The Single-Electron Model

$$
\begin{gather*}
c \\
0 \tag{L1}\\
0
\end{gather*}
$$

Main physical idea is the Pauli principle, which has two consequences:

1. It populates solids with electrons whose energies would classically signify temperatures on the order of $10,000 \mathrm{~K}$.
2. It prevents all electrons but those whose energy differs slightly from the highest occupied state from participating in transport processes

Important terms:
Occupation number
Fermi energy
Fermi surface
Density of states
Sommerfeld expansion
Effective mass

$$
\begin{equation*}
\hat{\mathcal{H}} \Psi=\sum_{l=1}^{N}\left(\frac{-\hbar^{2} \nabla_{l}^{2}}{2 m}+U\left(\vec{r}_{l}\right)\right) \Psi\left(\vec{r}_{1} \ldots \vec{r}_{N}\right)=\mathcal{E} \Psi\left(\vec{r}_{r} \ldots \vec{r}_{N}\right) . \tag{L2}
\end{equation*}
$$

Single electron problem:

$$
\begin{equation*}
\left(\frac{-\hbar^{2} \nabla^{2}}{2 m}+U(\vec{r})\right) \psi_{l}(\vec{r})=\varepsilon_{l} \psi_{l}(\vec{r}) \tag{L3}
\end{equation*}
$$

Free electron gas

$$
\begin{equation*}
\frac{-\hbar^{2}}{2 m} \sum_{l=1}^{N} \nabla_{l}^{2} \Psi\left(\vec{r}_{1} \ldots \vec{r}_{N}\right)=\mathcal{E} \Psi\left(\vec{r}_{1} \ldots \vec{r}_{N}\right) \tag{L4}
\end{equation*}
$$

$$
\begin{aligned}
\Psi\left(x_{1}+L, y_{1}, z_{1} \ldots, z_{N}\right) & =\Psi\left(x_{1}, y_{1}, z_{1} \ldots z_{N}\right) \\
\Psi\left(x_{1}, y_{1}+L, z_{1} \ldots, z_{N}\right) & =\Psi\left(x_{1}, y_{1}, z_{1} \ldots z_{N}\right)
\end{aligned}
$$

Densities of States

$$
\begin{equation*}
\psi_{\vec{k}}=\frac{1}{\sqrt{v}} e^{i \vec{k} \cdot \vec{v}} \tag{L6}
\end{equation*}
$$

with \vec{k} of the form

$$
\begin{equation*}
\vec{k}=\frac{2 \pi}{L}\left(l_{x}, l_{y}, l_{z}\right) . \tag{L7}
\end{equation*}
$$

The eigenvalue corresponding to the eigenfunction (6) is

$$
\begin{equation*}
\varepsilon_{\vec{k}}^{0}=\frac{\hbar^{2} k^{2}}{2 m} \tag{L8}
\end{equation*}
$$

Occupation number $f_{\vec{k}}$ of a state indexed by \vec{k} is 1 if this one-electron state is part of the ground state, and 0 otherwise.

Densities of States

\vec{k} states described by Eq. (L7) occupy a cubic lattice in \vec{k} or reciprocal space, with neighboring points separated by distances of $2 \pi / L$,
k space volume per state is $(2 \pi / L)^{3}$.

Densities of States

$$
\begin{gather*}
\sum_{\vec{k}} F_{\vec{k}}, \\
\int d \vec{k} F_{\vec{k}}=\sum_{\vec{k}}\left(\frac{2 \pi}{L}\right)^{3} F_{\vec{k}} \tag{L10}\\
\Rightarrow \sum_{\vec{k}} F_{\vec{k}}=\frac{\nu}{(2 \pi)^{3}} \int d \vec{k} F_{\vec{k}} . \tag{L11}
\end{gather*}
$$

corresponds to

$$
\begin{equation*}
\delta_{\vec{k} \vec{q}} \rightarrow \frac{(2 \pi)^{3}}{V} \delta(\vec{k}-\vec{q}) . \tag{L12}
\end{equation*}
$$

Definition of Density of States D

Density of electronic states or density of levels

$$
\begin{equation*}
D_{\vec{k}}=2 \frac{1}{(2 \pi)^{3}}, \tag{L13}
\end{equation*}
$$

defi ned so that

$$
\begin{equation*}
\sum_{\vec{k} \sigma} F_{\vec{k}}=V \int d \vec{k} D_{\vec{k}} F_{\vec{k}} \tag{L14}
\end{equation*}
$$

