Problem of conductivity: Drude model

$$
\begin{equation*}
m \dot{\vec{v}}=-e \vec{E}-m \frac{\vec{v}}{\tau} \tag{L1}
\end{equation*}
$$

τ is the relaxation time.

$$
\begin{equation*}
\vec{v}(t)=\vec{v}_{0} e^{-t / \tau} \tag{L2}
\end{equation*}
$$

Steady state, times much longer than τ :

$$
\begin{equation*}
\vec{v}=? \quad ? \tag{L3}
\end{equation*}
$$

Current therefore is

$$
\begin{align*}
\vec{j} & =? \tag{L4}\\
\Rightarrow \sigma & =? \quad ? \tag{L5}
\end{align*}
$$

σ is the electrical conductivity

$$
\begin{equation*}
\tau=? \quad ?=\frac{3.55 \cdot 10^{-13} \mathrm{~s}}{n /\left[10^{22} \mathrm{~cm}^{-3}\right] \rho /[\mu \Omega \mathrm{cm}]} \tag{L6}
\end{equation*}
$$

Exercise:

1. Estimate typical value of τ.
2. How does this compare with rate at which classical thermal electrons scatter off nuclei?
3. How does this compare with rate at which electrons at Fermi velocity scatter off nuclei?
4. What happens if one starts over and takes the relaxation time proportional to the electron velocity?

Periodic function $u(r)$

Single particle in periodic potential U :

$$
\begin{equation*}
U(\vec{r}+\vec{R})=U(\vec{r}) . \tag{L7}
\end{equation*}
$$

Solve

$$
\begin{equation*}
\hat{\mathcal{H}}=\frac{\hat{P}^{2}}{2 m}+U(\hat{R}) . \tag{L8}
\end{equation*}
$$

WRONG:

$$
\begin{equation*}
\psi(\vec{r}+\vec{R})=\psi(\vec{r}) . \tag{L9}
\end{equation*}
$$

Can see this is wrong from case $U=0$

$$
\begin{equation*}
\psi_{\vec{k}}(\vec{r}) \propto e^{i \vec{k} \cdot \vec{r}} \tag{L10}
\end{equation*}
$$

Translation operators

Let $\hat{T}_{\vec{R}}$ translate wave function by \vec{R}

$$
\begin{equation*}
\hat{T}_{\vec{R}}=e^{-i \hat{P} \cdot \vec{R} / \hbar} \tag{L11}
\end{equation*}
$$

Theorem: if one has a collection of Hermitian operators that commute with one another, they can be diagonalized simultaneously

Suppose \mathcal{O}_{2} has unique eigenvector $|a\rangle$ with eigenvalue a.

$$
\begin{equation*}
\mathcal{O}_{1} \mathcal{O}_{2}|a\rangle=a \mathcal{O}_{1}|a\rangle=\mathcal{O}_{2} \mathcal{O}_{1}|a\rangle \tag{L12}
\end{equation*}
$$

so $\mathcal{O}_{1}|a\rangle$ is eigenvector of \mathcal{O}_{2}; by uniqueness, must be some constant times $|a\rangle$.
In case of degenerate eigenvalues, one operator may categorize further states of other; parity.

Use theorem:

$$
\begin{gather*}
\hat{T}_{\vec{R}}^{\dagger}|\psi\rangle=e^{i \hat{P} \cdot \vec{R} / \hbar}|\psi\rangle=C_{\vec{R}}|\psi\rangle . \tag{L13}\\
\psi(\vec{r}+\vec{R})=C_{\vec{R}} \psi(\vec{r}) .
\end{gather*}
$$

Translation operators

$$
\begin{align*}
e^{i \vec{k} \cdot \vec{R}}\langle\vec{k} \mid \psi\rangle & =C_{\vec{R}}\langle\vec{k} \mid \psi\rangle \tag{LL5}\\
\Rightarrow \text { either } C_{\vec{R}} & =e^{i \vec{k} \cdot \vec{R}} \text { or }\langle\vec{k} \mid \psi\rangle=0 . \tag{L1}
\end{align*}
$$

\vec{k} : Bloch wave vector
$\hbar \vec{k}$: Crystal momentum

Bloch's Theorem

$$
\begin{align*}
\hat{\mathcal{H}}\left|\psi_{n \vec{k}}\right\rangle & =\varepsilon_{n \vec{k}}\left|\psi_{n \vec{k}}\right\rangle \tag{L17a}\\
\hat{T}_{\vec{R}}^{\dagger}\left|\psi_{n \vec{k}}\right\rangle & =e^{i \vec{k} \cdot \vec{R}}\left|\psi_{n \vec{k}}\right\rangle . \tag{L17b}
\end{align*}
$$

