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a b s t r a c t

Liu et al. (2015) proposed a novel link-free procedure for testing whether two multi-index
models share identical indices via the sufficient dimension reduction approach. However,
their method can only be applied to data with two populations. In practice, we often deal
with situations where the same variables are being measured on objects from three or
more groups, and we would like to know how similar these groups are with respect to
some overall features. In this paper, we propose a link-free method which could test if
three or more multi-index models share the same indices. The asymptotic properties of
our test statistic are developed. Numerical studies and a real data analysis are conducted
to illustrate the performance of our method.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

Principal component analysis (PCA) is a widely usedmultivariate statistical analysis technique. Typically, the first several
of these principal components account for a large proportion of the total variance of the original p variables. As a result, one
may achieve dimension reduction with little loss of information by simply working with those principal components. Such
components frequently have interpretations, biological or otherwise, that provide valuable insights into the mechanisms
generating the data. However, the standard PCA is normally a one-samplemethod. In practice, we often deal with situations
where the same variables are being measured on objects from different groups, and we would like to know how similar the
groups are with respect to some overall features. Various attempts have been made to develop valid analysis for multiple
datasets. Flury [10,12] proposed a method called the common PCA, a type of simultaneous principal component analysis for
several groups. The common principal components model has been employed in genetics, climatology, ontogeny and other
fields; see, e.g., Biok [2]. Flury [11] extended the common PCA to partial common PCA. Other common space models also
have been proposed; see, e.g., Krzanowski [15]; Schott [24,25], and Biok [2].

However, for a typical regression problemwith a univariate response Y and a p-dimensional random vector predictor X,
(common) PCA and other related methods often yield inferior results, when one aims to reduce the dimension of X, since
PCA is an unsupervised dimension reduction technique that does not take into account the information in Y . To overcome
this drawback, Li [17] and Cook [6] proposed sufficient dimension reduction that aims at reducing the dimension of X while
preserving the regression relationship between Y and X. Specifically, the scope of sufficient dimension reduction is to seek
a minimal set of linear combinations of X, say β⊤X, where β is a p × dmatrix with d ≤ p, such that

YyX|β⊤X. (1.1)
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The column space of β is then called a central subspace (Cook [6]), denoted by SY |X. Following Li [17] and Liu et al. [19], we
can see that the notion of the central subspace is equivalent to assuming the following multi-index model:

Y = g(β⊤

1 X, . . . ,β⊤

d X; ϵ), (1.2)

where g is an unknown link function, and the random error ϵ is independent with X.
Sufficient dimension reduction has received considerable interests in recent years due to the ubiquity of large high-

dimension datasets which are now more readily available than in the past. Many methods have been developed,
including sliced inverse regression (SIR; Li [17]), sliced average variance estimation (SAVE; Cook and Weisberg [8]),
directional regression (DR; Li and Wang [18]), likelihood acquired directions (LAD; Cook and Forzani [7]). Recently,
Lee et al. [16] proposed a nonlinear sufficient dimension reductionwhich seeks an arbitrary functionφ : Rp

→ Rd satisfying
YyX|φ(X), which greatly generalizes condition (1.1). Ma and Zhu [20,21] investigated sufficient dimension reduction via a
semiparametric approach.

Liu et al. [19] considered testing if the following two multi-index models share the same indices. Specifically, for the
d-dimensional multi-index models for two populations (groups):

Y = g1(β⊤

1 X, . . . ,β⊤

d X; ϵ1) for group 1,
Y = g2(ξ⊤

1 X, . . . , ξ⊤

d X; ϵ2) for group 2,

they proposed a link-free procedure for testing if

span(β) = span(ξ), (1.3)

where both β and ξ are p×dmatrices. However, their method can only be applied to data with two populations. In practice,
we often deal with datasets which naturally fall into three or more groups as illustrated by the plasma data example in
Section 5.

In this article, we focus on testing the hypothesis that if three or more multi-index models share identical indices. For
easy of exposition, we adopt the notion of the central subspace. Let (Y g ,Xg) be a generic pair of (Y ,X) for the gth group,
where g ∈ {1, . . . ,G} for some G ≥ 3. Notice that the null hypothesis (1.3) is equivalent to

SY1|X1 = SY2|X2 .

