an Abrikosov lattice of flux tubes in NbSe_{2} [S. Pan and A. de Lozanne]

$$
\begin{equation*}
\vec{j}=-\frac{e^{\star} \hbar}{2 i m^{\star}}\left[\Psi^{*} \vec{\nabla} \Psi-\Psi \vec{\nabla} \Psi^{*}\right]-\frac{e^{\star 2}}{m^{\star} c} \vec{A} \Psi^{*} \Psi \tag{L54}
\end{equation*}
$$

$$
\begin{equation*}
\Psi(\vec{r})=\Psi_{0} e^{i \phi(\vec{r})} \tag{L55}
\end{equation*}
$$

$$
\begin{align*}
& \vec{j}=-\frac{\Psi_{0}^{2}}{m^{\star}}\left(\frac{e^{\star 2}}{c} \vec{A}+e^{\star} \hbar \vec{\nabla} \phi\right) \tag{L56}\\
& \Rightarrow-\vec{\nabla} \phi= \frac{1}{\hbar}\left(\frac{m^{\star}}{e^{\star} \Psi_{0}^{2}} \vec{j}+\frac{e^{\star}}{c} \vec{A}\right) . \tag{L57}\\
&-\int d \vec{s} \cdot \vec{\nabla} \phi=2 \pi l . \tag{L58}\\
& \int d \vec{s} \cdot \frac{1}{\hbar}\left[\frac{m^{\star}}{e^{\star} \Psi_{0}^{2}} \vec{j}+\frac{e^{\star}}{c} \vec{A}\right]=2 \pi l . \tag{L59}
\end{align*}
$$

$$
\begin{align*}
\frac{e^{\star}}{c \hbar} \int d \vec{s} \cdot \vec{A} & =2 \pi l \tag{L6}\\
\Rightarrow \int d^{2} r B_{z}=\Phi=\frac{2 \pi l \hbar c}{e^{\star}} & =l \frac{e}{e^{\star}} \Phi_{0} . \tag{L61}
\end{align*}
$$

Figure 3: Magnetic flux that pierces a superconducting ring is quantized in units of $\Phi_{0} / 2$.

Figure 4: Trapped magnetic flux in a superconducting cylinder as a function of applied field. [Deaver and Fairbank (1961)]

The Josephson Effect

$$
\begin{gather*}
\int d \vec{r} U(\vec{r})\left(\Psi_{1}^{*}(\vec{r}) \Psi_{2}(\vec{r})+\Psi_{1}(\vec{r}) \Psi_{2}^{*}(\vec{r})\right) \tag{L62}\\
=\epsilon\left(\Psi_{1}^{*} \Psi_{2}+\Psi_{1} \Psi_{2}^{*}\right), \tag{L63}\\
\frac{\partial \Psi_{1}}{\partial t}=\frac{-i}{\hbar}\left[\mathcal{E}_{1} \Psi_{1}+\epsilon \Psi_{2}\right] \tag{L64a}\\
\frac{\partial \Psi_{2}}{\partial t}=\frac{-i}{\hbar}\left[\varepsilon_{2} \Psi_{2}+\epsilon \Psi_{1}\right] . \tag{L64b}\\
\Psi_{l}=\sqrt{n_{l}} e^{i \phi_{l}} \tag{L65}\\
\left(\frac{1}{2} \frac{\dot{n_{1}}}{\sqrt{n_{1}}}+i \sqrt{n_{1}} \dot{\phi}_{1}\right) e^{i \phi_{1}}=\frac{-i}{\hbar}\left[\varepsilon_{1} \sqrt{n_{1}} e^{i \phi_{1}}+\epsilon \sqrt{n_{2}} e^{i \phi_{2}}\right] . \tag{L66}\\
\dot{n_{1}}=2 \frac{\epsilon n}{\hbar} \sin \left(\phi_{2}-\phi_{1}\right)=-\dot{n_{2}}=\frac{j}{2 e} \tag{L67a}\\
\hline
\end{gather*}
$$

$$
\begin{align*}
\dot{\phi}_{2}-\dot{\phi}_{1} & =\frac{1}{\hbar}\left(\varepsilon_{1}-\varepsilon_{2}\right)=2 e\left(V_{2}-V_{1}\right) / \hbar . \tag{L67b}\\
\vec{j} & =\vec{j}_{0} \sin \left(\phi_{2}-\phi_{1}+\frac{2 e}{\hbar c} \int_{1}^{2} d \vec{s} \cdot \vec{A}\right) \tag{L68a}\\
\frac{-1}{\hbar}\left(\varepsilon_{2}-\varepsilon_{1}\right) & =2 e V / \hbar=\frac{\partial}{\partial t}\left(\phi_{2}-\phi_{1}+\frac{2 e}{\hbar c} \int_{1}^{2} d \vec{s} \cdot \vec{A}\right) . \tag{L68b}
\end{align*}
$$

Figure 5: (A) Setting for Fraunhofer diffraction in a Josephson junction. (B) Measurement of J_{c} in an $\mathrm{Sn}-\mathrm{SnO}-\mathrm{Sn}$ junction at $T=1.9$ K. [R. C Jaklevic, 1969]

Circuits with Josephson Junction Elements 23

$$
\begin{gather*}
\frac{V}{R}+J_{0} \sin \phi+C \dot{V}=J, \tag{L69}\\
\dot{\phi}=2 e V / \hbar, \tag{L77}\\
J=\frac{\dot{\phi} \hbar}{2 e R}+J_{0} \sin \phi+\frac{C \hbar}{2 e} \ddot{\phi} \tag{L71}\\
\Rightarrow \frac{\hbar C}{2 e} \ddot{\phi}+\frac{\hbar}{2 e R} \dot{\phi}=-\frac{\partial}{\partial \phi}\left[-\phi J-J_{0} \cos \phi\right] . \tag{L72}
\end{gather*}
$$

Circuits with Josephson Junction Elements 24

Figure 6: The washboard potential in Eq. (L72).

$$
\begin{gather*}
t_{0}=\frac{\hbar}{2 e J_{0} R} \tag{L73}\\
\beta \ddot{\phi}+\dot{\phi}=-\frac{\partial}{\partial \phi}\left[-\phi \frac{J}{J_{0}}-\cos \phi\right], \tag{L74}\\
\beta=\frac{J_{0} R^{2} C 2 e}{\hbar} \tag{L75}
\end{gather*}
$$

$$
\begin{align*}
\oint d \vec{s} \cdot \vec{A} & =\Phi=\int_{4}^{1} d \vec{s} \cdot \vec{A}-\frac{\Phi_{0}}{4 \pi} \int_{1}^{2} d \vec{s} \cdot \vec{\nabla} \phi+\int_{2}^{3} d \vec{s} \cdot \vec{A}-\frac{\Phi_{0}}{4 \pi} \int_{3}^{4} d \vec{s} \cdot \vec{\nabla} \phi \tag{L76}\\
\Rightarrow \Phi & =\frac{\Phi_{0}}{4 \pi}\left(\gamma_{23}-\gamma_{14}\right) \tag{L77}
\end{align*}
$$

where

$$
\begin{equation*}
\gamma_{14}=\phi_{4}-\phi_{1}+\frac{4 \pi}{\Phi_{0}} \int_{1}^{4} d \vec{s} \cdot \vec{A} . \tag{L77}
\end{equation*}
$$

$$
\begin{array}{ll}
\phi_{2} & \phi_{3}
\end{array}
$$

Figure 7: DC SQUID.

$$
\begin{align*}
J & =J_{0} \sin \left(\gamma_{14}\right)+J_{0} \sin \left(\gamma_{23}\right) \tag{L79}\\
& =J_{0}\left[\sin \left(\gamma_{23}-4 \pi \Phi / \Phi_{0}\right)+\sin \left(\gamma_{23}\right)\right] \tag{L80}
\end{align*}
$$

Origin of Josephson's Equations

$$
\begin{align*}
\vec{j} & =-\frac{\left|\Psi_{0}\right|^{2} 8 \pi e \hbar}{m^{\star} \Phi_{0}}\left[\frac{\Phi_{0}}{4 \pi} \vec{\nabla} \phi+\vec{A}\right] \\
L=\int d \vec{r} d t \mathcal{L} & =\int d \vec{r} d t\left\{\frac{E^{2}-B^{2}}{8 \pi}-G(\vec{A}+\vec{\nabla} \chi, V-\dot{\chi} / c)\right\} \\
\vec{E} & =-\vec{\nabla} V-\frac{1}{c} \frac{\partial \vec{A}}{\partial t}, \quad \text { and } \quad \vec{B}=\vec{\nabla} \times \vec{A} \\
\frac{\delta L}{\delta V} & =0 \Rightarrow \frac{\partial G}{\partial V}=-n e \\
\frac{\delta L}{\delta \vec{A}} & =0 \Rightarrow \frac{\partial G}{\partial \vec{A}}=-\frac{\vec{j}}{c} \\
\frac{\delta L}{\delta \chi} & =0 \Rightarrow \vec{\nabla} \cdot \frac{\partial G}{\partial \vec{A}}-\frac{\partial}{\partial t} \frac{1}{c} \frac{\partial G}{\partial V}=0 \tag{L85}\\
\Rightarrow \frac{\partial}{\partial t}[-n e] & =-\vec{\nabla} \cdot \vec{j} \tag{L86}
\end{align*}
$$

$$
\begin{gather*}
\mathcal{H}=\overrightarrow{\dot{A}} \cdot \frac{\partial \mathcal{L}}{\partial \overrightarrow{\dot{A}}}+\dot{\chi} \frac{\partial \mathcal{L}}{\partial \dot{\chi}}-\mathcal{L} . \tag{L87}\\
\frac{\partial \mathcal{L}}{\partial \dot{\chi}}=-\frac{n e}{c} . \tag{L88}
\end{gather*}
$$

$$
\begin{align*}
\frac{\partial \mathcal{H}}{\partial \chi} & =\frac{\dot{n} e}{c} \tag{L89a}\\
\frac{\partial \mathcal{H}}{\partial[-n e / c]} & =\dot{\chi} . \tag{L89b}\\
\dot{\chi}=-\frac{c \mu}{e} & \Rightarrow \dot{\phi}=-\frac{2 \mu}{\hbar}=\frac{2 e \mathrm{~V}}{\hbar} . \tag{L90}
\end{align*}
$$

Microscopic Theory of Superconductivity 29

Figure 8: Superconducting transition temperature T_{c} versus average isotopic mass in four samples of mercury. [Reynolds et al. (1950).]

