Complex Structures

Entropy always favors mixing things together:

$$\binom{N}{M} = \frac{N!}{M!(N-M)!} \approx \frac{N^M}{M!},\tag{L1}$$

$$c = M/N, \tag{L2}$$

$$k_B \ln(N^M/M!) \approx -k_B N(c \ln c - c). \tag{L3}$$

$$\mathcal{F} = \mathcal{E} - TS = N[c\epsilon + k_B T c \ln c - k_B T c], \qquad (L4)$$

$$c \sim e^{-\epsilon/k_B T}$$
. (L5)

-3 log c, Fe₃C in Fe -4 -5 -6 0.8 1.0 1.2 2.4 1.4 1.8 2.0 2.2 1.6 $1/T (K^{-1})$ Flynn (1972)

Alloys

Alloys

Hansen (1958)

Superlattices

(A) A 3:1 mixture of copper and gold (B) Equal mixtures. Lattice constant *c* is 7% smaller than *a*.

Phase Separation

$$\mathcal{F}_{\rm ps} = f\mathcal{F}(c_a) + (1-f)\mathcal{F}(c_b),\tag{L6}$$

(L7)

$$\Rightarrow \mathcal{F}_{ps} = \frac{c - c_b}{c_a - c_b} \mathcal{F}(c_a) + \frac{c_a - c}{c_a - c_b} \mathcal{F}(c_b).$$
(L8)

Phase Separation

At sufficiently high temperatures, the liquid phase is of lower free energy at all concentrations c than the solid.

At this temperature, the liquid L is lower in energy to the left, but coexists with solid of type β towards the right, and β is stable for sufficiently high concentra-**Nons**.solid of type α is stable for low values of c, β is stable for high values, liquid is stable for a small range in the middle, and there are two coexistence regions.

Only solid phases are stable. These can be pure α , pure β , or mixtures $\alpha + \beta$ of the two.

Nonequilibrium Structures in Alloys

Grains

Due to B. Hockey, attributed to E. Fuller, and published by R. Thomson (1986)

Nonequilibrium Structures in Alloys

$$\vec{j} = -\mathcal{D}\vec{\nabla}c. \tag{L9}$$

$$\frac{\partial c}{\partial t} = \mathcal{D}\nabla^2 c \tag{L10}$$

Molecular Dynamics

$$\vec{F}_l = -\frac{\partial \mathcal{E}}{\partial \vec{R}_l},\tag{L11}$$

$$m_l \frac{d^2 R_l}{dt^2} = \vec{F}_l. \tag{L12}$$

$$\vec{R}_{l}^{n+1} = 2\vec{R}_{l}^{n} - \vec{R}_{l}^{n-1} + \frac{\vec{F}_{l}^{n}}{m_{l}}dt^{2}$$
(L13)

with

$$\vec{F}_l^n = \vec{F}_l(\vec{R}_1^n \vec{R}_2^n \dots \vec{R}_N^n) \tag{L14}$$

Correlation Functions

Order parameters

$$n_2(\vec{r}_1, \vec{r}_2; t) = \left\langle \sum_{l \neq l'} \delta(\vec{r}_1 - \vec{R}_l(0)) \delta(\vec{r}_2 - \vec{R}_{l'}(t)) \right\rangle.$$
(L15)

$$S(\vec{q}) \equiv \frac{I}{NI_{\text{atom}}}$$
 (L16)

$$= 1 + \frac{1}{N} \int d\vec{r}_1 \, d\vec{r}_2 \, n_2(\vec{r}_1, \vec{r}_2; 0) e^{i\vec{q} \cdot (\vec{r}_1 - \vec{r}_2)}$$
(L19)

where

$$n_2(\vec{q}) = \frac{1}{\mathcal{V}} \int d\vec{r} d\vec{r}' \, n_2(\vec{r} + \vec{r}', \vec{r}; 0) e^{i\vec{q}\cdot\vec{r}'}.$$
(L20)

