due date: Tuesday, November 16, 2021

Problem 1: Liquid ³Helium (6 points)

Liquid ³He is approximately a Fermi gas (spin 1/2). The density is 0.081 g/cm³.

- a) Calculate the Fermi energy (at zero temperature). Also calculate the Fermi velocity (the velocity corresponding to the Fermi energy).
- b) At roughly what temperatures do you expect the fermionic character of ³He to be important?

Problem 2: Fermions on a surface (10 points)

Consider an ideal gas of N spin-1/2 fermions of mass m on a planar surface of area A. Derive a closed form expression for the chemical potential as a function of temperature T (valid for all temperatures). Discuss the limits $T \to 0$ and $T \to \infty$.

Problem 3: Spin susceptibility of an ideal Fermi gas (12 points)

An ideal gas of N spin-1/2 fermions in a cube of size L is under the influence of a weak magnetic field B. The field adds the term $\sigma \mu_B B$ to the single-particle energies where $\sigma = \pm 1$ for up and down spins, respectively. Neglect the effects of the field on the orbital motion of the fermions.

- a) Find the Fermi momenta $k_{F\uparrow}$ and $k_{F\downarrow}$ for the up and down spins. (Because the field is weak, you can assume $\mu_B B \ll \epsilon_{F.}$)
- b) Determine the magnetization $m = (\langle N_{\uparrow} \rangle \langle N_{\downarrow} \rangle)/N$ at zero temperature. Here $\langle N_{\uparrow} \rangle$ and $\langle N_{\downarrow} \rangle$ are the numbers of spin-up and spin-down particles, respectively.
- c) Determine the magnetic susceptibility (the so-called Pauli susceptibility) $\chi = (\partial m / \partial B)_T$.

Problem 4: Higher order corrections in Sommerfeld expansion (12 points)

Use the Sommerfeld expansion to $O(T^4)$ to calculate the chemical potential and the energy of a Fermi gas in a box.

a) Show that

$$\mu = \epsilon_F \left[1 - \frac{\pi^2}{12} \left(\frac{k_B T}{\epsilon_F} \right)^2 - \frac{\pi^4}{80} \left(\frac{k_B T}{\epsilon_F} \right)^4 \right] + O(T^6)$$

$$\frac{E}{N} = \frac{3}{5}\epsilon_F \left[1 + \frac{5\pi^2}{12} \left(\frac{k_B T}{\epsilon_F} \right)^2 - \frac{\pi^4}{16} \left(\frac{k_B T}{\epsilon_F} \right)^4 \right] + O(T^6)$$

b) From a), determine the T^3 correction to the usual linear-in-T specific heat. Compare its magnitude in a typical metal (such as copper) with that of the Debye contribution of the phonons.