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History 2

Experiments and theory in 1912 finally revealed locations of atoms in crystalline solids.

Essential ingredients:

� Theory of diffraction grating.

� Skiing, and physics table at Café Lutz.

� Willingness to disobey supervisor, and belief that “experiment was safer than theory.”

� X-ray tubes, photographic plates, and experience with their use.

� Persistence.

� Coherent experiments dragging incoherent theory along behind.
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Terms 3
� Bragg scattering, elastic and inelastic

� Bragg angle

� Bragg peak

� Bragg planes

� Atomic form factor

� Reciprocal lattice

� Miller indices

� Structure factor

� Extinctions

� Ewald construction

� Laue method

� Debye-Scherrer method, powder diffraction
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Scattering Theory 4

Incoming radiation
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Scattering Theory 5
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Plane wave travels toward solid, scatters off atoms. Coherent scattering pattern reveals

crystalline pattern.
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Scattering from a particle at the origin 6

Schiff page 115 or Jackson Eq. 9.8
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f is atomic form factor.
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Scattering from particle at

�

R 7
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For sufficiently large r,
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Using Eq. (L4) and defining
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Note that

q � 2k0 sin � � (L8)
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Many scattering particles 8

Assume multiple scattering and inelastic scattering can be ignored
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Look away from incoming beam
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Intensity per unit solid angle
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Eq. (L11) is true no matter how atoms are arranged.
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Scattering from crystal 9
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Laue condition: find �q so that for all atom locations
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One-Dimensional Sum 10
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One-Dimensional Sum 11
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One-Dimensional Sum 12
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One-Dimensional Sum 13

Peaks when
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View as sum of delta functions:
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Scattering in three dimensions 14

Main result: when �q �
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there is a strong scattering peak.

The scattering sum can be rewritten
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When the vectors

�

R lie in a Bravais lattice, then vectors

�

K satisfying Eq. (L26) also lie in

a lattice— the reciprocal lattice.
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Scattering in three dimensions 15

First consider �
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�

K is chosen, the

�

R satisfying this condition lie in a plane passing

through the origin

�

K �

� 110 �

a1 a2

a3

� 1 � 2� 0

�

K �

� 110 �

a1 a2

a3

� 1 � 2� 0

28th January 2003
c� 2003, Michael Marder



Scattering in three dimensions 16

The magnitude of

�

K is restricted by the need to satisfy Eq. (L28) for all Bragg planes. In

the plane,
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Scattering in three dimensions 17

Reciprocal lattice of a simple cubic lattice of lattice spacing a is another simple cubic

lattice, of spacing 2 � � a.

The reciprocal lattice of an fcc lattice of spacing a is, however, a bcc lattice of spacing

4 � � a

The reciprocal lattice of a bcc lattice of spacing a is an fcc lattice of spacing 4 � � a.
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Miller Indices 18
� � i jk 
 refers to a direction

i� x � j� y � k� z (L33)

in the lattice specified by the three integers i, j, and k.

� � i jk 	 refers to a lattice plane perpendicular to � i jk 


�
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refers to the family of lattice planes perpendicular to � i jk 
 and related by

symmetry.
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Lattice with a Basis 19
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Regrouping of basic sum first carried out by Laue
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Structure factor for the unit cell is
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When F�q vanishes, have an extinction: Laue overlooked this possibility, leading to years

of confusion interpreting patterns.
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Lattice with a Basis 20

Example: Diamond
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Experimental Methods 21

Ewald construction
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Shining generic monochromatic X-ray upon crystal gives no scattering peaks
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Laue Method 22
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Rotating Crystal Method 23
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Rotating Crystal Method 24
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Powder Method 25
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and the radius r on film of the scattering ring due to reciprocal lattice vector
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More on Scattering Experiments 26

X-rays Neutrons Electrons

Charge 0 0 � e

Mass 0 1.67� 10 � 27 kg 9.11� 10 � 31 kg

Typical energy 10 keV 0.03 eV 100 keV

Typical wavelength 1Å 1 Å 0.05Å

Typical attenuation length 100 � m 5 cm 1 � m

Typical atomic form factor, f 10 � 3 Å 10 � 4 Å 10 Å

Interactions of X–rays with matter
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More on Scattering Experiments 27
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Neutrons are almost completely isotropic. Elastic scattering (neutrons lose no energy)
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More on Scattering Experiments 28

gives very precise information about static structure. Inelastic scattering gives very

precise information about mechanical excitations. Neutrons are sensitive to the spins of

the nuclei from which they scatter.
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Information on a neutron detector
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http://www.msfc.nasa.gov/NEWSROOM/background/facts/bonner1.html


75 years of further advances... 29

Insertion of heavy atoms allows extremely complex crystals to be deciphered.

Crystallography Online

Structure of Hemoglobin

rasmol viewer for molecules

Computers do most of the work now (for better or worse)
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http://www.iucr.org/cww-top/crystal.index.html
http://www.biochem.ucl.ac.uk/bsm/pdbsum/1a00/main.html
http://www.rasmol.org