Electron-Ion Interaction

$$
\begin{gather*}
\sigma_{\mathrm{el}}=\frac{i \omega \chi_{\mathrm{c}}}{q^{2}} \tag{L91}\\
\chi_{\mathrm{c}}=-\frac{m e^{2}}{\pi^{2} \hbar^{2}} \frac{\left(4 k_{F}^{2}-q^{2}\right) \log \left(\frac{q+2 k_{F}}{2 k_{F}-q}\right)+4 k_{F} q}{8 q} \tag{L92}\\
\chi_{\mathrm{c}}=-\frac{m e^{2} k_{F}}{\pi^{2} \hbar^{2}} \equiv-\frac{\kappa_{\mathrm{c}}^{2}}{4 \pi} \tag{L93}
\end{gather*}
$$

Electron-Ion Interaction

Figure 9: Charge susceptibility χ_{c}.

$$
\begin{equation*}
\sigma_{\mathrm{el}}=\frac{\omega \kappa_{\mathrm{c}}^{2}}{4 \pi i q^{2}} \tag{L94}
\end{equation*}
$$

Electron-Ion Interaction

$$
\begin{gather*}
\vec{u}=\frac{-e^{\star} \vec{E}}{M\left(\omega^{2}-\bar{\omega}_{\vec{q}}^{2}\right)} \\
\vec{j}_{\mathrm{ion}}(\vec{q}, \omega)=-i \omega n e^{\star} \vec{u} \\
\omega_{\mathrm{pi}}^{2}=\frac{4 \pi n e^{\star 2}}{M}=-\frac{\omega}{4 \pi i} \frac{\omega_{\mathrm{pi}}^{2}}{\omega^{2}-\bar{\omega}_{\vec{q}}^{2}} \\
=\frac{\omega}{4 \pi i}\left[\frac{\kappa_{\mathrm{c}}^{2}}{q^{2}}-\frac{\omega_{\mathrm{pi}}^{2}}{\omega^{2}-\bar{\omega}_{\vec{q}}^{2}}\right] \\
\Rightarrow \epsilon(\vec{q}, \omega) \tag{L99}\\
=(\vec{q}, \omega)=1+\frac{\kappa_{\mathrm{c}}^{2}}{q^{2}}-\frac{\omega_{\mathrm{pi}}^{2}}{\omega^{2}-\bar{\omega}_{\vec{q}}^{2}} \tag{L100}
\end{gather*}
$$

Electron-Ion Interaction

$$
\begin{gather*}
\omega_{\vec{q}}^{2}=\bar{\omega}_{\vec{q}}^{2}+\frac{q^{2} \omega_{\mathrm{pi}}^{2}}{q^{2}+\kappa_{\mathrm{c}}^{2}} \tag{L101}\\
\frac{1}{\epsilon(\vec{q}, \omega)}=\frac{q^{2}}{q^{2}+\kappa_{\mathrm{c}}^{2}}\left[\frac{\omega^{2}-\bar{\omega}_{\vec{q}}^{2}}{\omega^{2}-\omega_{\vec{q}}^{2}}\right] \tag{L102}
\end{gather*}
$$

$$
\begin{equation*}
\left|\psi_{1} e^{i \vec{k}_{1} \cdot \vec{r}-\varepsilon_{1} t / \hbar}+\psi_{2} e^{i \vec{k}_{2} \cdot \vec{r}-\varepsilon_{2} t / \hbar}\right|^{2} \propto \text { const. }+\cos \left[\left(\vec{k}_{1}-\vec{k}_{2}\right) \cdot \vec{r}-\left(\varepsilon_{1}-\varepsilon_{2}\right) t / \hbar\right] . \tag{L103}
\end{equation*}
$$

$$
\begin{equation*}
U_{\mathrm{eff}}=\frac{4 \pi e^{2}}{\epsilon(\vec{q}, \omega) q^{2}}=\frac{4 \pi e^{2}}{q^{2}+\kappa_{\mathrm{c}}^{2}}\left[1+\frac{\omega_{\vec{q}}^{2}-\bar{\omega}_{\vec{q}}^{2}}{\omega^{2}-\omega_{\vec{q}}^{2}}\right] \tag{L104a}
\end{equation*}
$$

with

$$
\begin{equation*}
\vec{q}=\vec{k}_{1}-\vec{k}_{2} \text { and } \hbar \omega=\varepsilon_{1}-\varepsilon_{2} \tag{L104b}
\end{equation*}
$$

$$
\begin{gather*}
\hat{U}_{\text {el-phon }}=\frac{1}{\sqrt{\mathcal{V}}} \sum_{\substack{\vec{q}^{\prime \prime} \vec{k}}}\left[C_{\vec{k}}^{*} \hat{c}_{\vec{q}^{\prime \prime}-\vec{k}, \sigma}^{\dagger} \hat{c}_{\vec{q}^{\prime \prime} \sigma} \hat{a}_{\vec{k}}^{\dagger}+C_{\vec{k}} \hat{c}_{\vec{q}^{\prime \prime}+\vec{k}, \sigma}^{\dagger} \hat{c}_{\vec{q}^{\prime \prime}, \sigma} \hat{a}_{\vec{k}}\right] \tag{L105}\\
=\frac{1}{\sqrt{V}} \sum_{\substack{\vec{q}^{\prime} \vec{q} \\
\sigma}} C_{\vec{q}}\left[\hat{c}_{\vec{q}^{\prime}+\vec{q}, \sigma}^{\dagger} \hat{c}_{\vec{q}^{\prime}, \sigma} \hat{a}_{-\vec{q}}^{\dagger}+\hat{c}_{\vec{q}^{\prime}+\vec{q}, \sigma}^{\dagger} \hat{c}_{\vec{q}^{\prime}, \sigma} \hat{a}_{\vec{q}}\right] \tag{L106}\\
\epsilon_{\mathrm{el}}(\vec{q}, \omega)=\frac{q^{2}+\kappa_{\mathrm{c}}^{2}}{q^{2}}, \tag{L107}\\
\hat{\mathcal{H}}_{\substack{\text { screened } \\
\text { Coulomb }}}^{2}=\frac{1}{\mathcal{V}} \sum_{\substack{\vec{q}, \vec{k}, \vec{k}^{\prime} \\
\sigma, \sigma^{\prime}}} \frac{1}{2} \frac{4 \pi e^{2}}{q^{2}+\kappa_{\mathrm{c}}^{2}} \hat{c}_{\vec{k}^{\prime}-\vec{q}, \sigma^{\prime}}^{\dagger} \hat{c}_{\vec{k}+\vec{q}, \sigma}^{\dagger} \hat{c}_{\vec{k}, \sigma} \hat{c}_{\vec{k}^{\prime}, \sigma^{\prime}}^{\prime} \tag{L108}
\end{gather*}
$$

$$
\begin{gather*}
\hat{\mathcal{H}}=\sum_{\vec{q}, \sigma} \epsilon_{\vec{q}} \hat{c}_{\vec{q} \sigma}^{\dagger} \hat{c}_{\vec{q} \sigma}+\frac{1}{\mathcal{V}} \sum_{\substack{\vec{q}, \vec{k}, \vec{k}^{\prime}}} \frac{1}{2} \frac{4 \pi e^{2}}{q^{2}+\kappa_{\mathrm{c}}^{2}} \hat{c}_{\vec{k}^{\prime}-\vec{q}, \sigma^{\prime}}^{\dagger} \hat{c}_{\vec{k}+\vec{q}, \sigma}^{\dagger} \hat{c}_{\vec{k}, \sigma} \hat{c}_{\vec{k}^{\prime}, \sigma^{\prime}} \\
\sum_{\substack{\sigma, \sigma^{\prime}}} \hbar \omega_{\vec{k}} \hat{a}_{\vec{k}}^{\dagger} \hat{a}_{\vec{k}}+\frac{1}{\sqrt{\mathcal{q}}, \vec{q}^{\prime}} \sum_{\vec{q}+\vec{q}^{\prime}, \sigma} \hat{c}_{\vec{q}^{\prime}, \sigma} C_{\vec{q}}\left[\hat{a}_{\vec{q}}+\hat{a}_{-\vec{q}}^{\dagger}\right] \tag{L109}\\
e^{-\hat{S}} \tilde{a}_{\vec{k}} e^{\hat{S}}=\hat{a}_{\vec{k}} \tag{L110}\\
e^{-\hat{S}} \tilde{c}_{\vec{k} \sigma} e^{\hat{S}}=\hat{c}_{\vec{k} \sigma} \tag{L111}\\
\hat{\mathcal{H}}=e^{-\hat{S}} \tilde{\mathcal{H}} e^{\hat{S}}, \tag{L112}\\
e^{-\hat{S}} \tilde{\mathcal{H}} e^{\hat{S}}=\tilde{\mathcal{H}}+[\tilde{\mathcal{H}}, \hat{S}]+\frac{1}{2}[[\tilde{\mathcal{H}}, \hat{S}], \hat{S}]+\ldots \tag{L113}
\end{gather*}
$$

