## Complex Structures



Entropy always favors mixing things together:

$$
\begin{gather*}
\binom{N}{M}=\frac{N!}{M!(N-M)!} \approx \frac{N^{M}}{M!}  \tag{L1}\\
c=M / N \tag{L2}
\end{gather*}
$$

is

$$
\begin{gather*}
k_{B} \ln \left(N^{M} / M!\right) \approx-k_{B} N(c \ln c-c)  \tag{L3}\\
\mathcal{F}=\mathcal{E}-T S=N\left[c \epsilon+k_{B} T c \ln c-k_{B} T c\right]  \tag{L4}\\
c \sim e^{-\epsilon / k_{B} T} \tag{L5}
\end{gather*}
$$



Flynn (1972)


## Hansen (1958)


(A) A 3:1 mixture of copper and gold (B) Equal mixtures. Lattice constant $c$ is 7\% smaller than $a$.

## Phase Separation



$$
\begin{equation*}
\mathcal{F}_{\mathrm{ps}}=f \mathcal{F}\left(c_{a}\right)+(1-f) \mathcal{F}\left(c_{b}\right), \tag{L6}
\end{equation*}
$$

$$
\begin{equation*}
\Rightarrow \mathcal{F}_{\mathrm{ps}}=\frac{c-c_{b}}{c_{a}-c_{b}} \mathcal{F}\left(c_{a}\right)+\frac{c_{a}-c}{c_{a}-c_{b}} \mathcal{F}\left(c_{b}\right) . \tag{L7}
\end{equation*}
$$



At sufficiently high temperatures, the liquid phase is of lower free energy at all concentrations $c$ than the solid.
At this temperature, the liquid $L$ is lower in energy to the left, but coexists with solid of type $\beta$ towards the right, and $\beta$ is stable for sufficiently high concentra-
Nows.solid of type $\alpha$ is stable for low values of $c, \beta$ is stable for high values, liquid is stable for a small range in the middle, and there are two coexistence regions.
Only solid phases are stable. These can be pure $\alpha$, pure $\beta$, or mixtures $\alpha+$ $\beta$ of the two.

Grains


Due to B. Hockey, attributed to E. Fuller, and published by R. Thomson (1986)

$$
\begin{aligned}
& \vec{j}=-\mathcal{D} \vec{\nabla} c . \\
& \frac{\partial c}{\partial t}=\mathcal{D} \nabla^{2} c
\end{aligned}
$$

$$
\begin{gather*}
\vec{F}_{l}=-\frac{\partial \varepsilon}{\partial \vec{R}_{l}},  \tag{L11}\\
m_{l} \frac{d^{2} \vec{R}_{l}}{d t^{2}}=\vec{F}_{l} .  \tag{L12}\\
\vec{R}_{l}^{n+1}=2 \vec{R}_{l}^{n}-\vec{R}_{l}^{n-1}+\frac{\vec{F}_{l}^{n}}{m_{l}} d t^{2} \tag{L13}
\end{gather*}
$$

with

$$
\begin{equation*}
\vec{F}_{l}^{n}=\vec{F}_{l}\left(\vec{R}_{1}^{n} \vec{R}_{2}^{n} \ldots \vec{R}_{N}^{n}\right) \tag{L14}
\end{equation*}
$$

## Correlation Functions

Order parameters

$$
\begin{align*}
& n_{2}\left(\vec{r}_{1}, \vec{r}_{2} ; t\right)=\left\langle\sum_{l \neq l^{\prime}} \delta\left(\vec{r}_{1}-\vec{R}_{l}(0)\right) \delta\left(\vec{r}_{2}-\vec{R}_{l^{\prime}}(t)\right)\right\rangle .  \tag{L15}\\
S(\vec{q}) & \equiv \frac{I}{N I_{\text {atom }}}  \tag{L16}\\
& =1+\frac{1}{N} \int d \vec{r}_{1} d \vec{r}_{2} n_{2}\left(\vec{r}_{1}, \vec{r}_{2} ; 0\right) e^{i \vec{q} \cdot\left(\vec{r}_{1}-\vec{r}_{2}\right)} \tag{L19}
\end{align*}
$$

where

$$
\begin{equation*}
n_{2}(\vec{q})=\frac{1}{V} \int d \vec{r} d \vec{r}^{\prime} n_{2}\left(\vec{r}+\vec{r}^{\prime}, \vec{r} ; 0\right) e^{i \vec{q} \cdot \vec{r}^{\prime}} . \tag{L20}
\end{equation*}
$$

Long-range order in crystals...