Hence, to test if three or more multi-index models share the same indices is equivalent to testing if the central subspace of
a particular group is the same as that of any other group:

H0 : SY1|X1 = SY2|X2 = · · · = SYG|XG . (1.4)

So in this article, we are interested in testing hypothesis of (1.4) against the alternative hypothesis H1 : ¬H0, when G ≥ 3.
If the null hypothesis (1.4) is true, we can then pool the data from all groups together for further inferences, and the resulted
estimator will yield greater efficiency since a larger dataset is utilized during the estimation process. In the case that the
null hypothesis (1.4) is rejected, it might be worthy to investigate which group differs from the rest. Further study can be
conducted via pairwise comparison or graphical analysis.

The rest of this article is organized as follows. In Section 2, we give a quick review of sufficient dimension reduction
methods for a single population. In Section 3, we present our test statistics for testing (1.4) for G ≥ 3. The asymptotic
distributions of our test statistics are also discussed. We illustrate the performances of our methods via simulation studies
in Section 4.We then apply ourmethod to a real dataset. Brief conclusions and a discussion on the future research directions
are given in Section 5.

2. Sufficient dimension reduction for a single population

For the gth group, letµg = E(Xg),6g = var(Xg), and Zg
= 6

−1/2
g (Xg

−µg) be the standardized predictor. In this section,
we will drop the subscript g for ease of exposition. As Yu et al. [30] pointed out, many moment based sufficient dimension
reduction methods can be formulated as the following eigen-decomposition problem:

∀i∈{1,...,p} Mηi = λiηi, (2.1)

where M is the Z scale method-specific candidate matrix. Assuming the linearity condition holds (Li [17]), which is a mild
condition imposed on the marginal distribution of the predictors alone, the eigenvectors (η1, . . . , ηd) corresponding to the
non-zero eigenvalues λ1 ≥ · · · ≥ λd form a basis of the Z scale central subspace SY |Z. Then, according to the invariance
property, SY |X = 6−1/2SY |Z as described by Cook [6], β = (6−1/2η1, . . . , 6−1/2ηd) forms a basis of SY |X.

Although many sufficient dimension reduction methods, including SIR, which is used to implement our method in this
paper due to its computational simplicity, took the above approach, i.e., obtain SY |X via SY |Z, for testing hypothesis of (1.4),
it is easier to work in terms of the original predictors X to construct our test statistics. Hence, we adopt the kernel matrix
proposed by Liu et al. [19] as follows:

SIR : M = 6−1var{E(X|Y )}6−1.

We then spectrally decompose M, the corresponding sample version of M, to obtain an estimate of SY |X.
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3. Sufficient dimension reduction for multiple populations

3.1. Partial dimension reduction

Partial dimension reduction is originally proposed to facilitate dimension reduction in regressions with both continuous
predictors (X ∈ Rp) and a categorical predictor (W ). The partial central subspace is defined as the intersection of all
subspaces S satisfying

YyX | (PSX,W ), (3.1)

whereW ∈ {1, . . . ,G} is a categorical predictor and P(·) stands for a projection operator with respect to the standard inner
product. The partial central subspace, which is assumed to exist and is denoted as S

(W )
Y |X , allows for reduction of the vector X

of continuous predictors simultaneously across all subpopulations determined byW . There are several methods developed
in the literature to infer about the partial central subspace, such as the partial SIR (Chiaromonte et al. [5]), partial SAVE (Shao
et al. [26]), and partial IRE (Wen and Cook [27]).

For the methods of the partial dimension reduction, the following key equation connects the conditional central
subspaces SY g |Xg with the partial central subspace S

(W )
Y |X :

S
(W )
Y |X =

G
g=1

SY g |Xg , (3.2)

where


indicates the direct sum between two subspaces.
Under the framework of the partial central subspace, our testing hypothesis (1.4) is equivalent to

SY1|X1 = SY2|X2 = · · · = SYG|XG = S
(W )
Y |X . (3.3)

As we can see, when there are multiple populations (groups), the partial dimension reduction can be adapted to conduct
multi-group dimension reduction with W = 1, . . . ,G, setting as the group identifier. However, partial central subspace
approach comprises the related directions for all populations which is a direct sum of all the marginal central subspaces,
there are some inherent drawbacks of this method. First, the population-specific effects are ignored by this method. Second,
this approach cannot test if the same set of directions serve for all populations. Hence, it cannot deal with testing hypothesis
such as (1.4) directly.