Formal Derivation

$$
\begin{align*}
\hat{\mathcal{H}} & \approx \tilde{\mathcal{H}}_{0}+\left[\tilde{\mathcal{H}}_{0}, \hat{S}\right]+\tilde{\mathcal{H}}_{1}+\frac{1}{2}\left[\left[\tilde{\mathcal{H}}_{0}, \hat{S}\right], \hat{S}\right]+\left[\tilde{\mathcal{H}}_{1}, \hat{S}\right] \tag{L114}\\
& =\tilde{\mathcal{H}}_{0}+\frac{1}{2}\left[\tilde{\mathcal{H}}_{1}, \hat{S}\right], \tag{L115}
\end{align*}
$$

just so long as

$$
\begin{gather*}
0=\left[\tilde{\mathcal{H}}_{0}, \hat{S}\right]+\tilde{\mathcal{H}}_{1} . \\
\hat{\mathcal{H}}=\frac{1}{2 \mathcal{V}} \sum_{\substack{\vec{q} \overrightarrow{k_{k} k^{\prime}} \\
\sigma \sigma^{\prime}}}\left[\frac{2\left|C_{\vec{q}}\right|^{2} \hbar \omega_{\vec{q}}}{\left(\epsilon_{\vec{k}}-\epsilon_{\vec{k}+\vec{q}}\right)^{2}-\hbar^{2} \omega_{\vec{q}}^{2}}+\frac{4 \pi e^{2}}{q^{2}+\kappa_{\mathrm{c}}^{2}}\right] \tilde{c}_{\overrightarrow{k^{\prime}}-\vec{q} \sigma^{\prime}}^{\dagger} \tilde{c}_{\vec{k}+\vec{q} \sigma}^{\dagger} \tilde{c}_{\vec{k} \sigma} \tilde{c}_{\vec{k}^{\prime} \sigma^{\prime}} . \tag{L117}
\end{gather*}
$$

Cooper Problem

$$
\begin{gather*}
|G\rangle=\prod_{k<k_{F}} \hat{c}_{\vec{k}}^{\dagger}|\varnothing\rangle . \tag{L118}\\
{\left[\frac{-\hbar^{2} \nabla_{1}^{2}}{2 m}+\frac{-\hbar^{2} \nabla_{2}^{2}}{2 m}+U\left(\vec{r}_{1}-\vec{r}_{2}\right)\right] \Psi\left(\vec{r}_{1}, \vec{r}_{2}\right)=\varepsilon \Psi\left(\vec{r}_{1}, \vec{r}_{2}\right),} \tag{L119}\\
\Psi\left(\vec{r}_{1}, \vec{r}_{2}\right)=\sum_{k^{\prime}>k_{F}} \Psi_{\vec{k}^{\prime}} e^{-\overrightarrow{\vec{k}^{\prime}} \cdot\left(\vec{r}_{1}-\vec{r}_{2}\right)} . \tag{L120}\\
\left(2 \epsilon_{\vec{k}}-\mathcal{E}\right) \Psi_{\vec{k}}+\sum_{k^{\prime}>k_{F}} U_{\overrightarrow{k^{\prime}}} \Psi_{\vec{k}^{\prime}}=0 . \tag{L121}\\
U_{\overrightarrow{k k^{\prime}}}=-\frac{U_{0}}{V} \theta\left(\hbar \omega-\left|\varepsilon_{F}-\epsilon_{\vec{k}}\right|\right) \theta\left(\hbar \omega-\left|\varepsilon_{F}-\epsilon_{\vec{k}^{\prime}}\right|\right) . \tag{L122}
\end{gather*}
$$

Cooper Problem

$$
\begin{gather*}
\left(2 \epsilon_{\vec{k}}-\mathcal{E}\right) \Psi_{\vec{k}}=\frac{U_{0}}{V} \sum_{k^{\prime}>k_{F}}^{k_{\max }} \Psi_{\vec{k}^{\prime}} . \tag{L123}\\
\mathcal{E}=2 \epsilon_{\vec{k}_{a}}, \tag{L124}\\
\Psi_{\vec{k}_{a}}=-\Psi_{\vec{k}_{b}}=\frac{1}{\sqrt{2}} . \tag{L125}\\
\Rightarrow \sum_{\vec{k}>k_{F}}^{k_{\max }} \Psi_{\vec{k}}=\sum_{\vec{k}>k_{F}}^{k_{\max }} \frac{U_{0}}{V} \frac{1}{\left(2 \epsilon_{\vec{k}}-\mathcal{E}\right)} \sum_{\vec{k}^{\prime}>k_{F}}^{k_{\max }} \Psi_{\vec{k}^{\prime}} . \tag{L126}\\
\Rightarrow \sum_{\vec{k}}^{k_{\max }} \frac{U_{0}}{\left(2 \epsilon_{\vec{k}}-\mathcal{E}\right) \mathcal{V}} \tag{L127}\\
\approx \int_{\varepsilon_{F}}^{\varepsilon_{F}+\hbar \omega} d \epsilon \frac{D\left(\mathcal{E}_{F}\right)}{2} \frac{U_{0}}{2 \epsilon-\varepsilon} \tag{L128}
\end{gather*}
$$

Cooper Problem

$$
\begin{gather*}
\Rightarrow 1=\frac{1}{4} D\left(\mathcal{E}_{F}\right) U_{0} \ln \left(\frac{2 \mathcal{E}_{F}+2 \hbar \omega-\varepsilon}{2 \varepsilon_{F}-\varepsilon}\right) . \\
\mathcal{E}=2 \varepsilon_{F}-\left(2 \varepsilon_{\max }-2 \varepsilon_{F}\right) \exp \left[-\frac{4}{D\left(\varepsilon_{F}\right) U_{0}}\right] . \\
\Psi_{\vec{k}}=\frac{U_{0}}{\left(2 \epsilon_{\vec{k}}-\mathcal{E}\right) V_{\vec{k}}} \sum_{\vec{k}^{\prime}>k_{F}}^{k_{\max }} \Psi_{\vec{k}^{\prime}} . \tag{L131}\\
|\Psi\rangle=\sum_{\vec{k}} \Psi_{\vec{k}} \hat{c}_{\vec{k} \uparrow}^{\dagger} \hat{c}_{-\vec{k} \downarrow}^{\dagger}|G\rangle . \tag{L132}\\
\mathcal{H}=\sum_{\vec{k} \sigma} \epsilon_{\vec{k}} \hat{c}_{\vec{k}}^{\dagger} \hat{c}_{\vec{k} \sigma}+\frac{1}{2 V} \sum_{\substack{\vec{q} \vec{k}^{\prime} \\
\sigma \sigma^{\prime}}}\left[\frac{2\left|C_{\vec{q}}\right|^{2} \hbar \omega_{\vec{q}}}{\left(\epsilon_{\vec{k}}-\epsilon_{\vec{k}+\vec{q}}\right)^{2}-\hbar^{2} \omega_{\vec{q}}^{2}}+\frac{4 \pi e^{2}}{q^{2}+\kappa_{c}^{2}}\right] \hat{c}_{\vec{k}^{\prime}-\vec{q} \sigma^{\prime}}^{\dagger} \hat{c}_{\vec{k}+\vec{q} \sigma}^{\dagger} \hat{c}_{\vec{k} \sigma} \hat{c}_{\vec{k}^{\prime} \sigma^{\prime}} \tag{L133}
\end{gather*}
$$

Cooper Problem

$$
\begin{equation*}
\langle\hat{K}\rangle=\sum_{\vec{k}_{1} \vec{k}_{0} \vec{q} \sigma} \Psi_{\vec{k}_{1}}^{*} \Psi_{\vec{k}_{0}}\langle G| \hat{c}_{-\vec{k}_{1} \downarrow} \hat{c}_{\vec{k}_{1} \uparrow} \epsilon_{\vec{q}} \hat{c}_{\vec{q} \sigma}^{\dagger} \hat{c}_{\vec{q} \sigma} \hat{c}_{\vec{k}_{0} \uparrow}^{\dagger} \hat{c}_{-\vec{k}_{0} \downarrow}^{\dagger}|G\rangle . \tag{L134}
\end{equation*}
$$

$$
\begin{equation*}
\vec{k}_{0}=\vec{k}_{1} . \tag{L135}
\end{equation*}
$$

$$
\begin{gather*}
\left(2 \sum_{q<k_{F}} \epsilon_{\vec{q}}\right)\left(\sum_{k_{0}>k_{F}}\left|\Psi_{\vec{k}_{0}}\right|^{2}\right) . \tag{L136}\\
\sigma=\uparrow \quad \text { and } \quad \vec{q}=\vec{k}_{0} \quad \text { or } \quad \sigma=\downarrow \quad \text { and } \quad \vec{q}=-\vec{k}_{0} . \tag{L137}\\
\langle\hat{K}\rangle=\left(2 \sum_{q<k_{F}} \epsilon_{\vec{q}}\right)\left(\sum_{k_{0}>k_{F}}\left|\Psi_{\vec{k}_{0}}\right|^{2}\right)+\sum_{k_{0}>k_{F}} 2\left|\Psi_{\vec{k}_{0}}\right|^{2} \epsilon_{\vec{k}_{0}} . \tag{L138}\\
\hat{\mathcal{H}}=\sum_{\substack{\vec{q} \vec{k}{ }^{\prime} \\
\sigma \sigma^{\prime}}} U_{\vec{k} \vec{k}^{\prime}}^{\text {eff }}{ }_{-}^{\dagger} \overrightarrow{-k}^{\prime}+\vec{q}, \sigma^{\prime} \tag{L139}\\
\hat{c}_{\vec{k}^{\prime}, \sigma}^{\dagger} \hat{c}_{\vec{k}, \sigma} \hat{c}-\vec{k}+\vec{q}, \sigma^{\prime}
\end{gather*}
$$