$$
\begin{equation*}
\mathcal{O}_{\vec{K}}=\frac{\mathcal{V}}{N^{2}} n_{2}(\vec{K}) \tag{L21}
\end{equation*}
$$

Short-range order in liquids...

$$
\begin{gather*}
g(r) \equiv \frac{n_{2}(r)}{n^{2}}  \tag{L22}\\
S(\vec{q})=1+n \int d \vec{r} g(r) e^{i \vec{q} \cdot \vec{r}}  \tag{L23}\\
=1+n \int d \vec{r}(g(r)-1) e^{i \vec{q} \cdot \vec{r}}+n \int d \vec{r} e^{i \vec{q} \cdot \vec{r}}  \tag{L24}\\
\approx 1+n \int d \vec{r} e^{i \vec{q} \cdot \vec{r}}(g(r)-1) . \tag{L25}
\end{gather*}
$$

## Long- and Short-Range Order



$$
\begin{equation*}
z=n \int_{0}^{\text {fi rst peak }} d r 4 \pi r^{2} g(r) \tag{L26}
\end{equation*}
$$



Incoming radiation whose energy $\mathcal{E}$ lies above the onset of absorption at $\mathcal{E}_{a}$. Receiving atom emits an electron of energy $\mathcal{E}-\mathcal{E}_{a}$ and wave vector $\hbar k=\sqrt{2 m\left(\mathcal{E}-\mathcal{E}_{a}\right)}$.

$$
\begin{align*}
\alpha(\mathcal{E}) & \propto \sum_{j}\left|1+\left[e^{-R_{j} / l_{T}} e^{i k R_{j}} f / R_{j}\right]^{2}\right|^{2}  \tag{L27}\\
& \sim\left\langle\int d s g(s) e^{-2 s / l_{T}} \cos (2 k s)\right\rangle . \tag{L22}
\end{align*}
$$

$l_{T}$ is the mean free path of electrons in the solid.

## Calculating Correlation Functions

Dense Random Packing, Bernal model, Hard spheres


The radial distribution function $g(r)$ for hard spheres (disks) of radius $d$ in two dimensions.


Properties depend upon time one waits.


Specifi c heat $q_{p}$ times thermal conductivity $\kappa$ for the glassy liquid glycerol as a function of temperature. Birge and Nagel (1985)

## Continuous Random Network



## Continuous Random Network

Bond-counting and constraint argument of Phillips
$N$ number of atoms, $b$ number of bonds per atom.
$N b / 2$ total bonds. If there is an optimal angle, $N(2 b-3)$ extra constraints per atom.

$$
\begin{equation*}
3 N=N(2 b-3)+\frac{N b}{2} \tag{L30}
\end{equation*}
$$

it follows that

$$
\begin{equation*}
b=2.4 \tag{L31}
\end{equation*}
$$

## Liquid Crystals



Picture of the organic molecule p-azoxyanisole (PAA), which forms a nematic liquid crystal between $116^{\circ} \mathrm{C}$ and $135^{\circ} \mathrm{C}$. It can roughly be regarded as a rigid rod of length 20 Å and width $5 \AA$.

- Nematics
- Cholesterics
- Smectics


## Liquid Crystals



Nematic liquid crystal

## Cholesterics

$$
\begin{gather*}
n_{x}=0  \tag{L32a}\\
n_{y}=\cos q_{0} x  \tag{L32b}\\
n_{z}=\sin q_{0} x \tag{L32c}
\end{gather*}
$$



## Smectics

## 

## 

Smectic A

raxamunio rymual


Smectic C

$$
\begin{gather*}
\mathcal{O}=\int d^{3} r_{1} d \theta_{1} n_{1}\left(\vec{r}_{1}, \theta_{1}\right) \frac{1}{2}\left(3 \cos ^{2} \theta_{1}-1\right) .  \tag{L33}\\
Q_{\alpha \beta}=\epsilon_{\alpha \beta}-\frac{1}{3} \delta_{\alpha \beta} \sum_{\gamma} \epsilon_{\gamma \gamma}, \tag{L34}
\end{gather*}
$$

Polymer as a random walk.


