*) Energy states indexed by \vec{k} and n. The first index describes symmetry properties during translation, while the second distinguishes energy states with same symmetry.
m The eigenvalue corresponding to translation symmetry is

$$
\begin{equation*}
e^{i \vec{k} \cdot \vec{R}} \tag{L1}
\end{equation*}
$$

not \vec{k}. The eigenvalue and eigenstates are periodic functions of \vec{k}, unchanged when $\vec{k} \rightarrow \vec{k}+\vec{K}$.
(\rightarrow Essential result:

$$
\begin{equation*}
\left(\varepsilon_{\vec{q}}^{0}-\mathcal{E}\right) \psi(\vec{q})+\sum_{\vec{K}} U_{\vec{K}} \psi(\vec{q}-\vec{K})=0 \tag{L2}
\end{equation*}
$$

Condition for scattering

$$
\begin{equation*}
k=\frac{K}{2 \hat{k} \cdot \hat{K}} \Rightarrow \vec{k} \cdot \vec{K}=\frac{1}{2} K^{2} . \tag{L3}
\end{equation*}
$$

*) Energy degeneracy:

$$
\begin{align*}
\frac{1}{2} k^{2} & =\frac{1}{2} k^{2}-\vec{k} \cdot \vec{K}+\frac{1}{2} K^{2} \tag{L4}\\
\Rightarrow \varepsilon_{\vec{k}}^{0} & =\varepsilon_{\vec{k}-\vec{K}}^{0} \tag{L5}
\end{align*}
$$

- Geometry: Plane that bisects line between origin and \vec{K} is given by

$$
\begin{equation*}
\vec{k} \cdot \hat{K}=\frac{K}{2} \Rightarrow \vec{k} \cdot \vec{K}=\frac{K^{2}}{2} \tag{L6}
\end{equation*}
$$

$$
\begin{equation*}
U_{\vec{K}}=\Delta w_{\vec{K}} \tag{L7}
\end{equation*}
$$

Exercise:
Starting with

$$
\begin{equation*}
\left(\varepsilon_{\vec{q}}^{0}-\mathcal{E}\right) \psi(\vec{q})+\sum_{\vec{K}} U_{\vec{K}} \psi(\vec{q}-\vec{K})=0 \tag{L8}
\end{equation*}
$$

and

$$
\begin{equation*}
\psi(\vec{q})=\psi^{(0)}(\vec{q})+\psi^{(1)}(\vec{q}) \Delta+\ldots ; \mathcal{E}=\mathcal{E}^{(0)}+\Delta \mathcal{E}^{(1)}+\ldots \tag{L9}
\end{equation*}
$$

find the zero'th order solution $\psi^{(0)}$:

$$
\begin{equation*}
\psi^{(0)} ? \quad ?=0 \tag{L10}
\end{equation*}
$$

$$
\begin{align*}
\psi_{\vec{k}}^{(0)}(\vec{q}) & =? \quad ? \Rightarrow \psi_{\vec{k}}^{(0)}(\vec{r})=? \tag{L11}\\
\Rightarrow \mathcal{E}^{(0)} & =? ? \tag{L12}
\end{align*}
$$

Perturbation Theory: First Order

Exercise:

Next, expand Bloch's equation out to first order in Δ and find both the energy and wave function to this order:

$$
\begin{gather*}
{\left[\mathcal{E}_{\vec{q}}^{0}-\mathcal{E}_{\vec{k}}^{0}\right] \psi_{\vec{k}}^{(1)}(\vec{q})+\sum_{\vec{K}} w_{\vec{K}} \psi_{\vec{k}}^{(0)}(\vec{q}-\vec{K})-\mathcal{E}^{(1)} \psi_{\vec{k}}^{(0)}(\vec{q})=0} \tag{L13}\\
\mathcal{E}^{(1)}=? \tag{L14}
\end{gather*}
$$

$$
\begin{align*}
\psi_{\vec{k}}^{(1)}(\vec{q}) & =? \tag{L15}\\
\Rightarrow \psi_{\vec{k}}(\vec{q}) & \approx ?
\end{align*}
$$