Cooper Problem

$$
\begin{equation*}
U_{\vec{k} \vec{k}^{\prime}}^{\mathrm{eff}}=\frac{1}{2 \mathcal{V}}\left[\frac{2\left|C_{\vec{k}-\vec{k}^{\prime}}\right|^{2} \hbar \omega_{\vec{k}-\vec{k}^{\prime}}}{\left(\epsilon_{\vec{k}}-\epsilon_{\vec{k}^{\prime}}\right)^{2}-\hbar^{2} \omega_{\vec{k}-\vec{k}^{\prime}}^{2}}+\frac{4 \pi e^{2}}{\left|\vec{k}-\vec{k}^{\prime}\right|^{2}+\kappa_{\mathrm{c}}^{2}}\right] \tag{L140}
\end{equation*}
$$

$$
\begin{equation*}
2 \sum_{k k^{\prime}>k_{F}} U_{\vec{k}, \vec{k}^{\prime}}^{\mathrm{eff}} \Psi_{\vec{k}^{\prime}}^{*} \Psi_{\vec{k}} \tag{L141}
\end{equation*}
$$

$$
\begin{gather*}
2 \sum_{k>k_{F}} \epsilon_{\vec{k}}^{\mathrm{eff}}\left|\Psi_{\vec{k}}\right|^{2}+2 \sum_{k k^{\prime}>k_{F}} \Psi_{\vec{k}^{\prime}}^{*} \Psi_{\vec{k}} U_{\vec{k} k^{\prime}}^{\mathrm{eff}} \tag{L142}\\
2 \epsilon_{\vec{k}}^{\mathrm{eff}} \Psi_{\vec{k}}+2 \sum_{k^{\prime}>k_{F}} U_{\vec{k} \vec{k}^{\prime}}^{\mathrm{eff}} \Psi_{\vec{k}^{\prime}}=\mathcal{E} \Psi_{\vec{k}} \tag{L143}
\end{gather*}
$$

$$
\begin{equation*}
\hat{\mathcal{H}}_{\mathrm{BCS}}=\sum_{\vec{k}, \sigma} \epsilon_{\vec{k}} \hat{c}_{\vec{k} \sigma}^{\dagger} \hat{c}_{\vec{k} \sigma}+\sum_{\vec{k} \vec{k}^{\prime}} U_{\vec{k} k^{\prime}} \hat{c}_{\vec{k} \uparrow}^{\dagger} \hat{c}_{-\vec{k} \downarrow}^{\dagger} \hat{c}_{-\vec{k}^{\prime} \downarrow} \hat{c}_{\vec{k}^{\prime} \uparrow} \tag{L144}
\end{equation*}
$$

$$
\begin{gather*}
\left|\Phi_{N}\right\rangle=\left[\sum_{\vec{k}} \hat{c}_{\vec{k} \uparrow}^{\dagger} \hat{c}_{-\vec{k} \downarrow}^{\dagger} g_{\vec{k}}\right]^{N}|\emptyset\rangle, \tag{L145}\\
|\Phi\rangle \equiv \sum_{N} \frac{1}{N!}\left|\Phi_{N}\right\rangle \tag{L146}\\
=\sum_{N} \frac{1}{N!}\left[\sum_{\vec{k}} \hat{c}_{\vec{k} \uparrow}^{\dagger} \hat{c}_{-\vec{k} \downarrow}^{\dagger} g_{\vec{k}}\right]^{N}|\emptyset\rangle . \tag{L147}\\
|\Phi\rangle=\exp \left[\sum_{\vec{k}} g_{\vec{k}} \hat{c}_{\vec{k} \uparrow}^{\dagger} \hat{c}_{-\vec{k} \downarrow}^{\dagger}\right]|\varnothing\rangle . \tag{L148}
\end{gather*}
$$

BCS Theory

$$
\begin{align*}
& |\Phi\rangle=\prod_{\vec{k}}\left[1+g_{\vec{k}} \hat{c}_{\vec{k} \uparrow}^{\dagger} \hat{c}_{-\vec{k} \downarrow}^{\dagger}\right]|\varnothing\rangle \equiv \hat{\Phi}|\emptyset\rangle . \tag{L149}\\
& \langle\Phi \mid \Phi\rangle=\prod_{\vec{k}}\left(1+\left|g_{\vec{k}}\right|^{2}\right)=\mathcal{N}^{2} . \tag{L150}\\
& b_{\vec{k}}=\frac{1}{\mathcal{N}^{2}}\langle\Phi| \hat{c}_{-\vec{k} \downarrow} \hat{c}_{\vec{k} \uparrow}|\Phi\rangle=\frac{g_{\vec{k}}}{1+\left|g_{\vec{k}}\right|^{2}}, \tag{L151}\\
& \frac{1}{\mathcal{N}^{2}}\langle\Phi| \hat{c}_{\vec{k} \uparrow}^{\dagger} \hat{c}_{-\vec{k} \downarrow}^{\dagger} \hat{c}_{-\vec{k}^{\prime} \downarrow} \hat{c}_{\vec{k}^{\prime} \uparrow}|\Phi\rangle=b_{\vec{k}}^{*} b_{\vec{k}^{\prime}} . \tag{L152}\\
& {\left[\sum_{\sigma} \hat{n}_{\vec{k} \sigma}, \hat{\Phi}\right]=\left[g_{\vec{k}} \hat{c}_{\vec{k} \uparrow}^{\dagger} \hat{c}_{-\vec{k} \downarrow}^{\dagger}+g_{-\vec{k}} \hat{c}_{-\vec{k} \uparrow}^{\dagger} \hat{c}_{\vec{k} \downarrow}^{\dagger}\right] \hat{\Phi} .} \tag{L153}\\
& \frac{1}{\mathcal{N}^{2}}\langle\Phi| \sum_{\sigma} \hat{n}_{\vec{k} \sigma}|\Phi\rangle=\frac{1}{\mathcal{N}^{2}}\langle\Phi|\left(g_{\vec{k}} \hat{c}_{\vec{k} \uparrow}^{\dagger} \hat{c}_{-\vec{k} \downarrow}^{\dagger}+g_{-\vec{k}} \hat{c}_{-\vec{k} \uparrow}^{\dagger} \hat{c}_{\vec{k} \downarrow}^{\dagger}\right)|\Phi\rangle \tag{L154}\\
& \Rightarrow \sum_{\sigma} n_{\vec{k} \sigma}=g_{\vec{k}} b_{\vec{k}}^{*}+g_{-\vec{k}} b_{-\vec{k}}^{*} . \tag{L155}
\end{align*}
$$

BCS Theory

$$
\begin{gather*}
\langle\Phi| \hat{\mathcal{H}}_{\mathrm{BCS}}-\mu N|\Phi\rangle=\sum_{\vec{k}} 2\left(\epsilon_{\vec{k}}-\mu\right) g_{\vec{k}} b_{\vec{k}}^{*}+\sum_{\overrightarrow{k k^{\prime}}} U_{\vec{k} \vec{k}^{\prime}} b_{\vec{k}}^{*} b_{\vec{k}^{\prime}} \tag{L156}\\
\frac{\partial b_{\vec{k}}^{*}}{\partial g_{\vec{k}}^{*}}=\frac{1}{\left(1+\left|g_{\vec{k}}\right|^{2}\right)^{2}} ; \frac{\partial b_{\vec{k}}}{\partial g_{\vec{k}}^{*}}=-\frac{g_{\vec{k}}^{2}}{\left(1+\left|g_{\vec{k}}\right|^{2}\right)^{2}}, \tag{L157}\\
\frac{2\left(\epsilon_{\vec{q}}-\mu\right) g_{\vec{q}}}{\left(1+\left|g_{\vec{q}}\right|^{2}\right)^{2}}+\sum_{\vec{k} \vec{k}^{\prime}} \frac{U_{\vec{k} \vec{k}^{\prime}}}{\left(1+\left|g_{\vec{q}}\right|^{2}\right)^{2}}\left[b_{\vec{k}^{\prime}} \delta_{\vec{k} \vec{q}}-b_{\vec{k}}^{*} g_{\vec{q}}^{2} \delta_{\vec{q} \vec{k}^{\prime}}\right]=0 \tag{L158}\\
\Delta_{\vec{k}}=-\sum_{\vec{k}^{\prime}} U_{\vec{k} \vec{k}^{\prime}} b_{\vec{k}^{\prime}} \tag{L159}\\
0=2\left(\epsilon_{\vec{q}}-\mu\right) g_{\vec{q}}-\Delta_{\vec{q}}+g_{\vec{q}}^{2} \Delta_{\vec{q}}^{*} \tag{L160}\\
\Rightarrow g_{\vec{k}}=\frac{\varepsilon_{\vec{k}}-\left(\epsilon_{\vec{k}}-\mu\right)}{\Delta_{\vec{k}}^{*}} \tag{L161}
\end{gather*}
$$

with

$$
\begin{equation*}
\varepsilon_{\vec{k}}=\sqrt{\left(\epsilon_{\vec{k}}-\mu\right)^{2}+\left|\Delta_{\vec{k}}\right|^{2}} \tag{L162}
\end{equation*}
$$

BCS Theory

$$
\begin{gather*}
b_{\vec{k}}=\frac{g_{\vec{k}}}{1+\left|g_{\vec{k}}\right|^{2}}=\frac{\Delta_{\vec{k}}}{2 \varepsilon_{\vec{k}}} . \tag{L163}\\
N=2 \sum_{\vec{k}} \theta\left(\mathcal{E}_{F}-\epsilon_{\vec{k}}\right)=\int_{0}^{\varepsilon_{F}} d \epsilon D(\epsilon), \tag{L164}\\
N=\sum_{\vec{k} \sigma} g_{\vec{k}}^{*} b_{\vec{k}}=\sum_{\vec{k} \sigma} \frac{1}{2}\left[1-\frac{\epsilon_{\vec{k}}-\mu}{\varepsilon_{\vec{k}}}\right] \tag{L165}\\
=\sum_{\vec{k} \sigma} \frac{1}{2}\left[1-\frac{\epsilon_{\vec{k}}-\mu}{\sqrt{\left(\epsilon_{\vec{k}}-\mu\right)^{2}+|\Delta|^{2}}}\right] \tag{L166}\\
=\int d \epsilon \frac{D(\epsilon)}{2}\left[1-\frac{\epsilon-\mu}{\sqrt{(\epsilon-\mu)^{2}+|\Delta|^{2}}}\right] \tag{L167}\\
=\int d \epsilon\left[\int^{\epsilon} d \epsilon^{\prime} D\left(\epsilon^{\prime}\right)\right] \frac{1}{2} \frac{\partial}{\partial \epsilon} \frac{\epsilon-\mu}{\sqrt{(\epsilon-\mu)^{2}+|\Delta|^{2}}} \tag{L168}\\
=\int d \epsilon\left[\int^{\mu} d \epsilon^{\prime} D\left(\epsilon^{\prime}\right)\right] \frac{1}{2} \frac{\partial}{\partial \epsilon} \frac{\epsilon-\mu}{\sqrt{(\epsilon-\mu)^{2}+|\Delta|^{2}}}+\mathcal{O}\left(\Delta / \varepsilon_{F}\right)^{2} \tag{L169}
\end{gather*}
$$