Ideal Radius of Gyration

$$
\begin{align*}
& \mathcal{P}_{N+1}(\vec{R})=\int d \vec{R}^{\prime} \mathcal{P}_{N}\left(\vec{R}^{\prime}\right) \mathcal{P}_{1}\left(\vec{R}-\vec{R}^{\prime}\right)  \tag{L35}\\
\Rightarrow & \mathcal{P}_{N+1}(\vec{k})=\mathcal{P}_{N}(\vec{k}) \mathcal{P}_{1}(\vec{k})  \tag{L36}\\
\Rightarrow & \mathcal{P}_{N}(\vec{k})=\left[\mathcal{P}_{1}(\vec{k})\right]^{N} . \tag{L37}
\end{align*}
$$

$$
\begin{equation*}
\int d \vec{R} \quad \mathcal{P}_{1}(\vec{R})=1 \Rightarrow \mathcal{P}_{1}(\vec{k}=0)=1 \tag{L38}
\end{equation*}
$$

$$
\begin{array}{ll} 
& \mathcal{P}_{1}(\vec{k}) \approx 1-\frac{c}{2} k^{2} \approx e^{-c k^{2} / 2} \\
\Rightarrow \quad & \mathcal{P}_{N}(\vec{k}) \approx e^{-N c k^{2} / 2} \\
\Rightarrow \quad & \mathcal{P}_{N}(\vec{R})=\frac{1}{\sqrt{2 \pi N c}^{3}} e^{-R^{2} / 2 N c} . \tag{L41}
\end{array}
$$

Central limit theorem

$$
\begin{align*}
c=- & \left.\frac{\partial^{2}}{\partial k^{2}}\right|_{\vec{k}=0} \mathcal{P}_{1}(\vec{k})=\int d \vec{R} R^{2} \mathcal{P}_{1}(\vec{R}) \equiv a^{2}  \tag{L42}\\
\mathcal{R}_{\mathrm{I}}^{2} & =\int d \vec{R} R^{2} \mathcal{P}_{N}(\vec{R})=3 c N=3 a^{2} N  \tag{L43}\\
\Rightarrow \mathcal{R}_{\mathrm{I}} & =a \sqrt{3 N} . \tag{L44}
\end{align*}
$$

$$
\begin{equation*}
S=S_{0}-\frac{3}{2} k_{B} \frac{R^{2}}{\mathcal{R}_{\mathrm{I}}^{2}} \tag{L45}
\end{equation*}
$$

$$
\begin{gather*}
\mathcal{F}=\mathcal{F}_{0}+\frac{3}{2} k_{B} T \frac{R^{2}}{\mathcal{R}_{\mathrm{I}}^{2}}=\mathcal{F}_{0}+\frac{1}{2} k_{B} T \frac{R^{2}}{a^{2} N},  \tag{L46}\\
\vec{F}=3 k_{B} T \frac{\vec{R}}{\mathcal{R}_{\mathrm{I}}^{2}}=\frac{k_{B} T}{a^{2} N} \vec{R} \equiv \frac{\mathcal{K}}{N} \vec{R} . \tag{L47}
\end{gather*}
$$

Polymer behaves like an ideal spring
Spring constant that rises in proportion to temperature, falls in proportion to the molecular weight $\mathcal{R}_{\mathrm{I}}{ }^{2} \propto N$

$$
\begin{gather*}
M \sim \frac{\mathcal{R}^{2}}{a^{2}}  \tag{L48}\\
\mathcal{F}=\mathcal{F}_{0}+k_{B} T\left(\frac{N}{M}\right) \frac{1}{2} \frac{\mathcal{R}^{2}}{a^{2} M}=\mathcal{F}_{0}+k_{B} T \frac{N}{2} \frac{a^{2}}{\mathcal{R}^{2}}=\mathcal{F}_{0}+k_{B} T \frac{\mathcal{R}_{\mathrm{I}}^{2}}{6 \mathcal{R}^{2}} .  \tag{L49}\\
P=-\frac{\partial}{\partial \mathcal{R}^{3}} k_{B} T N \frac{a^{2}}{\mathcal{R}^{2}} \propto \frac{k_{B} T(N / M)}{\mathcal{R}^{3}}, \tag{L50}
\end{gather*}
$$

Pressure of an ideal gas of $N / M$ particles in volume $\mathcal{R}^{3}$.

## Polymers

$$
\begin{gather*}
n=\frac{N}{\mathcal{R}^{3}}=\frac{\mathcal{R}_{\mathrm{I}}^{2}}{a^{2} \mathcal{R}^{3}}  \tag{L51}\\
\mathcal{F} \propto k_{B} T \mathcal{R}^{3}\left[A n+B n^{2}+C n^{3}+\ldots\right] \tag{L52}
\end{gather*}
$$