Long- and Short-Range Order

Long-range order in crystals...

$$\mathcal{O}_{\vec{K}} = \frac{\mathcal{V}}{N^2} n_2(\vec{K}). \tag{L21}$$

Short–range order in liquids...

$$g(r) \equiv \frac{n_2(r)}{n^2}.$$
 (L22)

$$S(\vec{q}) = 1 + n \int d\vec{r} g(r) e^{i\vec{q}\cdot\vec{r}}$$
(L23)

$$= 1 + n \int d\vec{r} (g(r) - 1) e^{i\vec{q}\cdot\vec{r}} + n \int d\vec{r} e^{i\vec{q}\cdot\vec{r}}$$
(L24)
$$\approx 1 + n \int d\vec{r} e^{i\vec{q}\cdot\vec{r}} (g(r) - 1).$$
(L25)

Long- and Short-Range Order

$$z = n \int_0^{\text{first peak}} dr 4\pi r^2 g(r), \qquad (L26)$$

Extended X-Ray Absorption Fine Structure (EXAFS) 14

Incoming radiation whose energy \mathcal{E} lies above the onset of absorption at \mathcal{E}_a . Receiving atom emits an electron of energy $\mathcal{E} - \mathcal{E}_a$ and wave vector $\hbar k = \sqrt{2m(\mathcal{E} - \mathcal{E}_a)}$.

$$\alpha(\mathcal{E}) \propto \sum_{j} |1 + [e^{-R_{j}/l_{T}} e^{ikR_{j}} f/R_{j}]^{2}|^{2}$$

$$\sim \left\langle \int ds g(s) e^{-2s/l_{T}} \cos(2ks) \right\rangle.$$
(L27)
(L28)

 l_T is the mean free path of electrons in the solid.

Calculating Correlation Functions

Dense Random Packing, Bernal model, Hard spheres

The radial distribution function g(r) for hard spheres (disks) of radius d in two dimensions.

Glasses

Properties depend upon time one waits.

Glasses

Specific heat q_P times thermal conductivity κ for the glassy liquid glycerol as a function of temperature. Birge and Nagel (1985)

Continuous Random Network

Bond-counting and constraint argument of Phillips

N number of atoms, b number of bonds per atom.

Nb/2 total bonds. If there is an optimal angle, N(2b-3) extra constraints per atom.

$$3N = N(2b - 3) + \frac{Nb}{2},$$
 (L30)

it follows that

$$b = 2.4,$$
 (L31)

Liquid Crystals

Picture of the organic molecule p-azoxyanisole (PAA), which forms a nematic liquid crystal between 116 °C and 135 °C. It can roughly be regarded as a rigid rod of length 20 Å and width 5 Å.

- Nematics
- Cholesterics
- Smectics

Liquid Crystals

Nematic liquid crystal

Cholesterics

$$n_y = \cos q_0 x \tag{L32b}$$

 $n_z = \sin q_0 x. \tag{L32c}$

Smectics

$$\mathcal{O} = \int d^3 r_1 d\theta_1 n_1(\vec{r}_1, \theta_1) \frac{1}{2} (3\cos^2\theta_1 - 1).$$
 (L33)

$$Q_{\alpha\beta} = \epsilon_{\alpha\beta} - \frac{1}{3} \delta_{\alpha\beta} \sum_{\gamma} \epsilon_{\gamma\gamma}, \qquad (L34)$$

Polymer as a random walk.

