Rec 7: Sept. 15, 2009

23.38 a) \(W_{\text{cons}} = -\Delta U = U_i - U_f \)

\[U_i = 0 \ (\text{far}) \]

\[V_f = q \cdot V_f \]
\[\dot{q} = \lambda r \, d\theta \]
\[\lambda = \frac{Q}{2\pi r} \]
\[d\dot{q} = \frac{Q}{2\pi r} \, d\theta \]
\[dV = \frac{kQ}{r} \]

\[V = \frac{kQ}{2\pi r} \int_0^{2\pi} d\theta = \frac{kQ}{r} \]

\[E_f = E_i \]
\[K_f + V_f^2 = K_i + V_i \]
\[K_f = \frac{1}{2} m V_f^2 = V_i \cdot \frac{1}{2} \frac{2V_i}{m} = \sqrt{2(1.69)} \]

\[V_f = \frac{1.5 \times 10^{-3}}{1.5 \times 10^{-3}} = 67.4 \text{ m/s} \]

b) \(W_{\text{cons}} \) is independent of path so \(W \) is as well.

c) It will move to \(\infty \)

23.40 a) \[E_{\text{sheet}} = \frac{1.61}{2 \varepsilon_0} \Rightarrow E = \frac{1.61}{\varepsilon_0} = \frac{47 \times 10^{-9}}{8.85 \times 10^{-12}} = 5.31 \times 10^3 \]

b) \(\Delta V = Ed = 0.33 \Rightarrow 116.8 \text{ V} \)

c) \(d \rightarrow 2d \); \(E \) stays same so \(V \) doubles
23.46

\[\frac{E}{\text{constant}} \]

\[\Delta V = -f \cdot E \cdot d \delta \]

Since \(d \delta \) and \(E \) are at \(180^\circ \)

\[\Delta V \] increases in moving away from sheet.

And this is independent of reference point.

b) Equipotentials are planes parallel to plastic sheet.

\[\Delta V = Ed \Rightarrow d = \frac{\Delta V}{E} = \frac{4V}{107/\varepsilon_0} = \frac{2\varepsilon_0}{107} \]

\[d = \frac{2(8.85 \times 10^{-12})}{4 \times 10^{-9}} = 2.95 \text{ mm} \]

23.86

\[V = A(x^2 - 3y^2 + z^2) \]

\[E_x = -\frac{\partial V}{\partial x} = -2Ax \]

\[E_y = -\frac{\partial V}{\partial y} = 0 \]

\[E_z = -\frac{\partial V}{\partial z} = -2Az \]

b) \(W = q \int E \cdot \hat{k} \, dz \) (motion along \(z \)-axis)

\[W = q \int_0^L (-2Az) \, dz = -qA^2 \int_0^L z = qA^2 z \Rightarrow A = \frac{W}{qA^2} \]

\[A = (15 \times 10^{-5}) 25^2 = 640 \text{ V/m} \]

\[\frac{E}{E} (z = 0.25) = -2 (640) (0.25)^2 = -320 \text{ V/m} \hat{k} \]

c) In planes \(y = \) constant.

So \(V = A(x^2 + z^2) + C \) where \(C = -3A^2 \)

Hence \(x^2 + z^2 = \frac{V-C}{A} = R^2 \) where \(R \) is constant

This is the equation for a circle of radius \(R \).

e) \[R = \sqrt{\frac{V-C}{A}} \]

\[C = -3 (1640) (0.25) = -7680 \]

\[R = 5.74 \text{ m} \]
An insulating rod of length \(L \) has a total charge of \(+Q\) uniformly spread along its length. The rod lies along the x-axis with its left end located at \(x = a \).

(a) Find the electric potential at the origin.

\[
dV = \frac{kQ}{x} \Rightarrow \frac{kQ \, dx}{x} = k \left(\frac{Q}{L} \right) \frac{dx}{x} \\
V = \frac{kQ}{L} \ln \frac{L+q}{a}
\]

(b) A charge of \(-q\) is now moved from infinity to the origin. How much work was done by the external agent which moved the charge \(-q\)?

\[
(W_{\text{ext}})_{i \rightarrow f} = +\Delta V = +q \, \Delta V = +(-q) \left(V_f - V_i \right) \\
(W_{\text{ext}})_{i \rightarrow f} = -\frac{kQ}{L} \ln \frac{L+q}{a}
\]

(c) What is the direction of the electric force on the charge \(-q\) when it is at the origin?

to the right (along +x)
1. The electric potential in a certain region of space is: \(V = 12x^2 - 10x + 62 \). The \(x \)-component of the electric field at \(x = 2.0 \text{ m} \) is

\[
\frac{\Delta V}{\Delta x} = \frac{dV}{dx} = -24x + 10
\]

at \(x = 2 \), \(E_x = -48 + 10 = -38 \text{ V/m} \)

2. Two semicircular rods, one of radius \(R \) and the other of radius \(2R \), and two short straight rods each of length \(R \) are located as shown. The rods have a uniform charge per unit length \(\lambda \). Determine the electric potential at the origin (you should assume that \(V = 0 \) at infinity).

Do this piecewise.

For segment 1

\[
dV = \frac{k\lambda dx}{2R} = \frac{k\lambda dx}{2R}
\]

\[
V_1 = k\lambda \int_0^\pi d\theta = k\lambda \pi R
\]

For segment 2

\[
dV = \frac{k\lambda dx}{R} = \frac{k\lambda dx}{R}
\]

\[
V_2 = k\lambda \int_0^\pi d\theta = k\lambda \pi R
\]

\[
V_2 = k\lambda \ln 2
\]

For segment 3

\[
dV = \frac{k\lambda dx}{x} = \frac{k\lambda dx}{x}
\]

\[
V_3 = k\lambda \int_0^2 d\theta = k\lambda \pi
\]

For segment 4

\[
dV = \frac{k\lambda dx}{x} = \frac{k\lambda dx}{x}
\]

\[
V_4 = k\lambda \int_x^{2R} dx = k\lambda \ln \frac{2R}{x}
\]

\[
V_4 = k\lambda \ln 2
\]

For segment 5

\[
dV = -\frac{k\lambda dx}{x} = -\frac{k\lambda dx}{x}
\]

\[
V_5 = k\lambda \int_0^{-x} d\theta = -k\lambda \int_{-x}^{2R} dx = -k\lambda \ln \frac{1}{x} = +k\lambda \ln 2
\]

\[
V_{total} = V_1 + V_2 + V_3 + V_4 = k\lambda \pi + k\lambda \ln 2 + k\lambda \pi + k\lambda \ln 2 = 2k\lambda [\pi + \ln 2]$