Perturbation theory breaks down

The condition for breakdown is

$$
\begin{equation*}
\varepsilon_{\vec{k}}^{0}=\varepsilon_{\vec{k}+\vec{k}}^{0} \tag{L17}
\end{equation*}
$$

$$
\begin{equation*}
\hat{\mathcal{H}}_{i j}^{\mathrm{eff}}=\left\langle\psi_{i}\right|(\hat{\mathcal{H}}-\mathcal{E})\left|\psi_{j}\right\rangle \tag{L18}
\end{equation*}
$$

$$
\begin{aligned}
& \left|\psi_{1}\right\rangle=|\vec{k}\rangle \\
& \left|\psi_{2}\right\rangle=|\vec{k}+\vec{K}\rangle
\end{aligned}
$$

$$
\begin{equation*}
\hat{\mathcal{H}}=\sum_{\vec{q}^{\prime}}\left|\vec{q}^{\prime}\right\rangle \varepsilon_{\vec{q}^{\prime}}^{0}\left\langle\vec{q}^{\prime}\right|+\sum_{\vec{q}^{\prime} \vec{K}^{\prime}}\left|\vec{q}^{\prime}\right\rangle U_{\vec{K}^{\prime}}\left\langle\vec{q}^{\prime}-\vec{K}^{\prime}\right| . \tag{L19}
\end{equation*}
$$

Exercise: Find off-diagonal components of matrix.

$$
\left|\begin{array}{ccc}
\varepsilon_{\vec{k}}^{0}-\varepsilon & ? & ? \tag{L20}\\
? & ? & \varepsilon_{\vec{k}+\vec{K}}^{0}-\varepsilon
\end{array}\right| .
$$

Exercise: find eigenvalues of matrix

$$
\begin{equation*}
\varepsilon=? \tag{L21}
\end{equation*}
$$

Energy Gap

Right at $\vec{k}=\vec{K}$ have

$$
\begin{equation*}
\mathcal{E}=\varepsilon_{\vec{k}}^{0} \pm\left|\left|U_{\vec{k}}\right| .\right. \tag{L22}
\end{equation*}
$$

$$
\begin{equation*}
\mathcal{E}_{g}=2\left|U_{\vec{K}}\right| . \tag{L22}
\end{equation*}
$$

Geometrical view

$$
\begin{aligned}
& \pi k_{F}^{2}=4 \pi^{2} / a^{2} \\
& \Rightarrow k_{F}=2 \pi / \sqrt{\pi} a=1.128 \pi / a
\end{aligned}
$$

Example in two dimensions

Nearly Free Electron Fermi Surface Gallery ${ }_{11}$

Nearly Free Electron Fermi Surface Gallery 12

Brillouin 1 electron/cell 2 electrons/cell 3 electrons/cell
zone

First

Second

Third

Nearly Free Electron Fermi Surface Gallery 13

Nearly Free Electron Fermi Surface Gallery 14

$\left.\begin{array}{l}\begin{array}{l}\text { Brillouin } \\ \text { 2 electrons/cell }\end{array} \\ \text { zone electrons/cell }\end{array} \begin{array}{c}4 \text { electrons/cell } \\ \text { with hcp extinction }\end{array}\right]$

Actual Fermi Surfaces of All the Elements 15

Periodic Table of Fermi Surfaces, University of Florida

$$
\begin{gather*}
\langle\vec{r} \mid \vec{R}\rangle \equiv w_{n}(\vec{R}, \vec{r})=\frac{1}{\sqrt{N}} \sum_{\vec{k}} e^{-i \vec{k} \cdot \vec{R}} \psi_{n \vec{k}}(\vec{r}) . \tag{L25}\\
\int d \vec{r} w_{n}(\vec{R}, \vec{r}) w_{m}^{*}\left(\vec{R}^{\prime}, \vec{r}\right)=? \\
=\delta_{\vec{R}, \vec{R}^{\prime}} \delta_{n, m} . \\
\frac{1}{\sqrt{N}} \sum_{\vec{R}} w_{n}(\vec{R}, \vec{r}) e^{i \vec{k} \cdot \vec{R}}=\psi_{n \vec{k}}(\vec{r}) . \tag{L29}\\
w_{n}(\vec{R}, \vec{r})=\frac{1}{\sqrt{N}} \sum_{\vec{k}} e^{-i \vec{k} \cdot \vec{R}+i \phi(\vec{k})} \psi_{n \vec{k}}(\vec{r}), \tag{L30}
\end{gather*}
$$