Ideal Radius of Gyration

$$\mathcal{P}_{N+1}(\vec{R}) = \int d\vec{R}' \mathcal{P}_N(\vec{R}') \mathcal{P}_1(\vec{R} - \vec{R}')$$
(L35)

$$\Rightarrow \quad \mathcal{P}_{N+1}(\vec{k}) = \mathcal{P}_N(\vec{k})\mathcal{P}_1(\vec{k}) \tag{L36}$$

$$\Rightarrow \mathcal{P}_N(\vec{k}) = [\mathcal{P}_1(\vec{k})]^N. \tag{L37}$$

$$d\vec{R}$$
 $\mathcal{P}_1(\vec{R}) = 1 \Rightarrow \mathcal{P}_1(\vec{k} = 0) = 1.$ (L38)

16th May 2003 © 2003, Michael Marder

Polymers

$$\mathcal{P}_1(\vec{k}) \approx 1 - \frac{c}{2}k^2 \approx e^{-ck^2/2} \tag{L39}$$

$$\Rightarrow \qquad \mathcal{P}_N(\vec{k}) \approx e^{-Nck^2/2} \tag{L40}$$

$$\Rightarrow \qquad \mathcal{P}_N(\vec{R}) = \frac{1}{\sqrt{2\pi Nc^3}} e^{-R^2/2Nc}. \qquad (L41)$$

Central limit theorem

$$c = -\frac{\partial^2}{\partial k^2}|_{\vec{k}=0} \mathcal{P}_1(\vec{k}) = \int d\vec{R} R^2 \mathcal{P}_1(\vec{R}) \equiv a^2$$
(L42)

$$\mathcal{R}_{\mathrm{I}}^{2} = \int d\vec{R} R^{2} \mathcal{P}_{N}(\vec{R}) = 3cN = 3a^{2}N \qquad (\mathrm{L43})$$

$$\Rightarrow \mathcal{R}_{\mathrm{I}} = a\sqrt{3N}. \tag{L44}$$

$$S = S_0 - \frac{3}{2} k_B \frac{R^2}{{\mathcal{R}_{\rm I}}^2}$$
(L45)

16th May 2003 © 2003, Michael Marder

$$\mathcal{F} = \mathcal{F}_0 + \frac{3}{2}k_B T \frac{R^2}{\mathcal{R}_{\rm I}^2} = \mathcal{F}_0 + \frac{1}{2}k_B T \frac{R^2}{a^2 N},$$
 (L46)

$$\vec{F} = 3k_B T \frac{\vec{R}}{\mathcal{R}_I^2} = \frac{k_B T}{a^2 N} \vec{R} \equiv \frac{\mathcal{K}}{N} \vec{R}.$$
 (L47)

Polymer behaves like an ideal spring

Spring constant that rises in proportion to temperature, falls in proportion to the molecular weight $\mathcal{R}_{I}^{2} \propto N$

$$M \sim \frac{\mathcal{R}^2}{a^2} \tag{L48}$$

$$\mathcal{F} = \mathcal{F}_0 + k_B T \left(\frac{N}{M}\right) \frac{1}{2} \frac{\mathcal{R}^2}{a^2 M} = \mathcal{F}_0 + k_B T \frac{N}{2} \frac{a^2}{\mathcal{R}^2} = \mathcal{F}_0 + k_B T \frac{\mathcal{R}_1^2}{6\mathcal{R}^2}.$$
 (L49)

$$P = -\frac{\partial}{\partial \mathcal{R}^3} k_B T N \frac{a^2}{\mathcal{R}^2} \propto \frac{k_B T (N/M)}{\mathcal{R}^3}, \qquad (L50)$$

Pressure of an ideal gas of N/M particles in volume \mathbb{R}^3 .

