Experimental Determination of Crystal Structures

Experiments and theory in 1912 finally revealed locations of atoms in crystalline solids. Essential ingredients:

- Theory of diffraction grating.
- Skiing, and physics table at Café Lutz.
- Willingness to disobey supervisor, and belief that "experiment was safer than theory."
- X-ray tubes, photographic plates, and experience with their use.
- Persistence.
- Coherent experiments dragging incoherent theory along behind.

- Bragg scattering, elastic and inelastic
- Bragg angle
- Bragg peak
- Bragg planes
- Atomic form factor
- Reciprocal lattice
- Miller indices
- Structure factor
- Extinctions
- Ewald construction
- Laue method
- Debye-Scherrer method, powder diffraction

Scattering Theory

Scattering Theory

Plane wave travels toward solid, scatters off atoms. Coherent scattering pattern reveals crystalline pattern.

Scattering from a particle at the origin 6

Schiff page 115 or Jackson Eq. 9.8

$$\psi \approx A e^{-i\omega t} \left[e^{i\vec{k}_0 \cdot \vec{r}} + f(\hat{r}) \frac{e^{ik_0 r}}{r} \right]$$
(L1)

$$I_{\text{atom}} \equiv \frac{d\sigma}{d\Omega_{\text{atom}}} = |f(\hat{r})|^2 \tag{L2}$$

f is atomic form factor.

Scattering from particle at \vec{R}

$$\psi \sim A e^{-i\omega t} e^{i\vec{k}_0 \cdot \vec{R}} [e^{i\vec{k}_0 \cdot (\vec{r} - \vec{R})} + f(\hat{r}) \frac{e^{ik_0|\vec{r} - \vec{R}|}}{|\vec{r} - \vec{R}|}].$$
(L3)

For sufficiently large r,

$$k_0 |\vec{r} - \vec{R}| \approx k_0 r - k_0 \frac{\vec{r}}{r} \cdot \vec{R}.$$
 (L4)

Using Eq. (L4) and defining

$$\vec{k} = k_0 \frac{\vec{r}}{r},\tag{L5}$$

and
$$\vec{q} = \vec{k}_0 - \vec{k}$$
 (L6)

gives

$$\psi \sim Ae^{-i\omega t} \left[e^{i\vec{k}_0 \cdot \vec{r}} + f(\hat{r}) \frac{e^{ik_0 r + i\vec{q} \cdot \vec{R}}}{r} \right]. \tag{L7}$$

Note that

 $q = 2k_0 \sin \theta.$

(L8)

Many scattering particles

Assume multiple scattering and inelastic scattering can be ignored

$$\psi \sim Ae^{-i\omega t} \left[e^{i\vec{k}_0 \cdot \vec{r}} + \sum_l f_l(\hat{r}) \frac{e^{ik_0 r + i\vec{q} \cdot \vec{R}_l}}{r} \right].$$
(L9)

Look away from incoming beam

$$\psi \sim Ae^{-i\omega t} \left[\sum_{l} f_{l}(\hat{r}) \frac{e^{ik_{0}r + i\vec{q}\cdot\vec{R}_{l}}}{r} \right].$$
(L10)

Intensity per unit solid angle

$$I = \sum_{l,l'} f_l f_{l'}^* e^{i\vec{q} \cdot (\vec{R}_l - \vec{R}_{l'})}.$$
 (L11)

Eq. (L11) is true no matter how atoms are arranged.

$$I = I_{\text{atom}} \left| \sum_{l} e^{i\vec{q}\cdot\vec{R}_{l}} \right|^{2}.$$
 (L12)

Laue condition: find \vec{q} so that for all atom locations \vec{R}_l

$$\exp(i\vec{q}\cdot\vec{R}_l) = 1 \tag{L13}$$

One-Dimensional Sum

$$\Sigma_q = \sum_{l=0}^{N-1} e^{ilaq}.$$
 (L14)

$$\Sigma_q = \sum_{l=0}^{N-1} e^{ilaq}$$
(L15)

$$\Rightarrow e^{iaq} \Sigma_q = \sum_{l=0}^{N-1} e^{i(l+1)aq}$$
(L16)

$$= \sum_{l=0}^{N-1} e^{ilaq} - 1 + e^{iNaq}$$
(L17)

$$= \Sigma_q - 1 + e^{iNaq} \tag{L18}$$

$$\Rightarrow \Sigma_q = \frac{e^{iNaq} - 1}{e^{iaq} - 1} \tag{L19}$$

$$= \frac{e^{iNaq/2}}{e^{iaq/2}} \frac{\sin Naq/2}{\sin aq/2}$$
(L20)