Under the null hypothesis (1.4), it is reasonable to assume that the dimensions of all the marginal central subspaces are
equal to d = dim(S

(W )
Y |X ). We will assume that d is known in our article. An estimate of d can be easily obtained via any

partial dimension reduction or single population dimension reduction methods, since dim(SY g |Xg ) = dim(S
(W )
Y |X ), for any

g ∈ {1, . . . ,G}, under null hypothesis (1.4). Based on our experiences, when the ranks of the conditional central subspaces
are all equal, a good choice is to set d to be that number. When the ranks of the conditional central subspaces are not equal,
the rank of the partial central subspace would provide a good estimate for d.

We propose a modified partial SIR without the homogeneous covariance constraint which was required by the original
partial SIR (Chiaromonte et al. [5]). Since the inferences on d and S

(W )
Y |X are not the main focuses of our paper, detailed

discussions on the related methods via the modified partial SIR are provided in Appendix.

3.2. Test statistic with three or more populations

For the multiple population setting with G ≥ 3, let (Y g
j ,Xg

j ) for all j ∈ {1, . . . , ng} be a simple random sample of size ng

from the gth population (Y g ,Xg), where g ∈ {1, . . . ,G}. Let

X̄g =
1
ng

ng
i=1

Xg
i ,

6g =
1
ng

ng
i=1

(Xg
i − X̄g)(X

g
i − X̄g)

⊤.

Assume the dimensions of SY g |Xg are all equal to d = dim(S
(W )
Y |X ), which holds trivially under the null hypothesis (1.4). Let

λg1 ≥ · · · ≥ λgd > λg,(d+1) ≥ · · · ≥ λgp be the eigenvalues of Mg , and ηgi be the normalized eigenvector corresponding to
λgi. Denote Pgd = ηg1η

⊤

g1 + · · · + ηgdη
⊤

gd, Qgd = Ip − Pgd, and let η̂gi denote the corresponding sample version of ηgi, then Pgd

can be estimated byPgd = η̂g1η̂
⊤

g1 + · · · + η̂gdη̂
⊤

gd. Let A
+ denote the generalized inverse of matrix A, from the perturbation

theory (Kato [14]) and Theorem 1 in Schott [25], we then have

Pgd = Pgd +

d
i=1

{ηgiη
⊤

giAg(λgiI − Mg)
+

+ (λgiI − Mg)
+Agηgiη

⊤

gi } + op(n−1/2)

where Ag = Mg − Mg .
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We considerP(Pgd − Pgd), whereP is the eigenprojection of M(W ) corresponding to its largest d eigenvalues (detailed
expressions of M(W ) are given in Appendix). Under the null hypothesis (1.4), the expected value ofP is Pgd, and λgk = 0, for
g ∈ {1, . . . ,G} and k ∈ {d + 1, . . . , p}, so we have

P(Pgd − Pgd) = P d
i=1

{ηgiη
⊤

giAg(λgiI − Mg)
+

+ (λgiI − Mg)
+Agηgiη

⊤

gi } + op(n−1/2)

=

d
i=1

Pηgiη
⊤

giAg(λgiI − Mg)
+

+

d
i=1

P(λgiI − Mg)
+Agηgiη

⊤

gi + op(n−1/2)

=

d
i=1

p
k=d+1

λ−1
gi ηgiη

⊤

giAgηgkη
⊤

gk + op(n−1/2).

Following Liu et al. [19], we expand Ag = Mg − Mg via the influence function approach as:

Ag = Mg − Mg = Eng {M
∗

g (X
g , Y g)} + Op(n−1),

where En{·} =
n

i=1(·)/n. The explicit expressions of M∗
g for SIR, SAVE and DR can be found in Liu et al. [19]. Let vec(A)

denote the operator which stacks the columns of matrix A to form a vector, the following lemma gives the asymptotic
distribution of

√
ng vec{P(Pgd − Pgd)}.

Lemma 1. Assume that the data (Xg
1, Y

g
1 ), . . . , (Xg

ng , Y
g
ng ) form a simple random sample from (Xg , Y g) with finite fourth order

moments. Then under null hypothesis (1.4), we have:
√
ng vec{P(Pgd − Pgd)}  N (0, 9g),

where9g = Ug8gU⊤
g ,8g = E[ vec{M∗

g (X
g , Y g)} vec{M∗

g (X
g , Y g)}⊤] is the asymptotic covariance matrix of

√
ng vec(Ag), and

Ug =

d
i=1

p
k=d+1

λ−1
gi (ηgkηgk

⊤) ⊗ (ηgiηgi
⊤).