$$
\begin{align*}
& =\left[\int^{\mu} d \epsilon^{\prime} D\left(\epsilon^{\prime}\right)\right]=N+D\left(\mathcal{E}_{F}\right)\left(\mu-\mathcal{E}_{F}\right) \tag{L170}\\
\Rightarrow \mu & =\mathcal{E}_{F} . \tag{L171}
\end{align*}
$$

$$
\begin{gather*}
\Delta_{\vec{k}}=-\sum_{\vec{k}^{\prime}} U_{\vec{k}^{\prime}} \frac{\Delta_{\vec{k}^{\prime}}}{2 \varepsilon_{\vec{k}^{\prime}}} . \tag{L172}\\
\Delta_{\vec{k}}=\theta\left(\hbar \omega-\left|\epsilon_{\vec{k}}-\varepsilon_{F}\right|\right) \frac{U_{0}}{V} \sum_{\vec{k}^{\prime}} \frac{\Delta_{\vec{k}^{\prime}}}{2 \sqrt{\left(\epsilon_{\vec{k}^{\prime}}-\mu\right)^{2}+\left|\Delta_{\vec{k}^{\prime}}\right|^{2}}} . \tag{L173}\\
\Delta_{\vec{k}}=\Delta \theta\left(\hbar \omega-\left|\epsilon_{\vec{k}}-\varepsilon_{F}\right|\right) . \tag{L174}\\
1=\sum_{\vec{k}} \frac{1}{\mathcal{V}} \theta\left(\hbar \omega-\left|\epsilon_{\vec{k}}-\varepsilon_{F}\right|\right) \frac{U_{0}}{2 \sqrt{\left(\epsilon_{\vec{k}}-\mu\right)^{2}+|\Delta|^{2}}} . \tag{L175}\\
=\int_{\mathcal{E}_{F}-\hbar \omega}^{\varepsilon_{F}+\hbar \omega} d \epsilon \frac{D(\epsilon)}{2} \frac{U_{0}}{2 \sqrt{\left(\epsilon-\mathcal{E}_{F}\right)^{2}+|\Delta|^{2}}} \tag{L176}
\end{gather*}
$$

BCS Theory

$$
\begin{align*}
& =U_{0} \int_{0}^{\hbar \omega / \Delta} d \zeta \frac{D\left(\mathcal{E}_{F}\right)}{2 \sqrt{\zeta^{2}+1}} \tag{L177}\\
& =\frac{U_{0} D\left(\mathcal{E}_{F}\right)}{2} \sinh ^{-1} \frac{\hbar \omega}{\Delta} \tag{L178}\\
\Rightarrow \Delta & =2 \hbar \omega \exp \left[-\frac{2}{D\left(\mathcal{E}_{F}\right) U_{0}}\right] . \tag{L179}
\end{align*}
$$

Thermodynamics of Superconductors

$$
\begin{gather*}
Z_{\mathrm{gr}}=\operatorname{Tr} e^{-\beta\left[\hat{\mathcal{H}}_{\mathrm{BCS}}-\mu \hat{N}\right]} \\
\hat{c}_{-\vec{k} \downarrow} \hat{c}_{\vec{k} \uparrow}=b_{\vec{k}}+\left(\hat{c}_{-\vec{k} \downarrow} \hat{k}_{\vec{k} \uparrow}-b_{\vec{k}}\right), \tag{L181}
\end{gather*}
$$

$$
\begin{equation*}
Z_{\mathrm{gr}}=\operatorname{Tr} e^{-\beta\left[\hat{\mathcal{H}}_{\mathrm{eff}}-\mu N\right]} \tag{L182}
\end{equation*}
$$

where

$$
\begin{align*}
& \hat{\mathcal{H}}_{\mathrm{eff}}-\mu N \\
& =\sum_{\vec{k} \sigma} \hat{n}_{\vec{k} \sigma}\left(\epsilon_{\vec{k}}-\mu\right)+\sum_{\overrightarrow{k k}^{\prime}} b_{\overrightarrow{k^{\prime}}} U_{\vec{k} k^{\prime}} \hat{c}_{\vec{k} \uparrow}^{\dagger} \hat{c}_{-\vec{k} \downarrow}^{\dagger}+b_{\vec{k}}^{*} U_{\vec{k}^{\prime} \vec{k}}^{*} \hat{c}_{-\vec{k}^{\prime} \downarrow} \hat{c}_{\vec{k}^{\prime} \uparrow}-b_{\vec{k}}^{*} b_{\vec{k}^{\prime}} U_{\vec{k} k^{\prime}} \tag{L183}\\
& \equiv \sum_{\vec{k} \sigma} \hat{n}_{\vec{k} \sigma}\left(\epsilon_{\vec{k}}-\mu\right)-\sum_{\vec{k}}\left[\Delta_{\vec{k}} \hat{c}_{\vec{k} \uparrow}^{\dagger} \hat{c}_{-\vec{k} \downarrow}^{\dagger}+\Delta_{\vec{k}}^{*} \hat{c}_{-\vec{k} \downarrow} \hat{c}_{\vec{k} \uparrow}\right]-\sum_{\overrightarrow{k k}^{\prime}} b_{\vec{k}}^{*} b_{\vec{k}{ }^{\prime}} U_{\vec{k} \vec{k}^{\prime}} \tag{L184}\\
& \hat{c}_{\vec{k} \uparrow} \tag{L185a}\\
& =u_{\vec{k}} \hat{\gamma}_{\vec{k} \uparrow}+v_{\vec{k}}^{*} \hat{\gamma}_{\vec{k} \downarrow}^{\dagger} \tag{L185b}\\
& \hat{c}_{-\vec{k} \downarrow}^{\dagger}
\end{align*}=-v_{\vec{k}} \hat{\gamma}_{\vec{k} \uparrow}+u_{\vec{k}}^{*} \hat{\gamma}_{\vec{k} \downarrow}^{\dagger} .
$$

Thermodynamics of Superconductors

$$
\begin{equation*}
\left|u_{\vec{k}}\right|^{2}+\left|v_{\vec{k}}\right|^{2}=1 \tag{L186}
\end{equation*}
$$

$$
\begin{gather*}
2 u_{\vec{k}} v_{\vec{k}}\left(\epsilon_{\vec{k}}-\mu\right)+\Delta_{\vec{k}} v_{\vec{k}}^{2}-\Delta_{\vec{k}}^{*} u_{\vec{k}}^{2}=0 . \tag{L188}\\
0=2 \sqrt{1-\left|v_{\vec{k}}\right|^{2}} v_{\vec{k}}\left(\epsilon_{\vec{k}}-\mu\right)+\Delta_{\vec{k}} v_{\vec{k}}^{2}-\Delta_{\vec{k}}^{*}\left(1-\left|v_{\vec{k}}\right|^{2}\right) \tag{L189}
\end{gather*}
$$

Thermodynamics of Superconductors

$$
\begin{gather*}
v_{\vec{k}}=\frac{g_{\vec{k}}^{*}}{\sqrt{1+\left|g_{\vec{k}}\right|^{2}}}, \\
0=2\left(\epsilon_{\vec{k}}-\mu\right) g_{\vec{k}}-\Delta_{\vec{k}}+g_{\vec{k}}^{2} \Delta_{\vec{k}}^{*} . \\
g_{\vec{k}}=\frac{\varepsilon_{\vec{k}}-\left(\epsilon_{\vec{k}}-\mu\right)}{\Delta_{\vec{k}}^{*}} . \\
\left|v_{\vec{k}}\right|^{2}=\frac{\varepsilon_{\vec{k}}-\left(\epsilon_{\vec{k}}-\mu\right)}{2 \varepsilon_{\vec{k}}}, \quad\left|u_{\vec{k}}\right|^{2}=\frac{\varepsilon_{\vec{k}}+\epsilon_{\vec{k}}-\mu}{2 \varepsilon_{\vec{k}}}, \quad v_{\vec{k}} u_{\vec{k}}^{*}=\frac{\Delta_{\vec{k}}^{*}}{2 \varepsilon_{\vec{k}}} . \tag{L193}\\
\hat{\mathcal{H}}_{\mathrm{eff}}-\mu N=\sum_{\vec{k}} \mathcal{E}_{\vec{k}}\left[\hat{\gamma}_{\vec{k} \uparrow}^{\dagger} \hat{\gamma}_{\vec{k} \uparrow}+\hat{\gamma}_{\vec{k} \downarrow}^{\dagger} \hat{\gamma}_{\vec{k} \downarrow}\right]+\sum_{\vec{k}}\left[\epsilon_{\vec{k}}-\mu-\mathcal{E}_{\vec{k}}-\sum_{\vec{k}^{\prime}} b_{\vec{k}}^{*} b_{\vec{k}^{\prime}} U_{\vec{k} k^{\prime}}\right] \tag{L194}\\
b_{-\vec{k}}^{*}=b_{\vec{k}}^{*}=\left\langle\hat{c}_{\vec{k} \uparrow}^{\dagger} \hat{c}_{-\vec{k} \downarrow}^{\dagger}\right\rangle=\left\langle v_{\vec{k}} u_{\vec{k}}^{*}\left(\hat{\gamma}_{\vec{k} \downarrow} \hat{\gamma}_{\vec{k} \downarrow}^{\dagger}-\hat{\gamma}_{\vec{k} \uparrow}^{\dagger} \hat{\gamma}_{\vec{k} \uparrow}\right)\right\rangle+\text { terms with } \gamma \gamma \text { or } \gamma^{\dagger} \gamma^{\dagger} . \\
\hline
\end{gather*}
$$