To avoid perpetually writing $D_{\vec{k}}$, adopt the notation

$$
\begin{equation*}
\int[d \vec{k}] \equiv \frac{2}{\mathcal{V}} \sum_{\vec{k}}=\int d \vec{k} D_{\vec{k}}=\frac{2}{(2 \pi)^{3}} \int d \vec{k} \tag{L15}
\end{equation*}
$$

From here onwards, red question marks bracket areas deliberately left blank so that students can fill them in!

$$
\begin{equation*}
\sum_{\vec{k} \sigma} F\left(\varepsilon_{\vec{k}}\right)=\mathcal{V} \int d \varepsilon D(\varepsilon) F(\varepsilon) \tag{L1}
\end{equation*}
$$

To fi nd $D(\mathcal{E})$, note that

$$
\begin{array}{r}
\sum_{\vec{k} \sigma} F\left(\mathcal{E}_{\vec{k}}\right)=? \\
? \Rightarrow D(\varepsilon)=\int[d \vec{k}] \delta\left(\mathcal{E}-\mathcal{E}_{\vec{k}}\right) \tag{L19}
\end{array}
$$

Results for Free Electrons

$$
\begin{aligned}
D(\mathcal{E}) & =\int[d \vec{k}] \delta\left(\mathcal{E}-\mathcal{E}_{\vec{k}}^{0}\right) \\
& =?
\end{aligned}
$$

$$
\begin{align*}
? & =\frac{m}{\hbar^{3} \pi^{2}} \sqrt{2 m \mathcal{E}} \tag{L23}\\
& =6.812 \cdot 10^{21} \sqrt{\varepsilon / \mathrm{eV} \mathrm{eV}^{-1} \mathrm{~cm}^{-3}}
\end{align*}
$$

Electrons in sphere of radius k_{F} is

$$
\begin{gather*}
N=\sum_{\vec{k} \sigma} f_{\vec{k}} \tag{L25}\\
=? \\
? ? \frac{V k_{F}^{3}}{3 \pi^{2}}, \tag{L28}\\
k_{F}=\left(3 \pi^{2} n\right)^{1 / 3}=3.09\left[n \cdot \AA^{3}\right]^{1 / 3} \AA^{-1} . \tag{L29}
\end{gather*}
$$

radius parameter r_{s}

$$
\begin{equation*}
\frac{4 \pi}{3} r_{s}^{3} \equiv \frac{\mathcal{V}}{N} \Rightarrow r_{s}=\left[\frac{3}{4 \pi} \frac{\mathcal{V}}{N}\right]^{1 / 3} \tag{L30}
\end{equation*}
$$

Fermi energy, \mathcal{E}_{F}, or Fermi level

$$
\begin{equation*}
\mathcal{E}_{F}=\frac{\hbar^{2} k_{F}^{2}}{2 m}=36.46\left[n \cdot \AA^{3}\right]^{2 / 3} \mathrm{eV} \tag{L31}
\end{equation*}
$$

Fermi surface, electrons with energy \mathcal{E}_{F}.

$$
\begin{equation*}
v_{F}=\hbar k_{F} / m=3.58\left[n \cdot \AA^{3}\right]^{1 / 3} \cdot 10^{8} \mathrm{~cm} \mathrm{~s}^{-1} \tag{L32}
\end{equation*}
$$

$$
\begin{equation*}
D\left(\mathcal{E}_{F}\right)=\frac{3}{2} \frac{n}{\mathcal{E}_{F}}=4.11 \cdot 10^{-2}\left[n \cdot \AA^{3}\right] \mathrm{eV}^{-1} \AA^{-3} \tag{L33}
\end{equation*}
$$

One- and Two-Dimensional Formulae

One dimension:

$$
\begin{align*}
D_{\vec{k}} & =2\left(\frac{1}{2 \pi}\right)^{d} . \tag{L34}\\
D(\mathcal{E}) & =? \tag{L35}
\end{align*}
$$

Two dimensions:

$$
\begin{equation*}
D(\varepsilon)=? \quad ? \tag{L36}
\end{equation*}
$$

Statistical mechanics of noninteracting electrons

$$
\begin{align*}
Z_{\mathrm{gr}} & =\sum_{\text {states }} e^{\beta(\mu N-\mathcal{E})} \tag{L37}\\
& =\sum_{n_{1}=0}^{1} \sum_{n_{2}=0}^{1} \sum_{n_{3}=0}^{1} \ldots ? \tag{L38}
\end{align*}
$$