For all g ∈ {1, . . . ,G}, let tg = vec{P(Pgd − Pgd)} and write

t̄ =

G
i=1

ni

n
t, P =

G
i=1

ni

n
Pid.

Then

tg − t̄ = vec

P(Pgd −
P) −PPgd −

G
i=1

ni/n Pid


.

Also, letmg = vec{P(Pgd −
P)}. Then, under null hypothesis (1.4),mg has the same asymptotic distribution as tg − t̄.

Define t = ((t1 − t̄)⊤, . . . , (tG − t̄)⊤)⊤ andm = (m⊤

1 , . . . ,m⊤

G )⊤. We have

√
n t =

√
n

Ip2G −

1
n
(n1, . . . , nG) ⊗ 1G ⊗ Ip2


(t⊤1 , . . . , t⊤G )⊤

=


diag

 n
n1

, . . . ,


n
nG


−

1
√
n
(
√
n1, . . . ,

√
nG) ⊗ 1G


⊗ Ip2(

√
n1(t1)⊤, . . . ,

√
nG(tG)⊤)⊤,

where 1G is the G-dimensional vector of all ones.
Let cg = ng/n for all g ∈ {1, . . . ,G}. Assuming that as n → ∞, cg is a constant. Based on the asymptotic distribution

of
√
ng vec{P(Pgd − Pgd)} obtained in Lemma 1, Theorem 1 gives the asymptotic distribution of

√
nm, which is the same as

that of
√
n t.

Theorem 1. Assume that for g = 1, 2, the data (Xg
1, Y

g
1 ), . . . , (Xg

ng , Y
g
ng ) form a simple random sample from (Xg , Y g)with finite

fourth order moments. Then under null hypothesis (1.4), we have:
√
nm  N (0, BWB⊤),

where B = (diag(
√
1/c1, . . . ,

√
1/cG) − (

√
c1, . . . ,

√
cG) ⊗ 1G) ⊗ Ip2 and W = diag(91, . . . , 9G).
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Proof. Lemma 1 shows that under null hypothesis (1.4),
√
ng tg  N (0, 9g). Since

P(Pgd − Pgd) =

d
i=1

p
k=d+1

λ−1
gi ηgiη

⊤

giAgηgkη
⊤

gk + op(n−1/2)

is just related to the gth population, t1, . . . , tG are asymptotically independent with each other. Then, we have

(
√
n1t⊤1 , . . . ,

√
nGt⊤G )⊤  N (0,W).

Hence,
√
n t  N (0, BWB⊤). Because

√
nm and

√
n t have the same asymptotic distribution, we can conclude that√

nm  N (0, BWB⊤), as claimed. �

Define T = nm⊤m as our test statistic, the following theorem provides its asymptotic distribution under the null
hypothesis (1.4).

Theorem 2. Assume the conditions of Theorem 1 hold, then under null hypothesis (1.4), we have

T  
(G−1)d(p−d)

i=1

ωiχ
2
i (1),

where ω1 ≥ · · · ≥ ω(G−1)d(p−d) are the eigenvalues of BWB⊤, and χ2
1 (1), . . . , χ2

(G−1)d(p−d)(1) denote i.i.d. chi-square random
variables with 1 degree of freedom.

Proof. Since B = (diag(
√
1/c1, . . . ,

√
1/cG) − (

√
c1, . . . ,

√
cG) ⊗ 1G) ⊗ Ip2 , one has rank(B) = (G − 1) × p2. Also,

W = diag(91, . . . , 9G), where 9g = Ug8gU⊤
g . Hence, rank(9g) = rank(Ug) = d(p − d), and rank(W) = d(p − d)G.

By the elementary row and column operations, we may rewrite B as

B = Q(B1, . . . , BG−1, O),

where Q is the multiplication of all the row and column operations and Bi is a p2G × p2 column full rank matrix, for each
i ∈ {1, . . . ,G − 1}. Therefore,

rank(BWB⊤) = rank((B1, . . . , BG−1, O)W(B1, . . . , BG−1, O)⊤)

= rank((B1, . . . , BG−1)diag(91, . . . , 9G−1)(B1, . . . , BG−1)
⊤).