16th May 2003 © 2003, Michael Marder

Polymers

$$n = \frac{N}{\mathcal{R}^3} = \frac{\mathcal{R}_{\mathrm{I}}^2}{a^2 \mathcal{R}^3}.$$
 (L51)

$$\mathcal{F} \propto k_B T \mathcal{R}^3 [An + Bn^2 + Cn^3 + \ldots]. \tag{L52}$$

$$\mathcal{F} = \mathcal{F}_0 + k_B T \left[\frac{\mathcal{R}^2}{\mathcal{R}_I^2} + \frac{\mathcal{R}_I^2}{\mathcal{R}^2} + \mathcal{R}^3 \left[A \left(\frac{\mathcal{R}_I^2}{a^2 \mathcal{R}^3} \right) + B \left(\frac{\mathcal{R}_I^2}{a^2 \mathcal{R}^3} \right)^2 + C \left(\frac{\mathcal{R}_I^2}{a^2 \mathcal{R}^3} \right)^3 + \dots \right] \right]. \quad (L53)$$

$$2\frac{\mathcal{R}}{\mathcal{R}_{\rm I}^2} - 2\frac{\mathcal{R}_{\rm I}^2}{\mathcal{R}^3} - 3B\frac{\mathcal{R}_{\rm I}^4}{a^4\mathcal{R}^4} - 6C\frac{\mathcal{R}_{\rm I}^6}{a^6\mathcal{R}^7} = 0.$$
 (L54)

$$2\frac{\mathcal{R}}{\mathcal{R}_{\rm I}^2} - 3B\frac{\mathcal{R}_{\rm I}^4}{a^4\mathcal{R}^4} = 0 \tag{L55}$$

$$\Rightarrow \quad \mathcal{R}^5 \propto \frac{B\mathcal{R}_{\rm I}^6}{a^4} \Rightarrow \mathcal{R} \propto \mathcal{R}_{\rm I}^{6/5} \propto N^{3/5}. \tag{L56}$$

16th May 2003 © 2003, Michael Marder

$$\frac{|B|\mathcal{R}_{\mathrm{I}}^{4}}{a^{4}\mathcal{R}^{4}} = 2C\frac{\mathcal{R}_{\mathrm{I}}^{6}}{a^{6}\mathcal{R}^{7}} \Rightarrow \mathcal{R}^{3} \sim \frac{C\mathcal{R}_{\mathrm{I}}^{2}}{|B|a^{2}} \sim N \Rightarrow \mathcal{R} \sim N^{1/3}.$$
 (L57)

 Θ solvent

Quasicrystals

Five-fold symmetry is impossible... and yet

Shechtman et al. (1984) Quasi-crystal site with several applets

16th May 2003 © 2003, Michael Marder

One-Dimensional Quasicrystal

$$x_n = n + (\tau - 1)\operatorname{int}(n/\tau). \tag{L58}$$

Golden Mean

$$\tau = 1 + \frac{1}{\tau} = \frac{\sqrt{5} + 1}{2} = 1.618...,$$
 (L59)

Deflation rule:

Replace τ with sequence τ , 1,

Replaces every 1 with a τ

$$\tau 1 \tau \tau 1 \dots \tag{L60}$$

$$\tau 1 \tau \tau 1 \tau 1 \tau \dots \tag{L61}$$

$$X_{n+1} = X_n X_{n-1}, (L62)$$

16th May 2003 © 2003, Michael Marder

One-Dimensional Quasicrystal

$$X_{-1} = \tau; X_0 = \tau 1; X_1 = \tau 1 \tau; X_2 = \tau 1 \tau \tau 1 \dots$$
 (L63)

$$X_3 = X_2 X_1 = \tau 1 \tau \tau 1 \tau 1 \tau.$$
 (L64)

16th May 2003 © 2003, Michael Marder

One-Dimensional Quasicrystal

$$x_m = m + \sum_n n\theta(n - m/\tau + 1)\theta(m/\tau - n)/\tau$$
 (L65)

$$x/\tau > y > x/\tau - 1.$$
 (L66)

$$[m, \sum_{n} n\theta(m/\tau - n)\theta(n - [m/\tau - 1])].$$
(L67)

$$(x+1)/\tau - 1 > y > x/\tau - 1.$$
 (L68)

$$\left[\sum_{m} m\theta((m+1)/\tau - 1 - n)\theta(n - [m/\tau - 1]), n\right].$$
 (L69)

$$X_{n+1} = \sum_{m} m\theta((m+1)/\tau - n - 1)\theta(n - m/\tau + 1) + n/\tau.$$
 (L70)

 X_n hollow circles. , $X_m = -1/\tau + \tau x_m$.