One-Dimensional Sum

$$\Rightarrow |\Sigma_q|^2 = \frac{\sin^2 Naq/2}{\sin^2 aq/2}.$$
 (L21)

$$\Sigma_q = \frac{e^{iNaq} - 1}{e^{iaq} - 1}$$
(L22)
$$|\Sigma_q|^2 = \frac{\sin^2 Naq/2}{\sin^2 aq/2}.$$
(L23)

One-Dimensional Sum

Peaks when

$$aq/2 = l\pi \Rightarrow q = 2\pi l/a.$$
 (L24)

View as sum of delta functions:

$$\sum_{l=0}^{N-1} e^{ilaq} = \sum_{l'=-\infty}^{\infty} N \frac{2\pi}{L} \delta(q - 2\pi l'/a).$$
(L25)

Main result: when $\vec{q} = \vec{k}_0 - \vec{k} = \vec{K}$ satisfies

$$\exp[i\vec{K}\cdot\vec{R}] = 1 \text{ or } \vec{K}\cdot\vec{R} = 2\pi l \tag{L26}$$

there is a strong scattering peak.

The scattering sum can be rewritten

$$\sum_{\vec{R}} e^{i\vec{R}\cdot\vec{q}} = \sum_{\vec{K}} N \frac{(2\pi)^3}{\mathcal{V}} \delta(\vec{q} - \vec{K}), \qquad (L27)$$

When the vectors \vec{R} lie in a Bravais lattice, then vectors \vec{K} satisfying Eq. (L26) also lie in a lattice—the reciprocal lattice.

First consider

$$\vec{K} \cdot \vec{R} = 0 \tag{L28}$$

Once the direction of \vec{K} is chosen, the \vec{R} satisfying this condition lie in a plane passing through the origin

Scattering in three dimensions

The magnitude of \vec{K} is restricted by the need to satisfy Eq. (L28) for all Bragg planes. In the plane,

$$l_1 \vec{a}_1 + l_2 \vec{a}_2,$$
 (L29)

For any \vec{a}_3 in an adjacent plane, suppose

$$\vec{a}_3 \cdot \vec{K} = 2\pi. \tag{L30}$$

Then

$$\vec{K} \cdot \vec{R} = \vec{K} \cdot (l_1 \vec{a}_1 + l_2 \vec{a}_2 + l_3 \vec{a}_3) = 2\pi l_3.$$
(L31)

Explicit construction:

$$\vec{b}_{1} = 2\pi \frac{\vec{a}_{2} \times \vec{a}_{3}}{\vec{a}_{1} \cdot \vec{a}_{2} \times \vec{a}_{3}} \quad \vec{b}_{2} = 2\pi \frac{\vec{a}_{3} \times \vec{a}_{1}}{\vec{a}_{2} \cdot \vec{a}_{3} \times \vec{a}_{1}} \quad \vec{b}_{3} = 2\pi \frac{\vec{a}_{1} \times \vec{a}_{2}}{\vec{a}_{3} \cdot \vec{a}_{1} \times \vec{a}_{2}}$$
(L32a)
$$\vec{K} = \sum_{l=1}^{3} m_{l} \vec{b}_{l}.$$
(L32b)

Reciprocal lattice of a simple cubic lattice of lattice spacing *a* is another simple cubic lattice, of spacing $2\pi/a$.

The reciprocal lattice of an fcc lattice of spacing *a* is, however, a bcc lattice of spacing $4\pi/a$

The reciprocal lattice of a bcc lattice of spacing *a* is an fcc lattice of spacing $4\pi/a$.

• [*ijk*] refers to a *direction*

$$i\hat{x} + j\hat{y} + k\hat{z} \tag{L33}$$

in the lattice specified by the three integers i, j, and k.

- (*ijk*) refers to a *lattice plane* perpendicular to [*ijk*]
- {*ijk*} refers to the family of lattice planes perpendicular to [*ijk*] and related by symmetry.