Restate as

$$
\begin{equation*}
\psi_{n \vec{k}}(\vec{r}+\vec{R})=e^{i \vec{k} \cdot \vec{R}} \psi_{n \vec{k}}(\vec{r}) . \tag{L18}
\end{equation*}
$$

or

$$
\begin{equation*}
u_{n \vec{k}}(\vec{r})=e^{-i \vec{k} \cdot \vec{r}} \psi_{n \vec{k}}(\vec{r}) . \tag{L19}
\end{equation*}
$$

$$
\begin{equation*}
u(\vec{r}+\vec{R})=? \quad ? \text { and } \psi_{n \vec{k}}(\vec{r})=e^{\vec{k} \cdot \vec{r}} u_{n \vec{k}}(\vec{r}) . \tag{L20}
\end{equation*}
$$

Energy Bands

$$
\begin{equation*}
\hat{\mathscr{H}}_{\vec{k}} u(\vec{r})=\frac{\hbar^{2}}{2 m}\left[-\nabla^{2}-2 i \vec{k} \cdot \vec{\nabla}+k^{2}\right] u(\vec{r})+U(\vec{r}) u(\vec{r})=\varepsilon u(\vec{r}) . \tag{L21}
\end{equation*}
$$

If crystal is periodic with (macroscopic) dimensions $M_{1} \vec{a}_{1}, M_{2} \vec{a}_{2}, M_{3} \vec{a}_{3}$ then requiring $\exp [\vec{k} \cdot \vec{r}]$ to be periodic constrains \vec{k} to

$$
\begin{equation*}
\vec{k}=\sum_{l=1}^{3} \frac{m_{l}}{M_{l}} \vec{b}_{l}, 0 \leq m_{l}<M_{l}, \tag{L22}
\end{equation*}
$$

$\vec{b}_{1} \ldots \vec{b}_{3}$

$$
\begin{equation*}
\vec{b}_{l} \cdot \vec{a}_{l^{\prime}}=2 \pi \delta_{l l^{\prime}} . \tag{L23}
\end{equation*}
$$

Periodic boundary conditions place a condition on how small k can be.
Demanding that $C_{\vec{R}}=\exp [\overrightarrow{i k} \cdot \vec{R}]$ be unique places conditions on how big k can be.
Number of points in crystal equals number of unique Bloch wave vectors.

9th February 2003

Density of States

$$
\begin{align*}
& \frac{\vec{b}_{1} \cdot\left(\vec{b}_{2} \times \vec{b}_{3}\right)}{M_{1} M_{2} M_{3}} \tag{L24}\\
&= \frac{2 \pi}{\vec{a}_{3} \cdot\left(\vec{a}_{1} \times \vec{a}_{2}\right)} \frac{\vec{b}_{1} \cdot\left(\vec{b}_{2} \times\left(\vec{a}_{1} \times \vec{a}_{2}\right)\right)}{M_{1} M_{2} M_{3}} \tag{L25}\\
&= \frac{(2 \pi)^{3}}{M_{1} M_{2} M_{3} \vec{a}_{1} \cdot\left(\vec{a}_{2} \times \vec{a}_{3}\right)} \tag{L26}\\
&= \frac{(2 \pi)^{3}}{\mathcal{V}} \tag{L27}\\
& \sum_{\vec{k} \sigma} F_{\vec{k}}=\mathcal{V} \int[d \vec{k}] F_{\vec{k}}, \tag{L28}
\end{align*}
$$

Define $D_{\vec{k}}$ as before:

$$
\begin{equation*}
D_{n}(\mathcal{E})=\int[d \vec{k}] \delta\left(\mathcal{E}-\mathcal{E}_{n \vec{k}}\right) \tag{L29}
\end{equation*}
$$

Dynamical importance of energy bands

$$
\begin{equation*}
\vec{v}_{n \vec{k}}=\frac{1}{\hbar} \vec{\nabla}_{\vec{k}} \varepsilon_{n \vec{k}} . \tag{L30}
\end{equation*}
$$