Singular continuous spectrum

 $\Sigma_q = \sum_{n} e^{iqx_n} \tag{L71}$

$$= \sum_{n,m} e^{iq(m+n/\tau)} \theta(n-m/\tau+1) \theta(m/\tau-n)$$
(L72)

$$= \int dx dy e^{i\vec{q}\cdot(x,y)} \left[\sum_{m,n} \delta(x-m)\delta(y-n) \right] \theta(y-x/\tau+1)\theta(x/\tau-y) \quad (L73)$$

where
$$\vec{q} = (q, q/\tau)$$
. (L74)

First piece

$$A(\vec{q}) = \int dx dy \sum_{m,n} \delta(x-m) \delta(y-n) e^{iq_x x} e^{iq_y y}$$
(L75)

$$= N \frac{(2\pi)^2}{\mathcal{V}} \sum_{n',m'} \delta(q_x - 2\pi n') \delta(q_y - 2\pi m').$$
 (L76)

Scattering from a One-Dimensional Quasicrystal

Second piece

$$B(\vec{q}) = \int dx \int_{x/\tau-1}^{x/\tau} dy e^{iq_x x + iq_y y} = \int dx e^{iq_x x} \left[\frac{e^{iq_y(x/\tau)} - e^{iq_y(x/\tau-1)}}{iq_y} \right].$$
 (L77)

$$\Sigma_{q} \propto \int dx dq'_{x} dq'_{y} \sum_{n',m'} \left\{ \begin{array}{l} \delta(q - q'_{x} - 2\pi n') \\ \times \delta(q/\tau - q'_{y} - 2\pi m') \end{array} \right\} \left[\frac{e^{iq'_{y}(x/\tau)} - e^{iq'_{y}(x/\tau-1)}}{iq'_{y}} \right] e^{iq'_{x}x} \quad (L78)$$

$$= \int dx \sum_{n',m'} \left[\frac{e^{i(q/\tau - 2\pi m')(x/\tau)} - e^{i(q/\tau - 2\pi m')(x/\tau-1)}}{iq/\tau - 2\pi im'} \right] e^{i(q - 2\pi n')x} \quad (L79)$$

$$= 2\pi \sum \frac{1 - e^{-i(q/\tau - 2\pi m')}}{iq/\tau - 2\pi im'} \delta([2\pi m' - \frac{q}{2}]/\tau + 2\pi n' - q), \quad (L80)$$

$$= 2\pi \sum_{n',m'} \frac{1-c}{iq/\tau - 2\pi im'} \delta([2\pi m' - \frac{q}{\tau}]/\tau + 2\pi n' - q).$$
(L80)

The peaks of (80) are at

$$\frac{2\pi(m'/\tau + n')}{\tau^{-2} + 1} = q \tag{L81}$$

Scattering from a One-Dimensional Quasicrystal

Square amplitude is proportional to

$$\sin^2\left(\pi\left[\frac{m'\tau-n'}{\tau+\tau^{-1}}\right]\right)/\left(q/\tau-2\pi m'\right)^2.$$
 (L82)

Two-Dimensional Quasicrystals—Penrose Tiles

Penrose, Gardner

Two-Dimensional Quasicrystals—Penrose Tiles

Amman lines

$$\vec{r} \cdot \hat{e}_{\alpha} = x_{n_{\alpha}}, \ \vec{r} \cdot \hat{e}_{\beta} = x_{n_{\beta}}, \tag{L83}$$

Physical reasons for quasicrystals

Al₆Li₃Cu is real equilibrium quasicrystal

16th May 2003 © 2003, Michael Marder

Physical reasons for quasicrystals

Kortan (1996)

David Tomanek's Nanotube Site