$$
\begin{gather*}
\mathcal{F}=\mathcal{F}_{0}+k_{B} T\left[\frac{\mathcal{R}^{2}}{\mathcal{R}_{\mathrm{I}}^{2}}+\frac{\mathcal{R}_{\mathrm{I}}^{2}}{\mathcal{R}^{2}}+\mathcal{R}^{3}\left[A\left(\frac{\mathcal{R}_{\mathrm{I}}^{2}}{a^{2} \mathcal{R}^{3}}\right)+B\left(\frac{\mathcal{R}_{\mathrm{I}}^{2}}{a^{2} \mathcal{R}^{3}}\right)^{2}+C\left(\frac{\mathcal{R}_{\mathrm{I}}^{2}}{a^{2} \mathcal{R}^{3}}\right)^{3}+\ldots\right]\right]  \tag{L53}\\
2 \frac{\mathcal{R}}{\mathcal{R}_{\mathrm{I}}^{2}}-2 \frac{\mathcal{R}_{\mathrm{I}}^{2}}{\mathcal{R}^{3}}-3 B \frac{\mathcal{R}_{\mathrm{I}}^{4}}{a^{4} \mathcal{R}^{4}}-6 C \frac{\mathcal{R}_{\mathrm{I}}^{6}}{a^{6} \mathcal{R}^{7}}=0  \tag{L54}\\
 \tag{L55}\\
2 \frac{\mathcal{R}}{\mathcal{R}_{\mathrm{I}}^{2}}-3 B \frac{\mathcal{R}_{\mathrm{I}}^{4}}{a^{4} \mathcal{R}^{4}}=0  \tag{L56}\\
\Rightarrow \\
\Rightarrow \mathcal{R}^{5} \propto \frac{B \mathcal{R}_{\mathrm{I}}^{6}}{a^{4}} \Rightarrow \mathcal{R} \propto \mathcal{R}_{\mathrm{I}}^{6 / 5} \propto N^{3 / 5}
\end{gather*}
$$

$$
\begin{equation*}
\frac{|B| \mathcal{R}_{I}^{4}}{a^{4} \mathcal{R}^{4}}=2 C \frac{\mathcal{R}_{\mathrm{I}}^{6}}{a^{6} \mathcal{R}^{7}} \Rightarrow \mathcal{R}^{3} \sim \frac{C \mathcal{R}_{I}^{2}}{|B| a^{2}} \sim N \Rightarrow \mathcal{R} \sim N^{1 / 3} . \tag{L57}
\end{equation*}
$$

$\Theta$ solvent

## Quasicrystals

Five-fold symmetry is impossible... and yet
$79.2^{\circ}$


Shechtman et al. (1984) Quasi-crystal site with several applets

## One-Dimensional Quasicrystal

$$
\begin{equation*}
x_{n}=n+(\tau-1) \operatorname{int}(n / \tau) \tag{L58}
\end{equation*}
$$

## Golden Mean

$$
\begin{equation*}
\tau=1+\frac{1}{\tau}=\frac{\sqrt{5}+1}{2}=1.618 \ldots \tag{L59}
\end{equation*}
$$

Deflation rule:
Replace $\tau$ with sequence $\tau, 1$,
Replaces every 1 with a $\tau$

$$
\begin{equation*}
\tau 1 \tau \tau 1 \ldots \tag{L60}
\end{equation*}
$$

$$
\begin{equation*}
\tau 1 \tau \tau 1 \tau 1 \tau \ldots \tag{L61}
\end{equation*}
$$

$$
\begin{equation*}
X_{n+1}=X_{n} X_{n-1} \tag{L62}
\end{equation*}
$$

## One-Dimensional Quasicrystal

$$
\begin{gather*}
X_{-1}=\tau ; X_{0}=\tau 1 ; X_{1}=\tau 1 \tau ; X_{2}=\tau 1 \tau \tau 1 \ldots  \tag{L6}\\
X_{3}=X_{2} X_{1}=\tau 1 \tau \tau 1 \tau 1 \tau . \tag{L64}
\end{gather*}
$$



$$
\begin{gather*}
x_{m}=m+\sum_{n} n \theta(n-m / \tau+1) \theta(m / \tau-n) / \tau  \tag{L65}\\
x / \tau>y>x / \tau-1  \tag{L66}\\
{\left[m, \sum_{n} n \theta(m / \tau-n) \theta(n-[m / \tau-1])\right]}  \tag{L67}\\
{\left[\sum_{m} m \theta((m+1) / \tau-1-n) \theta(n-[m / \tau-1]), n\right]}  \tag{L68}\\
X_{n+1}=\sum_{m} m \theta((m+1) / \tau-n-1) \theta(n-m / \tau+1)+n / \tau \tag{L69}
\end{gather*}
$$

$X_{n}$ hollow circles. , $X_{m}=-1 / \tau+\tau x_{m}$.