$$
\begin{gather*}
\hat{\mathcal{H}}=\sum_{\vec{R} \vec{R}^{\prime}}\left|\overrightarrow{R^{\prime}}\right\rangle\left\langle\vec{R}^{\prime}\right| \hat{\mathcal{H}}|\vec{R}\rangle\langle\vec{R}| . \tag{L31}\\
\mathcal{H}_{\vec{R} \vec{R}^{\prime}} \equiv\left\langle\vec{R}^{\prime}\right| \hat{\mathcal{H}}|\vec{R}\rangle=\int d \vec{r} w_{n}^{*}\left(\vec{R}^{\prime}, \vec{r}\right)\left[-\frac{\hbar^{2} \nabla^{2}}{2 m}+U(\vec{r})\right] w_{n}(\vec{R}, \vec{r}) \tag{L32}\\
\mathcal{H}_{\vec{R} \vec{R}^{\prime}}=\sum_{\vec{k}} \frac{1}{N} \varepsilon_{n \vec{k}} e^{-i \vec{k} \cdot\left(\vec{R}-\vec{R}^{\prime}\right)} . \tag{L33}\\
\hat{\mathcal{H}}_{\mathrm{TB}}=\sum_{\vec{R} \vec{\delta}}|\vec{R}\rangle \mathfrak{t}\langle\vec{R}+\vec{\delta}|+\sum_{\vec{R}}|\vec{R}\rangle U\langle\vec{R}| . \tag{L34}
\end{gather*}
$$

$$
\begin{align*}
|\vec{k}\rangle & =\frac{1}{\sqrt{N}} \sum_{\vec{R}} e^{i \vec{k} \cdot \vec{R}}|\vec{R}\rangle \tag{L35}\\
|\vec{R}\rangle & =\frac{1}{\sqrt{N}} \sum_{\vec{k}} e^{-i \vec{k} \cdot \vec{R}}|\vec{k}\rangle \tag{L36}
\end{align*}
$$

$\hat{\mathcal{H}}_{\text {TB }}=$?

$$
\begin{align*}
& =\sum_{\vec{k}} \varepsilon_{\vec{k}}|\vec{k}\rangle\langle\vec{k}| \tag{L38}\\
\varepsilon_{\vec{k}} & =? \tag{L39}
\end{align*}
$$

$2 \mathcal{W}=2 z \mathrm{t}$.

$$
\begin{align*}
& \hat{P}_{n}=\sum_{k}\left|\psi_{n k}\right\rangle\left\langle\psi_{n k}\right| . \tag{L41}\\
& R|R\rangle=\hat{P} \hat{R} \hat{P}|R\rangle . \tag{L42}\\
& w(R, k)=\left\langle\psi_{k} \mid R\right\rangle . \tag{L43}\\
& R w(R, k)=\sum_{k^{\prime}}\left\langle\psi_{k}\right| \hat{R}\left|\psi_{k^{\prime}}\right\rangle w\left(R, k^{\prime}\right) \tag{L44}\\
& \psi_{k}(x)=e^{i k x} u_{k}(x), \tag{L45}\\
& \left\langle\psi_{k}\right| \hat{R}\left|\psi_{k^{\prime}}\right\rangle=\quad 2 \pi i\left[\frac{\partial}{\partial k} \delta\left(k-k^{\prime}\right)\right] \int_{0}^{a} \frac{d x}{a} u_{k}^{*}(x) u_{k}(x) \\
& +2 \pi \delta\left(k-k^{\prime}\right) \int_{0}^{a} \frac{d x}{a} u_{k}^{*}(x) i \frac{\partial}{\partial k} u_{k}(x) . \tag{L46}
\end{align*}
$$

$$
\begin{gather*}
\tilde{u}_{k}(x)=e^{-i \phi(k)} u_{k}(x) \tag{L47}\\
\int_{0}^{a} \frac{d x}{a} \tilde{u}_{k}^{*}(x) i \frac{\partial}{\partial k} \tilde{u}_{k}(x)=0, \tag{L48}\\
w(R, x)=\langle x \mid R\rangle \tag{L49}
\end{gather*}
$$

$$
\begin{aligned}
& \psi_{k+2 \pi / a}(x)=\exp [i \chi] \psi_{k}(x) \\
& \exp [-i \gamma(k)] \\
& \gamma(2 \pi / a)=\chi
\end{aligned}
$$

$$
\begin{equation*}
\tilde{\psi}_{k+2 \pi / a}(x)=e^{i \Gamma} \tilde{\psi}_{k}(x) . \tag{L55}
\end{equation*}
$$

$$
\begin{equation*}
R=\frac{\Gamma a}{2 \pi}+l a . \tag{L51}
\end{equation*}
$$