Thermodynamics of Superconductors

$$
\begin{equation*}
b_{\vec{k}}^{*}=v_{\vec{k}} u_{\vec{k}}^{*}\left(1-2 f_{\vec{k}}\right), \tag{L196}
\end{equation*}
$$

$$
\begin{equation*}
f_{\vec{k}}=\frac{1}{e^{\beta \varepsilon_{\vec{k}}+1}} \tag{L197}
\end{equation*}
$$

Thermodynamics of Superconductors
Fermi function

Figure 10: Sketches of the excitation energy, occupation number, and Fermi function for the BCS theory of superconductivity.

$$
\begin{equation*}
b_{\vec{k}}=\frac{\Delta_{\vec{k}}}{2 \varepsilon_{\vec{k}}}\left(1-2 f_{\vec{k}}\right) \tag{L198}
\end{equation*}
$$

Thermodynamics of Superconductors

$$
\begin{gather*}
\Rightarrow \sum_{\vec{k}^{\prime}} b_{\vec{k}^{\prime}} U_{\overrightarrow{k k}^{\prime}}=-\Delta_{\vec{k}}=\sum_{\vec{k}^{\prime}} \frac{\Delta_{\vec{k}^{\prime}}}{2 \mathcal{E}_{\vec{k}^{\prime}}}\left(1-2 f_{\vec{k}^{\prime}}\right) U_{\overrightarrow{k k}^{\prime}}, \tag{L199}\\
\Delta=\sum_{\vec{k}} \theta\left(\hbar \omega-\left|\mathcal{E}_{F}-\epsilon_{\vec{k}}\right|\right) \frac{\Delta}{2\left|\epsilon_{\vec{k}}-\mu\right|} \frac{U_{0}}{\mathcal{V}}\left(1-2 f_{\vec{k}}\right) \tag{L200}\\
\Rightarrow 1=\int_{0}^{\beta \hbar \omega} U_{0} \frac{D\left(\mathcal{E}_{F}\right)}{2} \frac{d x}{x}\left[1-\frac{2}{e^{x}+1}\right] \tag{L201}\\
\approx \frac{U_{0} D\left(\mathcal{E}_{F}\right)}{2}\left\{\ln \beta \hbar \omega\left[1-\frac{2}{e^{\beta \hbar \omega}+1}\right]+2 \int_{0}^{\infty} d x \ln x \frac{\partial}{\partial x} \frac{1}{e^{x}+1}\right\} \tag{L202}\\
\approx \frac{U_{0} D\left(\mathcal{E}_{F}\right)}{2}\left\{\ln (\beta \hbar \omega)+\ln \left(\frac{2 \gamma_{E}}{\pi}\right)\right\}, \tag{L203}\\
k_{B} T_{c}=\hbar \omega \frac{2 \gamma_{E}}{\pi} \exp \left[-\frac{2}{U_{0} D\left(\mathcal{E}_{F}\right)}\right] \tag{L204}\\
\Rightarrow \frac{2 \Delta(T=0)}{k_{B} T_{c}}=\frac{2 \pi}{\gamma_{E}}=3.53 .
\end{gather*}
$$

Thermodynamics of Superconductors

Element	$2 \Delta / k_{B} T$	$\left(C_{s}-C_{n}\right) / C_{n}$	Element	$2 \Delta / k_{B} T$	$\left(C_{s}-C_{n}\right) / C_{n}$
BCS	3.53	1.43			
Al	$2.5-4.2$	$1.3-1.6$	Pb	$4.0-4.4$	2.7
Cd	$3.2-3.4$	$1.3-1.4$	Sn	$2.8-4.0$	1.6
Ga	3.5	1.4	Ta	$3.5-3.7$	1.6
Hg	$4.0-4.6$	2.4	Tl	$3.6-3.9$	1.5
In	$3.4-3.7$	1.7	V	$3.4-3.5$	1.5
La	$1.7-3.2$	1.5	Zn	$3.2-3.4$	$1.2-1.3$
Nb	$3.6-3.8$	$1.9-2.0$			

Superconductor in External Magnetic Field55

$$
\begin{align*}
& \Delta_{\bar{q}}=\sum_{\vec{k}^{\prime}} \frac{U_{0}}{V}\left\langle\hat{c}_{\vec{q}-\vec{k}^{\prime} \downarrow \hat{\bar{k}}^{\prime} \uparrow}\right\rangle . \tag{L207}\\
& \hat{\mathcal{H}}-\mu N=\sum_{\overrightarrow{k k^{\prime} \sigma}}\left[\epsilon_{\epsilon_{k}^{\prime}}-\mu \delta_{\vec{k} \vec{k}^{\prime}} \mid c_{\vec{k} \sigma}^{\dagger} \hat{\vec{k}}^{\prime} \hat{\vec{k}}^{\prime} \sigma-\sum_{\vec{k} \vec{q}}\left[\Delta_{\vec{q}}^{*} \hat{c}_{\vec{q}-\vec{k} k} \hat{c}_{\hat{k} \uparrow}+\Delta_{\vec{q}} c_{\vec{k} \uparrow}^{\dagger} c_{\vec{q}-\vec{k}]}^{\dagger}\right] .\right. \tag{L208}\\
& \hat{c}_{\vec{F} \sigma}=\sum_{\vec{k}} \frac{e^{-\vec{k} \vec{k} \cdot \vec{r}}}{\sqrt{N_{k}}} \hat{c}_{\vec{k} \sigma}, \quad \Delta_{\vec{k}}=\frac{1}{N_{k}} \sum_{\vec{r}} e^{\vec{k} \vec{k}} \Delta_{\vec{r}}, \quad \epsilon_{\overrightarrow{k k^{\prime}}}=\frac{1}{N_{k}} \sum_{\overrightarrow{r^{\prime}}} e^{\overrightarrow{\vec{k}} \cdot \vec{r}-\overrightarrow{k_{k}^{\prime}} \cdot \overrightarrow{\vec{r}^{\prime}} \epsilon_{\overrightarrow{r^{\prime}}} .} \tag{L209}
\end{align*}
$$

Superconductor in External Magnetic Field56

$$
\begin{align*}
& \hat{\mathcal{H}}=\sum_{l} \mathcal{E}_{l}\left[\hat{\gamma}_{l \uparrow}^{\dagger} \hat{\gamma}_{l \uparrow}+\hat{\gamma}_{l l}^{\dagger} \hat{\gamma}_{l l}\right] . \tag{L211}\\
& \hat{c}_{\vec{\imath} \uparrow}=\frac{1}{\sqrt{N}_{k}} \sum_{l} u_{l}(\vec{r}) \hat{\gamma}_{l \uparrow}+v_{l}^{*}(\vec{r}) \hat{\gamma}_{l \downarrow}^{\dagger} \\
& \hat{c}_{\vec{r} \downarrow}=\frac{1}{\sqrt{N_{k}}} \sum_{l} u_{l}(\vec{r}) \hat{\gamma}_{l \downarrow}-v_{l}^{*}(\vec{r}) \hat{\gamma}_{l \uparrow}^{\dagger} . \tag{L212}\\
& {\left[\mathcal{H}_{B}, \hat{\gamma}_{l \sigma}\right]=-\varepsilon_{l} \hat{\gamma}_{l \sigma}} \\
& {\left[\mathcal{H}_{B}, \hat{\gamma}_{l \sigma}^{\dagger}\right]=\mathcal{E}_{l} \hat{\gamma}_{l \sigma}^{\dagger} .} \tag{L213}\\
& {\left[\mathcal{H}_{B}, \hat{c}_{\vec{r} \uparrow}^{\dagger}\right]=\sum_{\vec{r}^{\prime}}\left[\epsilon_{\overrightarrow{\vec{r}^{\prime}}}^{*}-\mu \delta_{\vec{r}^{\prime}}\right] \hat{c}_{\vec{r}^{\prime} \uparrow}^{\dagger}-\Delta_{\vec{r}}^{*} \hat{c}_{\vec{r} \downarrow}} \tag{L214a}\\
& {\left[\mathcal{H}_{B}, \hat{c}_{\vec{r} \downarrow}^{\dagger}\right]=\sum_{\vec{r}^{\prime}}\left[\epsilon_{\overrightarrow{r^{\prime}}}^{*}-\mu \delta_{\vec{r}^{\prime}} \backslash \hat{c}_{\vec{r}^{\prime} \downarrow}^{\dagger}+\Delta_{\vec{r}}^{*} \hat{c}_{\vec{r} \uparrow}\right.} \tag{L214b}\\
& {\left[\mathcal{H}_{B}, \hat{c}_{\vec{r} \uparrow}\right]=-\sum_{\vec{r}^{\prime}}\left[\epsilon_{\vec{r}^{\prime}}-\mu \delta_{\overrightarrow{r^{\prime}}}\right] \hat{c}_{\vec{r}^{\prime} \uparrow}+\Delta \Delta_{\vec{r}} \hat{c}_{\vec{r} \downarrow}^{\dagger}} \tag{L214c}
\end{align*}
$$