Because (B1, . . . , BG−1) is a column full rank matrix, there exists an invertible matrix D such that

(B1, . . . , BG−1) = D

Ip2(G−1)

O


.

So, we have

rank

(B1, . . . , BG−1)diag(91, . . . , 9G−1)(B1, . . . , BG−1)

⊤


= rank(91, . . . , 9G−1) = d(p − d)(G − 1).

Then, the conclusion just follows naturally. �

A consistent estimate W ofW can be obtained by substituting sample estimates for the unknown quantities. The weights
ωi can be consistently estimated using the eigenvalues of BWB⊤. In the following simulation studies, we compare the
observed value of the test statistic T to the percentage points of

d(p−d)(G−1)
i=1

ω̂iχ
2
i (1)

to approximate the p-value of our test. We may also use the modified test statistics proposed by Bentler and Xie [1] to
approximate the tail probabilities.

4. Numerical studies

4.1. Simulation studies

Throughout our simulation studies, the random error ϵ is assumed to be standard normal, viz. N (0, 1), and independent
of X. The dimension of the predictor vector p is taken to be 5 or 10, the number of slices is h = 5. We summarize our results
over 1000 replications for each simulation study. We studied the performance of our proposed tests via (modified partial)
SIR with different choices of n and p.
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Table 4.1
Estimated test levels (in percentages) for Model I.

Model Iwith p = 5 Model Iwith p = 10

Sample size Nominal level (%) Nominal level (%)
1 5 10 1 5 10

n1 = n2 = n3 = 400 1.80 6.80 13.30 2.20 7.10 14.10
n1 = n2 = n3 = 600 1.40 6.20 10.40 2.00 6.60 11.90
n1 = n2 = n3 = 800 1.10 5.40 10.4 0.90 6.20 10.80

Table 4.2
Estimated test levels (in percentages) for Model II.

Model IIwith p = 5 Model IIwith p = 10

Sample size Nominal level (%) Nominal level (%)
1 5 10 1 5 10

n1 = n2 = n3 = 400 3.10 7.90 15.60 0.30 3.40 6.60
n1 = n2 = n3 = 600 2.80 7.50 13.20 0.50 3.70 6.90
n1 = n2 = n3 = 800 1.60 6.40 11.70 0.60 3.50 7.10

4.1.1. Estimated test levels
In this subsection, we evaluate the performance of our test statistics under different models when null hypothesis (1.4)

holds.

Model I. We first consider the following model with one-dimensional structure for all three groups. The predictor vector
X = (X1, . . . , Xp) is generated from the standard multivariate normal.

Y =

exp(X1 + X2 + X3) + ϵ1, for group 1;
sin(X1 + X2 + X3) + ϵ2, for group 2;
X1 + X2 + X3 + ϵ3, for group 3.

Table 4.1 shows the estimated test levels for our test statistics. As the sample size increases, the estimated levels are closer
to the nominal levels. For example, when p = 5 at the nominal level 1%, the estimated levels are 1.8%, 1.4% and 1.1%
respectively, for sample sizes of 400, 600 and 800. Also it comes as no surprise that the performance of our tests slightly
deteriorates as p increases.

Model II. In this model, the predictor vector X ′

i s are independent and t distributed with degrees of freedom 5.

Y =


(X1 + 5)/(X2 + 2) + ϵ1, for group 1;
X1 + 1/(X2 + 3) + ϵ2, for group 2;
X1 + exp(X2 + 2) + ϵ3, for group 3.

From Table 4.2, we could tell that SIR-based method is strongly affected by value of p. When p is 5, the estimation test
levels based on SIR tend to be greater than the nominal levels, while they tilt to the other directionwhen p is 10. But generally
speaking, the performance of our methods seems reasonable when the independent variables are not normally distributed.

Model III. We now consider a one-dimensional model with correlated predictors as follows:

Y =

exp(X1 + X2) + ϵ1, for group 1;
sin(X1 + X2) + ϵ2, for group 2;
X1 + X2 + ϵ3, for group 3.

In this model, the predictor vector X = (X1, . . . , Xp) follows a multivariate normal distribution with mean 0, and the
correlation between Xi and Xj as 0.5|i−j| for all i ∈ {1, . . . , p} and j ∈ {1, . . . , p}. Different groups share common indices and
d = 1. It seems that the correlation among the predictors does not substantially affect the performance of our methods (see
Table 4.3).