## Scattering from a One-Dimensional Singular continunus spectrum Quasicrystal

$$
\begin{align*}
\Sigma_{q}= & \sum_{n} e^{i q x_{n}}  \tag{L71}\\
= & \sum_{n, m} e^{i q(m+n / \tau)} \theta(n-m / \tau+1) \theta(m / \tau-n)  \tag{L72}\\
= & \int d x d y e^{i q \cdot(x, y)}\left[\sum_{m, n} \delta(x-m) \delta(y-n)\right] \theta(y-x / \tau+1) \theta(x / \tau-y)  \tag{L73}\\
& \text { where } \vec{q}=(q, q / \tau) \tag{L74}
\end{align*}
$$

First piece

$$
\begin{align*}
A(\vec{q}) & =\int d x d y \sum_{m, n} \delta(x-m) \delta(y-n) e^{i q_{x} x} e^{i q_{y} y}  \tag{L75}\\
& =N \frac{(2 \pi)^{2}}{\mathcal{V}} \sum_{n^{\prime}, m^{\prime}} \delta\left(q_{x}-2 \pi n^{\prime}\right) \delta\left(q_{y}-2 \pi m^{\prime}\right) \tag{L76}
\end{align*}
$$

## Scattering from a One-Dimensional Quasicrystal

$$
\begin{align*}
& B(\vec{q})=\int d x \int_{x / \tau-1}^{x / \tau} d y e^{i q_{x} x+i q_{y} y}=\int d x e^{i q_{x} x}\left[\frac{e^{i q_{y}(x / \tau)}-e^{i q_{y}(x / \tau-1)}}{i q_{y}}\right] \\
& \quad \Sigma_{q} \propto \\
& \quad \int d x d q_{x}^{\prime} d q_{y}^{\prime} \sum_{n^{\prime}, m^{\prime}}\left\{\begin{array}{c}
\delta\left(q-q_{x}^{\prime}-2 \pi n^{\prime}\right) \\
\times \delta\left(q / \tau-q_{y}^{\prime}-2 \pi m^{\prime}\right)
\end{array}\right\}\left[\frac{e^{i q_{y}^{\prime}(x / \tau)}-e^{i q_{y}^{\prime}(x / \tau-1)}}{i q_{y}^{\prime}}\right] e^{i q_{x}^{\prime} x}  \tag{L78}\\
& =\int d x \sum_{n^{\prime}, m^{\prime}}\left[\frac{e^{i\left(q / \tau-2 \pi m^{\prime}\right)(x / \tau)}-e^{i\left(q / \tau-2 \pi m^{\prime}\right)(x / \tau-1)}}{i q / \tau-2 \pi i m^{\prime}}\right] e^{i\left(q-2 \pi n^{\prime}\right) x}  \tag{L79}\\
& =2 \pi \sum_{n^{\prime}, m^{\prime}} \frac{1-e^{-i\left(q / \tau-2 \pi m^{\prime}\right)}}{i q / \tau-2 \pi i m^{\prime}} \delta\left(\left[2 \pi m^{\prime}-\frac{q}{\tau}\right] / \tau+2 \pi n^{\prime}-q\right) . \tag{L80}
\end{align*}
$$

The peaks of (80) are at

$$
\begin{equation*}
\frac{2 \pi\left(m^{\prime} / \tau+n^{\prime}\right)}{\tau^{-2}+1}=q \tag{L81}
\end{equation*}
$$

## Scattering from a One-Dimensional Quasicrystal

Square amplitude is proportional to

$$
\begin{equation*}
\sin ^{2}\left(\pi\left[\frac{m^{\prime} \tau-n^{\prime}}{\tau+\tau^{-1}}\right]\right) /\left(q / \tau-2 \pi m^{\prime}\right)^{2} . \tag{L88}
\end{equation*}
$$



## Two-Dimensional Quasicrystals-Penrose

Penrose, Gardner


## Two-Dimensional Quasicrystals-Penrose Tiles

Amman lines
(A)

(B)


$$
\begin{equation*}
\vec{r} \cdot \hat{e}_{\alpha}=x_{n_{\alpha}}, \vec{r} \cdot \hat{e}_{\beta}=x_{n_{\beta}}, \tag{L83}
\end{equation*}
$$

## Physical reasons for quasicrystals


$\mathrm{Al}_{6} \mathrm{Li} \mathrm{L}_{3} \mathrm{Cu}$ is real equilibrium quasicrystal

## Physical reasons for quasicrystals


(B)


Kortan (1996)