Using the mathematical fact that

$$
\begin{equation*}
\sum_{n_{1}=0}^{N} \quad \sum_{n_{2}=0}^{N} \ldots \sum_{n_{M}=0}^{N} \prod_{l=1}^{M} A_{n_{l}}=? \tag{L39}
\end{equation*}
$$

one has that

$$
Z_{\mathrm{gr}}=?
$$

Statistical mechanics of noninteracting electrons

Therefore the grand potential is given by

$$
\begin{align*}
\Pi & \equiv-k_{B} T \ln Z_{\mathrm{gr}} \tag{L42}\\
& =-k_{B} T \sum_{l} \ln \left[1+e^{\beta\left[\mu-\varepsilon_{l}\right]}\right] . \tag{L43}\\
& =-k_{B} T \mathcal{V} \int d \varepsilon ? \tag{L44}
\end{align*}
$$

$$
\begin{aligned}
N & =? \\
? \Rightarrow n & =?
\end{aligned} \quad \text { (L47) } \quad \text { ? } \quad \begin{aligned}
& \text { ? } \\
& ? \Rightarrow
\end{aligned}
$$

where...

$$
\begin{array}{ll}
f(\mathcal{E})=? \\
f_{\vec{k}}=?
\end{array} \quad ?
$$

$$
\begin{align*}
\left.\frac{\partial \beta \Pi}{\partial \beta}\right|_{\mu}=\varepsilon-\mu N & =\mathcal{V} \int d \varepsilon^{\prime} D\left(\varepsilon^{\prime}\right)\left(\varepsilon^{\prime}-\mu\right) f\left(\varepsilon^{\prime}\right) \tag{L50}\\
& \Rightarrow \frac{\varepsilon}{\mathcal{V}}=\int d \varepsilon^{\prime} D\left(\varepsilon^{\prime}\right) \varepsilon^{\prime} f\left(\varepsilon^{\prime}\right) \tag{L51}
\end{align*}
$$

Classical Limit

Boltzmann statistics

$$
\begin{equation*}
f(\varepsilon)=C e^{-\beta \varepsilon} \tag{L52}
\end{equation*}
$$

when

$$
\begin{equation*}
f(\mathcal{E}) \ll 1 \Rightarrow e^{\beta(\varepsilon-\mu)} \gg 1 \tag{L53}
\end{equation*}
$$

At low temperatures

$$
\begin{equation*}
f(\mathcal{E}) \rightarrow ? \quad ? \tag{L54}
\end{equation*}
$$

Fermi temperature:

$$
\begin{equation*}
T_{F}=\mathcal{E}_{F} / k_{B}, \tag{L55}
\end{equation*}
$$

Element	Z	n $\left(10^{22} \mathrm{~cm}^{-3}\right)$	k_{F} $\left(10^{8} \mathrm{~cm}^{-1}\right)$	ε_{F} (eV)	T_{F} $\left(10^{4} \mathrm{~K}\right)$	v_{F} $\left(10^{8} \mathrm{~cm} \mathrm{~s}^{-1}\right)$	r_{s} / a_{0}
Li	1	4.60	1.11	4.68	5.43	1.28	3.27
Ag	1	5.86	1.20	5.50	6.38	1.39	3.02
Be	2	24.72	1.94	14.36	16.67	2.25	1.87
Al	3	18.07	1.75	11.66	13.53	2.02	2.07
Sn	4	14.83	1.64	10.22	11.86	1.89	2.22
Sb	5	16.54	1.70	10.99	12.75	1.97	2.14
Mn	4	32.61	2.13	17.28	20.05	2.46	1.70
Fe	2	16.90	1.71	11.15	12.94	1.98	2.12
Co	2	18.18	1.75	11.70	13.58	2.03	2.07
Ni	2	18.26	1.76	11.74	13.62	2.03	2.07

Paradox that density of states too small solved by

$$
\begin{equation*}
c_{\mathcal{V}} \propto T D\left(\mathcal{E}_{F}\right) \tag{L56}
\end{equation*}
$$

$$
\begin{equation*}
\langle H\rangle=\int_{-\infty}^{\infty} d \mathcal{E} H(\mathcal{E}) f(\mathcal{E}) \tag{L57}
\end{equation*}
$$

$$
\langle H\rangle=\int_{-\infty}^{\mu} d \mathcal{E} H(\mathcal{E})+\sum_{n=1}^{\infty} ?
$$

$$
\begin{equation*}
? \Rightarrow\langle H\rangle=\int_{-\infty}^{\mu} d \mathcal{E} H(\mathcal{E})+\frac{\pi^{2}}{6}\left[k_{B} T\right]^{2} H^{\prime}(\mu)+\frac{7 \pi^{4}}{360}\left[k_{B} T\right]^{4} H^{\prime \prime \prime}(\mu)+\ldots \tag{L62}
\end{equation*}
$$