4.1.2. Estimated power
We examine the power of our tests under the alternative hypothesis in this subsection. The predictors X for the model

again follow the standard multivariate normal distribution.

Model IV.

Y =

exp(X1 + X2) + ϵ1, for group 1;
sin(X3 − X2) + ϵ2, for group 2;
X4 + Xp + ϵ3, for group 3.
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Table 4.3
Estimated test levels (in percentages) for Model III.

Model IVwith p = 5 Model IVwith p = 10

Sample size Nominal level (%) Nominal level (%)
1 5 10 1 5 10

n1 = n2 = n3 = 400 2.00 7.00 16.20 2.30 7.20 17.20
n1 = n2 = n3 = 600 1.70 6.70 13.70 1.90 7.00 14.90
n1 = n2 = n3 = 800 1.30 5.80 12.2 1.60 6.20 13.5

Table 4.4
Estimated power at 5% nominal levels for Model IV at d = 1.

Sample size p = 5 p = 10

n1 = n2 = n3 = 400 100 100
n1 = n2 = n3 = 600 100 100
n1 = n2 = n3 = 800 100 100

Table 4.5
Estimated power at 5% nominal levels for Model IV at d = 3.

Sample size p = 5 p = 10

n1 = n2 = n3 = 400 62.4 69.8
n1 = n2 = n3 = 600 65.3 69.3
n1 = n2 = n3 = 800 68.6 73.5

Table 4.6
Estimated power at 5% nominal levels for Model V.

Sample size Our method (power × 100) Liu et al. [19] (power × 100)
p = 5 p = 10 p = 5 p = 10

n1 = n2 = 400 79.8 58.0 0 0
n1 = n2 = 600 92.4 79.8 0 0
n1 = n2 = 800 98.4 91.0 0 0

Here each group has a different direction, that is SY g |Xg = 1 for each g ∈ {1, 2, 3}. We first set d = 1. Here, d = 1 is
the dimension of each group. As shown in Table 4.4, for all the sample sizes, p, our methods performed well with 100% of
power.

If we use a different structural dimension for Model IV, say d = 3, which is shown in Table 4.5, the power of our test is
generally smaller than those when d = 1. Here, d = 1 is the dimension of each group and d = 3 is the dimension of partial
central subspace. It seems that the power of our procedures is pretty sensitive to the value we choose for d. Based on our
simulation studies, an estimate of d using single population dimension reduction often yields greater power.

4.1.3. Comparison with existing method for G = 2
In this subsection, we compare ourmethodwith that of Liu et al. [19] when G = 2.We first consider the followingmodel.

Model V.

Y =


X1 + X2 + ϵ1, for group 1;
exp(X1) + sin(X2) + ϵ2, for group 2.

The predictors X for this model again follow the standard multivariate normal distribution. Table 4.6 shows the power of
the two tests with d = 2 at testing level of 0.05. It is clear that our test does a much better job than Liu et al. [19]. This is not
surprising since for this particular model, we have P1 ⊂ P2, and the test statistic of Liu et al. [19] is constructed using the
sample version of P1Q2. Hence, P1Q2 = 0 here, even though the null hypothesis (1.4) does not hold, the test proposed by
Liu et al. [19] fails to reject it correctly. In contrast, our approach will not encounter this problem, since in a way, we utilize
the difference between P1 and P2, which is clearly not zero under this model.

We also compared the performance of our method with that of Liu et al. [19] regarding the test levels. Simulation studies
not reported here show that both methods yield very similar results.

4.2. A real data analysis

Numerous observational studies suggest that low dietary intake or low plasma concentrations of retinol, beta-carotene,
or other carotenoids are associated with increased risk of developing certain types of cancer (Peto et al. [23]). It has been of
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Table 4.7
Variable names.