Superconductor in External Magnetic Field 57

$$
\begin{align*}
& v_{l}(\vec{r}) \mathcal{E}_{l}=-\quad \sum_{\vec{r}^{\prime}}\left[\epsilon_{\vec{r} \vec{r}^{\prime}}^{*}-\mu \delta_{\vec{r} \vec{r}^{\prime}}\right] v_{l}\left(\vec{r}^{\prime}\right)+u_{l}(\vec{r}) \Delta_{\vec{r}}^{*} . \tag{L215}\\
& \Delta_{\vec{r}}=\frac{U_{0}}{V} N_{k}\left\langle\hat{c}_{\vec{r} \downarrow} \hat{c}_{\vec{r} \uparrow}\right\rangle=\sum_{l} \frac{U_{0}}{\mathcal{V}} u_{l}(\vec{r}) v_{l}^{*}(\vec{r}) . \tag{L216}\\
& u_{\vec{k}}^{(0)}(\vec{r})=u_{\vec{k}} e^{-i \vec{k} \cdot \vec{r}}, \quad v_{\vec{k}}^{(0)}(\vec{r})=v_{\vec{k}} e^{-i \vec{k} \cdot \vec{r}} . \tag{L217}\\
& u_{\vec{k}}(\vec{r}) \mathcal{E}_{\vec{k}}=\left\{\frac{1}{2 m}\left(-i \hbar \vec{\nabla}+\frac{e \vec{A}}{c}\right)^{2}-\mu\right\} u_{\vec{k}}(\vec{r})+v_{\vec{k}}(\vec{r}) \Delta_{\vec{r}} \tag{L218a}\\
& v_{\vec{k}}(\vec{r}) \mathcal{E}_{\vec{k}}=-\left\{\frac{1}{2 m}\left(i \hbar \vec{\nabla}+\frac{e \vec{A}}{c}\right)^{2}-\mu\right\} v_{\vec{k}}(\vec{r})+u_{\vec{k}}(\vec{r}) \Delta_{\vec{r}}^{*} . \tag{L218b}
\end{align*}
$$

Superconductor in External Magnetic Fields8

$$
\begin{align*}
& u_{\vec{k}}(\vec{r})=u_{\vec{k}}^{(0)}(\vec{r})+u_{\vec{k}}^{(1)}(\vec{r})=u_{\vec{k}} e^{-i \vec{k} \cdot \vec{r}}+\sum_{\vec{k}^{\prime}} e^{-i \vec{k}^{\prime} \cdot \vec{r}} u_{\vec{k}}^{(1)}\left(\vec{k}^{\prime}\right) \tag{L219a}\\
& v_{\vec{k}}(\vec{r})=v_{\vec{k}}^{(0)}(\vec{r})+v_{\vec{k}}^{(1)}(\vec{r})=v_{\vec{k}} e^{-\vec{k} \cdot \vec{r}}+\sum_{\vec{k}^{\prime}} e^{-i \vec{k}^{\prime} \cdot \vec{r}^{(1)}} v_{\vec{k}}^{\left(\vec{k}^{\prime}\right)} . \tag{L219b}
\end{align*}
$$

$$
\begin{align*}
\left(\varepsilon_{\vec{k}}-\frac{\hbar^{2}}{2 m} \nabla^{2}-\mu\right) v_{\vec{k}}^{(1)}(\vec{r})-\Delta^{*} u_{\vec{k}}^{(1)}(\vec{r}) & =-\frac{i e \hbar}{2 m c}(\vec{A} \cdot \vec{\nabla}+\vec{\nabla} \cdot \vec{A}) v_{\vec{k}}^{(0)}(\vec{r}) \tag{L220a}\\
\left(\varepsilon_{\vec{k}}+\frac{\hbar^{2}}{2 m} \nabla^{2}+\mu\right) u_{\vec{k}}^{(1)}(\vec{r})-\Delta v_{\vec{k}}^{(1)}(\vec{r}) & =-\frac{i e \hbar}{2 m c}(\vec{A} \cdot \vec{\nabla}+\vec{\nabla} \cdot \vec{A}) u_{\vec{k}}^{(0)}(\vec{r}) \tag{L220b}
\end{align*}
$$

$$
\begin{aligned}
\left(\mathcal{E}_{\vec{k}}+\zeta_{\vec{k}^{\prime}}\right) v_{\vec{k}}^{(1)}\left(\vec{k}^{\prime}\right)-\Delta^{*} u_{\vec{k}}^{(1)}\left(\vec{k}^{\prime}\right) & =F_{\vec{k}^{\prime} \vec{k}} v_{\vec{k}}^{(0)} \\
\left(\varepsilon_{\vec{k}}-\zeta_{\vec{k}^{\prime}}\right) u_{\vec{k}}^{(1)}\left(\vec{k}^{\prime}\right)-\Delta v_{\vec{k}}^{(1)}\left(\vec{k}^{\prime}\right) & =F_{\vec{k}^{\prime} \vec{k}} u_{\vec{k}}^{(0)}
\end{aligned}
$$

$$
\begin{equation*}
\zeta_{\vec{k}}=\frac{\hbar^{2} k^{2}}{2 m}-\mu, \text { so that } \varepsilon_{\vec{k}}=\sqrt{\zeta_{\vec{k}}^{2}+|\Delta|^{2}} \tag{L222}
\end{equation*}
$$

Superconductor in External Magnetic Field59

$$
\begin{align*}
& F_{\vec{k}^{\prime} \vec{k}}=-\frac{e \hbar}{2 m c} \int \frac{d \vec{r}^{\prime}}{V} e^{i\left(\vec{k}^{\prime}-\vec{k} \cdot \overrightarrow{r^{\prime}}\left(\vec{k}+\vec{k}^{\prime}\right) \cdot \vec{A}\left(\vec{r}^{\prime}\right)=F_{\vec{k} k^{\prime}}^{*} .\right.} \tag{L223}\\
& v_{\vec{k}}^{(1)}\left(\overrightarrow{k^{\prime}}\right)=\frac{F_{\vec{k} \cdot \vec{k}}}{\varepsilon_{\vec{k}}^{2}-\varepsilon_{\vec{k}^{\prime}}^{2}}\left[\left(\varepsilon_{\vec{k}}-\zeta_{\vec{k}^{\prime}}\right) v_{\vec{k}}+\Delta^{*} u_{k}\right] \tag{L224a}\\
& u_{\vec{k}}^{(1)}\left(\overrightarrow{k^{\prime}}\right)=\frac{F_{\vec{k} \cdot \vec{k}}}{\varepsilon_{\vec{k}}^{2}-\varepsilon_{\vec{k}^{\prime}}^{2}}\left[\left(\varepsilon_{\vec{k}}+\zeta_{\vec{k}^{\prime}}\right) u_{\vec{k}}+\Delta v_{\vec{k}}\right] . \tag{L224b}
\end{align*}
$$

Derivation of Meissner Effect

$$
\begin{align*}
& \vec{j}=-2 e \frac{N_{k}}{\nu} \operatorname{Re}\left\langle\hat{c}_{\vec{r} \uparrow}^{\dagger}\left(\frac{\hat{P}}{m}+\frac{e \vec{A}}{m c}\right) \hat{c}_{\vec{r} \uparrow}\right\rangle \tag{L225}\\
&= \frac{-e}{\nu} \sum_{\vec{k}^{\prime}}\left\langle\left(u_{\vec{k}^{\prime}}^{*}(\vec{r}) \hat{\gamma}_{\vec{k}^{\prime} \uparrow}^{\dagger}+v_{\vec{k}^{\prime}}(\vec{r}) \hat{\gamma}_{\vec{k} \downarrow}\right)\left(\frac{\hat{P}}{m}+\frac{e \vec{A}}{m c}\right)\left(u_{\vec{k}}(\vec{r}) \hat{\gamma}_{\vec{k} \uparrow}+v_{\vec{k}}^{*}(\vec{r}) \hat{\gamma}_{\vec{k} \downarrow}^{\dagger}\right)\right\rangle \\
&+ \text { c.c. } \tag{L226}\\
&= \frac{-e}{\nu} \sum_{\vec{k}} v_{\vec{k}}(\vec{r})\left[\frac{\hbar \vec{\nabla}}{i m}+\frac{e \vec{A}}{m c}\right] v_{\vec{k}}^{*}(\vec{r})+\mathrm{c} . \mathrm{c} . . \tag{L227}\\
& \sum_{\vec{k}} v_{\vec{k}} v_{\vec{k}}^{*}=\frac{1}{2} \sum_{\vec{k}} \frac{\mathcal{E}_{\vec{k}}-\zeta_{\vec{k}}}{\mathcal{E}_{\vec{k}}}=N / 2 \tag{L228}\\
& \vec{j}=\vec{j}^{1}-\frac{n e^{2} \vec{A}}{m c} \tag{L229}\\
& \vec{j}=-e \frac{1}{\nu} \sum_{\vec{k}} v_{\vec{k}} \frac{\hbar \vec{V}^{1}}{i m} v_{\vec{k}}^{*}(\vec{r})+\mathrm{c} . \mathrm{c} . \tag{L230}
\end{align*}
$$

Derivation of Meissner Effect

$$
\begin{align*}
& \vec{j}^{1}=-\frac{e \hbar}{\nu m} \sum_{\vec{k} \vec{k}^{\prime}} v_{\vec{k}} v_{\vec{k}}^{(1) *}\left(\vec{k}^{\prime}\right)\left(\vec{k}+\vec{k}^{\prime}\right) e^{i\left(\vec{k}^{\prime}-\vec{k}\right) \cdot \vec{r}}+v_{\vec{k}}^{*} v_{\vec{k}}^{(1)}\left(\vec{k}^{\prime}\right)\left(\vec{k}+\vec{k}^{\prime}\right) e^{-i\left(\vec{k}^{\prime}-\vec{k}\right) \cdot \vec{r}} . \tag{L231}\\
& \vec{j}^{1}=\frac{-e \hbar}{m \mathcal{V}} \sum \quad\left(\vec{k}+\vec{k}^{\prime}\right) e^{i\left(\vec{k}-\vec{k}^{\prime}\right) \cdot \vec{r}} \frac{F_{\overrightarrow{k^{\prime}} \vec{k}}}{\varepsilon_{\vec{k}}^{2}-\varepsilon_{\overrightarrow{k^{\prime}}}^{2}}\left[\left(\varepsilon_{\vec{k}}-\zeta_{\overrightarrow{k^{\prime}}}\right)\left(\frac{\varepsilon_{\vec{k}}-\zeta_{\vec{k}}}{2 \varepsilon_{\vec{k}}}\right)+\frac{\Delta^{*} \Delta}{2 \varepsilon_{\vec{k}}}\right] \\
& \left(\vec{k}+\vec{k}^{\prime}\right) e^{-i\left(\vec{k}-\vec{k}^{\prime}\right) \cdot \vec{r}} \frac{F_{\vec{k}^{\prime}}^{*}}{\varepsilon_{\vec{k}}^{2}-\varepsilon_{\vec{k}^{\prime}}^{2}}\left[\left(\varepsilon_{\vec{k}}-\zeta_{\vec{k}^{\prime}}\right)\left(\frac{\varepsilon_{\vec{k}}-\zeta_{\vec{k}}}{2 \varepsilon_{\vec{k}}}\right)+\frac{\Delta \Delta^{*}}{2 \varepsilon_{\vec{k}}}\right] \tag{L232}\\
& =\frac{-e \hbar}{m \nu} \sum_{\vec{k} \vec{k}^{\prime}}\left(\vec{k}+\vec{k}^{\prime}\right) e^{i\left(\vec{k}-\vec{k}^{\prime}\right) \cdot \vec{r}} F_{\vec{k}^{\prime} \vec{k}} L\left(\zeta_{\vec{k}}, \zeta_{\vec{k}^{\prime}}\right), \tag{L233}\\
& L\left(\zeta_{\vec{k}}, \zeta_{\vec{k}^{\prime}}\right)=\frac{\varepsilon_{\vec{k}} \varepsilon_{\vec{k}^{\prime}}-\zeta_{\vec{k}} \zeta_{\zeta^{\prime}}-\Delta^{*} \Delta}{2\left(\varepsilon_{\vec{k}}+\varepsilon_{\vec{k}^{\prime}}\right) \varepsilon_{\vec{k}} \varepsilon_{\vec{k}^{\prime}}} . \tag{L234}
\end{align*}
$$