$v=\partial \omega / \partial k$
Wave packet:

$$
\begin{align*}
& W(\vec{r}, \vec{k}, t)=\int\left[d \vec{k}^{\prime}\right] w\left(\vec{k}^{\prime}-\vec{k}\right) e^{\overrightarrow{k^{\prime}} \cdot \vec{\cdot}-i \varepsilon_{\vec{k}^{\prime} t / \hbar}} \psi_{\vec{k}^{\prime}} e^{-i \vec{k}^{\prime} \cdot \vec{r}}, \tag{L31}\\
& \approx e^{i \vec{k} \cdot \vec{\cdot}-i \varepsilon_{\vec{k}^{t} / \hbar}} \int\left[d \vec{k}^{\prime \prime}\right] w\left(\vec{k}^{\prime \prime}\right) ? \tag{L32}\\
& \approx ?
\end{align*} ?
$$

$$
\begin{align*}
D(\mathcal{E}) & =\int d k(2 / 2 \pi) \delta\left(\mathcal{E}-\mathcal{E}_{k}\right) \tag{L34}\\
& =\frac{2}{\pi} \int \frac{d \varepsilon_{k}}{\left|d \varepsilon_{k} / d k\right|} \delta\left(\mathcal{E}-\mathcal{E}_{k}\right) \tag{L35}\\
& =\frac{2}{\pi} \frac{1}{\left|d \varepsilon_{k} / d k\right|} \tag{L36}
\end{align*}
$$

$$
\begin{equation*}
D(\mathcal{E}) \sim \frac{1}{k-\pi / a} \sim \frac{1}{\sqrt{\mathcal{E}_{\max }-\mathcal{E}}} \tag{L37}
\end{equation*}
$$

$d \varepsilon / d k$

$$
\begin{equation*}
D(\mathcal{E})=\int d \vec{k} 2 \frac{L^{d}}{(2 \pi)^{d}} \delta\left(\mathcal{E}-\mathcal{E}_{\vec{k}}\right) \tag{L38}
\end{equation*}
$$

$$
\begin{equation*}
D(\mathcal{E}) \sim \ln \left|\mathcal{E} / \mathcal{E}_{0}-1\right| \quad \text { or } \quad \theta(\pm \mathcal{E}) \tag{L39}
\end{equation*}
$$

Van Hove Singularities

$$
D(\mathcal{E}) \quad \sim\left\{\begin{aligned}
\sqrt{\mathcal{E}} & \text { for } \quad \mathcal{E}>0,0 \text { else } \\
& \text { or } \\
\sqrt{-\mathcal{E}} & \text { for } \quad \mathcal{E}<0,0 \text { else }
\end{aligned}\right.
$$

N

9th February 2003
(c)2003, Michael Marder

Uniqueness of Bloch vectors

$$
\begin{equation*}
e^{i(\vec{k}+\vec{K}) \cdot \vec{R}}=e^{i \vec{k} \cdot \vec{R}} \tag{L41}
\end{equation*}
$$

it follows that

$$
\begin{gather*}
\psi_{n, \vec{k}+\vec{K}}=\psi_{n^{\prime}, \vec{k}} \tag{L42}\\
\psi_{n k}=e^{i k r} e^{i n K r}
\end{gather*}
$$

Reduced zone scheme
Extended zone scheme

Uniqueness of Bloch vectors

Explicit construction of Bloch functions

$$
\begin{align*}
& e^{i \vec{k} \cdot(\vec{r}+\vec{R})}=e^{i \vec{k} \cdot \vec{r}} \tag{L44}\\
& \int d \vec{r} e^{-i \vec{q} \cdot \vec{r}} U(\vec{r})= \sum_{\vec{R}} \int_{\substack{\text { unit } \\
\text { cell }}} d \vec{r} e^{-i \vec{q} \cdot \vec{R}} U(\vec{r}+\vec{R}) e^{-i \vec{q} \cdot \vec{r}} \tag{L45}\\
&= \Omega \sum_{\vec{R}} e^{-i \vec{q} \cdot \vec{R}} U_{\vec{q}} \tag{L46}
\end{align*}
$$

where Ω is the volume of the unit cell, and

$$
\begin{equation*}
U_{\vec{q}} \equiv ? \tag{L47}
\end{equation*}
$$

Ω is volume of unit cell

$$
\begin{equation*}
\sum_{\vec{R}} e^{-i \vec{q} \cdot \vec{R}}=N \sum_{\vec{K}} \delta_{\vec{q} \vec{K}} \tag{L48}
\end{equation*}
$$

Explicit construction of Bloch functions

$$
\begin{array}{cl}
\Rightarrow \int d \vec{r} e^{-i \vec{q} \cdot \vec{r}} U(\vec{r})=\nu \sum_{\vec{K}} \delta_{\vec{q} \vec{K}} U_{\vec{K}} \\
U(\vec{r})=? & ? \sum_{\vec{K}} e^{i \vec{K} \cdot \vec{r}} U_{\vec{K}} \tag{L50}
\end{array}
$$