Specific Heat

$$
\begin{equation*}
c_{V}=\left.\frac{1}{\mathcal{V}} \frac{\partial \mathcal{E}}{\partial T}\right|_{N v} \tag{L63}
\end{equation*}
$$

$$
\frac{\varepsilon}{\mathcal{V}}=?
$$

$$
\begin{equation*}
\left.\frac{\partial \mu}{\partial T}\right|_{N v}=-\frac{\left.\frac{\partial N}{\partial T}\right|_{\mu \nu}}{\left.\frac{\partial N}{\partial \mu}\right|_{T v}} \tag{L66}
\end{equation*}
$$

$$
\begin{equation*}
N=\mathcal{V} \int d \varepsilon^{\prime} ? \tag{L67}
\end{equation*}
$$

$$
\begin{equation*}
\left.\frac{\partial \mu}{\partial T}\right|_{N V}=? \tag{L68}
\end{equation*}
$$

Specialize to Free Fermi Gas

$$
\begin{equation*}
\mu=? \tag{L69}
\end{equation*}
$$

To order T^{2}

$$
\begin{align*}
& \frac{\mathcal{E}}{\mathcal{V}}= \int_{0}^{\mathcal{E}_{F}} d \mathcal{E}^{\prime} \mathcal{E}^{\prime} D\left(\mathcal{E}^{\prime}\right)+\frac{\pi^{2}}{6}\left(k_{B} T\right)^{2} D\left(\varepsilon_{F}\right) \tag{L70}\\
&+\mathcal{E}_{F}\left\{\left(\mu-\mathcal{E}_{F}\right) D\left(\mathcal{E}_{F}\right)+\frac{\pi^{2}}{6}\left(k_{B} T\right)^{2} D^{\prime}\left(\mathcal{E}_{F}\right)\right\} \tag{L71}\\
& \Rightarrow \frac{\mathcal{E}}{\mathcal{V}}= \int_{0}^{\varepsilon_{F}} d \mathcal{E} \mathcal{E} D(\mathcal{E})+\frac{\pi^{2}}{6}\left(k_{B} T\right)^{2} D\left(\mathcal{E}_{F}\right) \tag{L72}\\
& \Rightarrow c_{\mathcal{V}}= \frac{\pi^{2}}{3} k_{B}^{2} T D\left(\varepsilon_{F}\right)
\end{align*}
$$

As predicted, $c_{\mathcal{V}} \propto D\left(\mathcal{E}_{F}\right) T$.
Linear coeffi cient, Sommerfeld parameter
$\gamma \equiv c_{\mathcal{V}} / T$

Specialize to Free Fermi Gas

$$
\begin{equation*}
\gamma \equiv \frac{c_{\mathcal{V}}}{T}=? \tag{L73}
\end{equation*}
$$

Specifi c heat effective mass of the electron.

Metal	Z	$\gamma\left(\mathrm{mJ} \mathrm{mole}{ }^{-1} \mathrm{~K}^{-2}\right)$		Metal		$\gamma\left(\mathrm{mJ} \mathrm{mole}{ }^{-1} \mathrm{~K}^{-2}\right)$	
		Expt.	Eq. (L73)			Expt.	Eq. (L73
Li	1	1.65	0.74	Al	3	1.35	0.91
Na	1	1.38	1.09	Ga	3	0.60	1.02
K	1	2.08	1.67	In	3	1.66	1.23
Rb	1	2.63	1.90	Sn	4	1.78	1.41
Cs	1	3.97	2.22	Pb	4	2.99	1.50
Cu	1	0.69	0.50	Sb	5	0.12	1.61
Ag	1	0.64	0.64	Bi	5	0.008	1.79
Au	1	0.69	0.64	Mn	2	12.8	1.10
Be	2	0.17	0.5	Fe	2	4.90	1.06
Mg	2	1.6	0.99	UPt_{3}		450	
Ca	2	2.73	1.51	UBe_{13}		1100	
Sr	2	3.64	1.79				
Ba	2	2.7	1.92				
Zn	2	0.64	0.75				
Cd	2	0.69	0.95	Stewart			

Heavy Fermions