Derivation of Meissner Effect

$$
\begin{equation*}
\sigma_{\alpha \beta}\left(\zeta, \zeta^{\prime}, \vec{R}\right)=\frac{2 \pi \hbar}{2 \mathcal{V}^{2}}\left(\frac{e \hbar}{m}\right)^{2} \sum_{\overrightarrow{k k^{\prime}}} \delta\left(\zeta_{\vec{k}}-\zeta\right) \delta\left(\zeta_{\vec{k}^{\prime}}-\zeta^{\prime}\right)\left(k_{\alpha}+k_{\alpha}^{\prime}\right)\left(k_{\beta}+k_{\beta}^{\prime}\right) e^{i\left(\vec{k}-\vec{k}^{\prime}\right) \cdot \vec{R}} \tag{L235}
\end{equation*}
$$

$$
\vec{j}_{\alpha}^{1}(\vec{r})=\frac{1}{2 \pi \hbar c} \sum_{\beta} \int d \vec{r}^{\prime} d \zeta d \zeta^{\prime} L\left(\zeta, \zeta^{\prime}\right) \sigma_{\alpha \beta}\left(\zeta, \zeta^{\prime}, \vec{r}-\vec{r}^{\prime}\right) A_{\beta}\left(\vec{r}^{\prime}\right)
$$

$$
\begin{equation*}
Q(\zeta, \vec{r})=\frac{1}{\nu} \sum_{\vec{k}} \delta\left(\zeta_{\vec{k}}-\zeta\right) e^{-i \vec{k} \cdot \vec{r}} \approx \frac{D\left(\mathcal{E}_{F}\right) \sin \sqrt{2 m \zeta / \hbar^{2}} r}{2 k_{F} r} \tag{L237}
\end{equation*}
$$

$$
\begin{align*}
\sigma_{\alpha \beta}\left(\zeta, \zeta^{\prime}, \vec{R}\right) & =-\frac{2 \pi \hbar}{2}\left(\frac{e \hbar}{m}\right)^{2} \frac{\partial}{\partial a_{\alpha}} \frac{\partial}{\partial a_{\beta}} Q(\zeta, \vec{R}-\vec{a}) Q\left(\zeta^{\prime},-\left.(\vec{R}+\vec{a})\right|_{\vec{a}=0}\right. \tag{L238}\\
& \approx e^{2} \frac{v_{F}}{2 \pi} D\left(\varepsilon_{F}\right) \frac{R_{\alpha} R_{\beta}}{R^{4}} \cos \left[\frac{\left(\zeta-\zeta^{\prime}\right) R}{\hbar v_{F}}\right] \tag{L239}
\end{align*}
$$

Derivation of Meissner Effect

$$
\begin{gather*}
j_{\alpha}^{1}(\vec{r})=\sum_{\beta} \int d \vec{r}^{\prime} S_{\alpha \beta}^{1}\left(\vec{r}-\vec{r}^{\prime}\right) A_{\beta}\left(\vec{r}^{\prime}\right) \tag{L240}\\
S_{\alpha \beta}^{1}(\vec{R})=\frac{3 n e^{2}}{4 \pi^{2} m c \hbar v_{F}} \frac{R_{\alpha} R_{\beta}}{R^{4}} \int d \zeta d \zeta^{\prime} L\left(\zeta, \zeta^{\prime}\right) \cos \left[\frac{\left(\zeta-\zeta^{\prime}\right) R}{\hbar v_{F}}\right] . \tag{L241}\\
\xi=\frac{\hbar v_{F}}{\pi \Delta} . \tag{L242}\\
j_{\alpha}(\vec{r})=\sum_{\beta} \int d \vec{r}^{\prime} S_{\alpha \beta}\left(\vec{r}-\vec{r}^{\prime}\right) A_{\beta}\left(\vec{r}^{\prime}\right) \tag{L243a}
\end{gather*}
$$

with

$$
\begin{equation*}
S_{\alpha \beta}(\vec{R})=\frac{-3 n e^{2}}{4 \pi m c \xi} \frac{R_{\alpha} R_{\beta}}{R^{4}} I(R) \tag{L243b}
\end{equation*}
$$

and

Derivation of Meissner Effect

$$
\begin{gather*}
I(R)=\frac{1}{\pi} \int_{-\infty}^{\infty} \frac{d y^{\prime}}{\cosh y^{\prime}} \exp \left[-\frac{2 R}{\pi \xi} \cosh y^{\prime}\right] . \tag{L243c}\\
\vec{j}(\vec{r})=\frac{-n e^{2}}{m c} \vec{A}(\vec{r}) .
\end{gather*}
$$

Comparison with Experiment

Figure 11: (A) Specific heat of aluminum and vanadium, relative to γT_{c}, where γ is the Sommerfeld parameter. [Boorse (1959)] (B) Inverse nuclear spin relaxation in aluminum compared with prediction of Bardeen, Cooper, and Schrieffer. [Masuda and Redfield (1962),]

Comparison with Experiment

$$
\begin{gather*}
\lambda_{\mathrm{ep}}=-D\left(\mathcal{E}_{F}\right)\left\langle\frac{2\left|C_{\vec{k}-\vec{k}^{\prime}}\right|^{2} \hbar \omega_{\vec{k}-\vec{k}^{\prime}}}{\left(\epsilon_{\vec{k}}-\epsilon_{\vec{k}^{\prime}}\right)^{2}-\hbar^{2} \omega_{\vec{k}-\vec{k}^{\prime}}^{2}}\right\rangle, \quad \mu^{*}=D\left(\mathcal{E}_{F}\right)\left\langle\frac{4 \pi e^{2}}{\left|\vec{k}-\overrightarrow{k^{\prime}}\right|^{2}+\kappa_{\mathrm{c}}^{2}}\right\rangle . \tag{L245}\\
T_{c}=\frac{\Theta_{D}}{1.45} \exp \left\{-\left[\frac{\left(1+\lambda_{\mathrm{ep}}\right)}{\lambda_{\mathrm{ep}}-\mu^{*}\left(1+0.62 \lambda_{\mathrm{ep}}\right)}\right]\right\}, \tag{L246}
\end{gather*}
$$

High-Temperature Superconductors

(B) Tetragonal

Figure 12: Structure of $\mathrm{YBa}_{2} \mathrm{Cu}_{3} \mathrm{O}_{\mathrm{x}}$, [Poole et al. (1988)] (A) Orthorhombic structure. (B) Tetragonal structure.

High-Temperature Superconductors

Figure 13: (A) Phase diagram for YBCO [Rossat-Mignod et al. (1990) and Greene and Bagley (1990)] (B) Heavy-fermion compound $\mathrm{CePd}_{2} \mathrm{Si}_{2}$.[Mathur et al. (1998).]

High-Temperature Superconductors

$$
\begin{gather*}
\vec{A} \rightarrow \vec{A}+\vec{\nabla} \chi \text { as } \Psi \rightarrow \Psi e^{-2 i e \chi / \hbar c} . \tag{L247}\\
u_{\vec{k}}(\vec{r}) \rightarrow u_{\vec{k}}(\vec{r}) e^{-i e \chi / \hbar c}, v_{\vec{k}}(\vec{r}) \rightarrow v_{\vec{k}}(\vec{r}) e^{i e \chi / \hbar c}, \quad \text { and } \quad \Delta_{\vec{r}} \rightarrow \Delta_{\vec{r}} e^{-2 i e \chi / \hbar c} . \tag{L248}\\
\Delta_{\vec{k} \vec{q}}=\sum_{\vec{k}^{\prime}} \frac{U_{\vec{k} \vec{k}^{\prime}}}{\mathcal{V}}\left\langle\hat{c}_{\vec{q}-\vec{k}^{\prime} \downarrow} \hat{c}_{\vec{k}^{\prime} \uparrow}\right\rangle . \tag{L249}\\
\Delta_{\vec{r} r^{\prime}}=\sum_{\vec{r}^{\prime \prime}} \frac{U_{\vec{r} \vec{r}^{\prime \prime}}}{V}\left\langle\hat{c}_{-\vec{r}^{\prime} \downarrow} \hat{c}_{\vec{r}^{\prime \prime}}-\vec{r}^{\prime} \uparrow\right\rangle . \tag{L250}
\end{gather*}
$$

High-Temperature Superconductors

d-wave superconductor

(A)

Figure 14: d-wave pairing. (A) Sketch of the experiment (B) Diffraction pattern. [Wollman et al. (1995)]