Periodic boundary conditions imply

$$
\begin{array}{r}
\psi(\vec{r})=\frac{1}{\mathcal{V}} \sum_{\vec{q}} \psi(\vec{q}) e^{i \vec{q} \cdot \vec{r}} . \\
\int d \vec{r} e^{i \vec{q} \cdot \vec{r}}=\mathcal{V} \delta_{\vec{q} \overrightarrow{0}} \\
0=\frac{1}{\mathcal{V}} \sum_{\vec{q}^{\prime}}\left[\mathcal{E}_{\vec{q}^{\prime}}^{0}-\mathcal{E}+U(\vec{r})\right] \psi\left(\vec{q}^{\prime}\right) e^{i \vec{q}^{\prime} \cdot \vec{r}} \tag{L53}\\
=?
\end{array}
$$

Explicit construction of Bloch functions

$$
\begin{align*}
? \Rightarrow 0= & ? \\
?= & ? \\
? \Rightarrow 0= & \left(\varepsilon_{\vec{q}}^{0}-\mathcal{E}\right) \psi(\vec{q})+\sum_{\vec{K}} U_{\vec{K}} \psi(\vec{q}-\vec{K}) . \tag{L57}\\
& \psi(\vec{r})=\frac{1}{V} \sum_{\vec{K}} \psi(\vec{k}-\vec{K}) e^{i(\vec{k}-\vec{K}) \cdot \vec{r}} . \tag{L58}\\
& \hat{\mathcal{H}}=\sum_{\vec{q}^{\prime}}\left|\vec{q}^{\prime}\right\rangle \varepsilon_{\vec{q}^{\prime}}^{0}\left\langle\vec{q}^{\prime}\right|+\sum_{\vec{q}^{\prime} \vec{K}^{\prime}}\left|\vec{q}^{\prime}\right\rangle U_{\vec{K}^{\prime}}\left\langle\vec{q}^{\prime}-\vec{K}^{\prime}\right| . \tag{L59}
\end{align*}
$$

Kronig-Penney model

$$
\begin{gather*}
U_{0} a \delta(x) \tag{L60}\\
U_{K}=U_{0} \tag{L61}\\
0=\left(\varepsilon_{q}^{0}-\varepsilon\right) \psi(q)+\sum_{K} U_{0} \psi(q-K) \tag{L62}\\
Q_{q}=\sum_{K} \psi(q-K) . \tag{L63}
\end{gather*}
$$

Then Eq. (L62) becomes

$$
\begin{equation*}
\psi(q)+\frac{U_{0}}{\mathcal{E}_{q}^{0}-\varepsilon} Q_{q}=0 \tag{L64}
\end{equation*}
$$

Note from its definition (63) that

$$
\begin{equation*}
Q_{q}=Q_{q-K} \tag{L65}
\end{equation*}
$$

Kronig-Penney model

$$
\begin{array}{cc}
? & ?=0 \tag{L69}\\
\Rightarrow \quad Q_{k}+? & ?=0 \\
& \\
& \\
& -\frac{1}{U_{0}}=\sum_{K} \frac{1}{\mathcal{E}_{k-K}^{0}-\mathcal{E}} \equiv S_{k}(\mathcal{E}) .
\end{array}
$$

Brillouin zones and rotational symmetry

In units of $2 \pi / a, \Gamma=(000), X=\left(\begin{array}{ll}0 & 1\end{array}\right), L=(1 / 21 / 21 / 2), W=\left(\begin{array}{ll}1 / 2 & 1\end{array}\right)$, $K=(3 / 43 / 40)$, and $U=\left(\begin{array}{ll}1 / 4 & 1\end{array} 1 / 4\right)$.

Brillouin zones and rotational symmetry

In units of $2 \pi / a, \Gamma=\left(\begin{array}{lll}0 & 0 & 0\end{array}\right), H=\left(\begin{array}{lll}0 & 1 & 0\end{array}\right), N=(1 / 21 / 20)$, and $P=(1 / 21 / 21 / 2)$.

In units of $4 \pi / a \sqrt{3}, 4 \pi / a \sqrt{3}$, and $2 \pi / c$, along the three primitive vectors \vec{b}_{1}, \vec{b}_{2}, and \vec{b}_{3}; $\Gamma=(000), A=(001 / 2), M=(1 / 200), K=(1 / 31 / 30), H=(1 / 31 / 31 / 2)$, and $L=(1 / 201 / 2)$.