Variable name Brief description

AGE Age (years)
SEX Sex (1 = Male, 2 = Female)
SMOKSTAT Smoking status (1 = Never, 2 = Former, 3 = Current Smoker)
QUETELET Quetelet (weight/height2)
VITUSE Vitamin Use (1 = Yes, fairly often, 2 = Yes, not often, 3 = No)
CALORIES Number of calories consumed per day
FAT Grams of fat consumed per day
FIBER Grams of fiber consumed per day
ALCOHOL Number of alcoholic drinks consumed per week
CHOLESTEROL Cholesterol consumed (mg per day)
BETADIET Dietary beta-carotene consumed (mcg per day)
RETDIET Dietary retinol consumed (mcg per day)
BETAPLASMA Plasma beta-carotene (ng/ml)
RETPLASMA Plasma Retinol (ng/ml)

interest to determine those factors that may affect these concentrations, and so several studies have been conducted in the
past. For example, studies to investigate the effect of personal characteristics and dietary factors on plasma concentrations
in human serum, and to build models using these variables to predict and evaluate plasma concentrations of retinol and
beta-carotene accurately were carried out in Nierenberg et al. [22]. Zhu et al. [31], Yoo [28,29], and Hilafu and Yin [13] also
considered such factors.

Here, we apply ourmethod to a dataset to determine how smoking status affects the relationship between some personal
characteristics, dietary factors and the concentration of beta-carotene. The data ‘‘plasma-retinol’’ is available at the online
library of data files of Carnegie Mellon University (http://lib.stat.cmu.edu). Study objects containing 315 observations on
14 variables were patients who had an elective surgical procedure during a three-year period to biopsy or remove a lesion
of the lung, colon, breast, skin, ovary or uterus that was found to be non-cancerous. Note that subject 62 with an extreme
high value of alcohol use is treated as outlier by Hilafu and Yin [13], Zhu et al. [31] and was deleted ahead of time. We also
remove subject 62 from our data analysis. Variables SEX, SMOKSTAT, VITUSE are categorical, BETAPLASMA and RETPLASMA
are continuous response variables and the remaining nine variables are also continuous. Detailed descriptions of our data
are given in Table 4.7 as below.

We take one of the categorical variables, smoking status (SMOKSTAT) as the group identifier and divide the study objects
into three groups: nonsmoker, former smoker and current smoker. The remaining nine continuous variables (X1 = AGE,
X2 = QUETELET, X3 = CALORIES, X4 = FAT, X5 = FIBER, X6 = ALCOHOL, X7 = CHOLESTEROL, X8 = BETADIET,
X9 = RETDIET) are the independent variables and plasma beta-carotene is the dependent variable. We take the number
of slices h of our methods to be 5, and the number of directions within each group to be d = 1 which is the dimension of the
partial central subspace S

(W )
Y |X , withW = SMOKSTAT. The observed test statistic is T = 259.15, which is greater than 224.20,

the 95th percentiles of the simulated weighted chi-square distribution. Hence, we reject the null hypothesis which means
that smoking status does affect how these dietary factors and personal characteristics considered in this study influence the
concentration of beta-carotene in human serums.

The results of our analysis are consistent with that of Hilafu and Yin [13], which might shed light on the possible causal
mechanisms between smoking and cancer risk. In fact, many studies have shown that smoking increases the risk of many
cancers. Our conclusion combined with the observational studies conducted by Peto et al. [23] could also help us better
understand the relationships between smoking and the risk of these cancers.

5. Summary

In this article,we developed a new test statistic, and its asymptotic distribution, for testing the common indices of three or
more multi-index models. Simulation results show that our newmethod is able to detect if different groups share the same
dimension reduction subspaces. In the real life, our method could also be used to check the significance of some categorical
variable. Applying our method to the plasma beta-carotene dataset, we find that the dimension reduction subspaces of the
three groups (nonsmoker, previous smoker and current smoker) are not the same. This conclusion means that the smoking
status variable may significantly affect how those personal characteristics and dietary factors influence the concentration
of beta-carotene in human serums. Recently, Chavent et al. [4] proposed an adaptive SIR method for data stream consisting
of sequential blocks. Our method might also be used to assist the detection of aberrant blocks in that setting.

Our method utilizes the concept of partial central subspace. In simulation studies, we found that our new method tends
to yield greater power comparing to the method proposed by Liu et al. [19].
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Appendix. Modified partial SIR

For a random sample of size ng from the gth population (Y g ,Xg)with g ∈ {1, . . . ,G}, let

X̄g =
1
ng

ng
i=1

Xg
i ,

6g =
1
ng

ng
i=1

(Xg
i − X̄g)(X

g
i − X̄g)

⊤,

and n = n1+· · ·+nG. Standardize the predictor, Z
g
i = 6−1/2

g (Xg
i −X̄g) for each i ∈ {1, . . . , ng} and g ∈ {1, . . . ,G}. Following

the common practice in sufficient dimension reduction, partition the range of Y g into Hg slices. For each s ∈ {1, . . . ,Hg}

and g ∈ {1, . . . ,G}, compute the intra-slice mean vector as

Z̄gs =
1
ngs

ngs
j=1

Zg
j , (A.1)

where the sum is over indices j of response observations Y g
j that fall into slice s, and ngs is the number of observations in slice

s, for population g . With a little abuse of notations, in the following discussions, we use {Y g
= s} as short for {Y g is in slice s}.