Lattice with a Basis

$$\vec{R} = \vec{u}_l + \vec{v}_{l'} \tag{L34}$$

Regrouping of basic sum first carried out by Laue

$$\sum_{\vec{R}} e^{i\vec{q}\cdot\vec{R}} = \sum_{ll'} e^{i\vec{q}\cdot(\vec{u}_l+\vec{v}_{l'})}$$
(L35)
$$= \left(\sum_{l} e^{i\vec{q}\cdot\vec{u}_l}\right) \left(\sum_{l'} e^{i\vec{q}\cdot\vec{v}_{l'}}\right)$$
(L36)
$$\Rightarrow I \propto \left(\sum_{jj'} e^{-i\vec{q}\cdot(\vec{u}_j-\vec{u}_{j'})}\right) \left(\sum_{ll'} e^{i\vec{q}\cdot(\vec{v}_l-\vec{v}_{l'})}\right).$$
(L37)

Structure factor for the unit cell is

$$F_{\vec{q}} \equiv \left|\sum_{l} e^{i\vec{q}\cdot\vec{v}_l}\right|^2. \tag{L38}$$

When $F_{\vec{q}}$ vanishes, have an extinction: Laue overlooked this possibility, leading to years of confusion interpreting patterns.

28th January 2003 © 2003, Michael Marder

Lattice with a Basis

Example: Diamond

$$\vec{v}_1 = (0 \ 0 \ 0), \quad \vec{v}_2 = \frac{a}{4}(1 \ 1 \ 1).$$
 (L39)

$$\vec{K} = l_1 \frac{4\pi}{2a} (1 \ 1 \ -1) + l_2 \frac{4\pi}{2a} (-1 \ 1 \ 1) + l_3 \frac{4\pi}{2a} (1 \ -1 \ 1).$$
(L40)

Therefore,

$$\vec{v}_2 \cdot \vec{K} = \frac{\pi}{2} (l_1 + l_2 + l_3),$$
 (L41)

 $F_{\vec{K}}$ is

$$F_{\vec{K}} = |1 + e^{i\pi(l_1 + l_2 + l_3)/2}|^2$$
(L42)
=
$$\begin{cases} 4 & \text{if } l_1 + l_2 + l_3 = 4, 8, 12, \dots \\ 2 & \text{if } l_1 + l_2 + l_3 \text{ is odd} \\ 0 & \text{if } l_1 + l_2 + l_3 = 2, 6, 10, \dots \end{cases}$$
(L43)

Experimental Methods

Ewald construction

Shining generic monochromatic X-ray upon crystal gives no scattering peaks

Laue Method

Rotating Crystal Method

Powder Method

$$\theta = \sin^{-1}(K/2k_0) \tag{L44}$$

and the radius r on film of the scattering ring due to reciprocal lattice vector \vec{K} is $r = D \tan(2\theta)$.

(L45)

More on Scattering Experiments

	X-rays	Neutrons	Electrons
Charge	0	0	- <i>e</i>
Mass	0	$1.67 \cdot 10^{-27} \text{ kg}$	$9.11 \cdot 10^{-31} \text{ kg}$
Typical energy	10 keV	0.03 eV	100 keV
Typical wavelength	1Å	1 Å	0.05Å
Typical attenuation length	$100 \ \mu m$	5 cm	$1 \ \mu m$
Typical atomic form factor, f	10^{-3} Å	$10^{-4} Å$	10 Å

Interactions of X-rays with matter

$$I_{\text{atom}}(\hat{r}) = \frac{e^4}{m^2 c^4} \frac{(1 + \cos^2 2\theta)}{2} \equiv \frac{e^4}{m^2 c^4} P(\hat{r})$$
(L46)
$$\Rightarrow f(\hat{r}) = \frac{e^2}{mc^2} \sqrt{P(\hat{r})} = 2.82 \cdot 10^{-15} \sqrt{P(\hat{r})} \text{ m}$$
(L47)

More on Scattering Experiments

Neutrons are almost completely isotropic. Elastic scattering (neutrons lose no energy)

28th January 2003 © 2003, Michael Marder

More on Scattering Experiments

gives very precise information about static structure. Inelastic scattering gives very precise information about mechanical excitations. Neutrons are sensitive to the spins of the nuclei from which they scatter.

Information on a neutron detector

- Insertion of heavy atoms allows extremely complex crystals to be deciphered. Crystallography Online Structure of Hemoglobin
- rasmol viewer for molecules
- Computers do most of the work now (for better or worse)