The original partial SIR proposed by Chiaromonte et al. [5] requires the following homogeneous predictor covariance
condition across the populations:

61 = · · · = 6G.

Experience has shown that this homogeneous covariance condition restricts application of partial SIR in practice, and that
its failure can result in misleading conclusions. In this article, we propose a modified partial SIR without the homogeneous
covariance constraint, which we still call partial SIR. Throughout this article, the partial SIR we used refers to the modified
version.

For partial SIR, the sample version of Mg for population g ∈ {1, . . . ,G} is given by

Msir
g =

hg
s=1

ngs

ng
Z̄gsZ̄⊤

gs. (A.2)

Define ag = Pr(G = g), αg =
√
ag , âg = ng/n, α̂g =


âg , φgs = Pr(Y g

= s), fgs =


φgs, φ̂gs = ngs/ng , f̂gs =


φ̂gs. Also, letHg = (f̂g1Z̄g1, . . . , f̂ghg Z̄ghg ). Then Msir

g = HgH⊤
g . Averaging the sample candidate matrices over each population, we obtain

M(W )
=

G
g=1

ng

n
Msir

g = HH⊤,

whereH = (α1H1, . . . , αGHG). Let λ̂1 ≥ · · · ≥ λ̂p be the singular values ofH, and define

Tsir(m) = n
p

k=m+1

λ̂2
k .

Let H be the population version ofH. We first construct the singular value decomposition of H, viz.

H =

01 00

 D 0
0 0


9⊤

1
9⊤

0


,

where (01 00) is a p × p orthogonal matrix in which 01 and 00 have dimensions p × m and p × (p − m), (91 90) is an
h× h orthogonal matrix, in which 91 and 90 have dimensions h×m and h× (h−m), and D is anm×m diagonal matrix of
positive diagonal elements. Following Eaton and Tyler [9], under the null hypothesis d = m, Tsir(m) has the same asymptotic
distribution as

vec⊤
{
√
n0⊤

0 (H − H)90} vec{
√
n0⊤

0 (H − H)90}.

Thus we only need to derive the asymptotic distribution of
√
n0⊤

0 (H − H)90, which is provided by the following lemma.
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Lemma 2. One has
√
n vec{0⊤

0 (H − H)90}
D
→ N (0, �), where ⊗ denotes the Kronecker product, � = (9⊤

0 ⊗ 0⊤

0 )
diag(11, . . . , 1G)(90 ⊗ 00), and for each g ∈ {1, . . . ,G}, 1g is defined by Equation (8) in Bura and Cook [3], and diag(·)
denotes a positive definite block diagonal matrix.

Proof. By Equation (8) of Bura and Cook [3], we have the following result:

√
ng vec{(Hg − Hg)}

D
→ N (0, 1g), (A.3)

where 1g is defined in Bura and Cook [3]. The conclusion follows. �

In the area of sufficient dimension reduction, estimation of d is often based on testing a sequence of hypotheses
H0 : d = m versus Ha : d > m, with m incremented by 1 until the hypothesis is not rejected. At which point d̂ is the last
value ofm tested. For partial SIR, the following theorem provides a test statistic for testing H0 : d = m versus Ha : d > m.

Theorem 3. Assuming the linearity condition for X1, . . . ,XG under the null hypothesis of H0 : d = m. The limiting distribution
of Tsir(m) is then the same as that of

(h−m)(p−m)
i=1

ωiKi

where h = h1 + · · · + hG is the total number of slices, the K1, . . . , K(h−m)(p−m) are i.i.d. χ2 random variables with degree of
freedom one, and ω1 ≥ · · · ≥ ω(h−m)(p−m) are the ordered eigenvalues of �.

The proof of Theorem 3 is straightforward from Lemma 2, hence it is omitted here.
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