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ABSTRACT
Conditional variable screening arises when researchers have prior
information regarding the importance of certain predictors. It is nat-
ural to consider feature screening methods conditioning on these
known important predictors. Barut, E., Fan, J., and Verhasselt, A.
[(2016), ‘Conditional Sure Independence Screening’, Journal of the
American Statistical Association, 111, 1266–1277] proposed condi-
tional sure independence screening (CSIS) to address this issueunder
the context of generalised linear models. While CSIS outperforms
the marginal screening method when few of the factors are known
to be important and/or significant correlations between some of
the factors exist, unfortunately, CSIS is model based and might fail
when the models are misspecified. We propose a model-free condi-
tional screening method under the framework of sufficient dimen-
sion reduction for ultrahighdimensional statistical problems.Numer-
ical studies show our method easily beats CSIS for nonlinear models
and performs comparable to CSIS for (generalised) linear models.
Sure screening consistency property for our method is proved.
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1. Introduction

Researchers in many fields, such as economics and finance, need to analyse high-
dimensional data, where the number of predictors p is frequently huge compared with
the sample size n. Most traditional statistical methods failed when p is large. Also, with
high-dimensional data, it is often reasonable to assume only a small number of predictors
actually contribute to the response (sparsity assumption). Estimation accuracy and model
interpretability can be greatly improved in the subsequent analysis by effectively identi-
fying the few important predictors first. Hence, dimension reduction or feature selection
is often conducted as the first step of data analysis. Fan and Lv (2008) proposed the sure
independence screening (SIS), which is a feature screening procedure for linear models by
ranking the marginal correlations between the response and each individual predictor. SIS
has the so-called sure screening property (Fan and Lv 2008), in the sense that as n → ∞, the
important predictors are guaranteed to be retained in the model with probability tending
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to 1, even for ultra-high-dimensional predictor space, where p can diverge at an exponen-
tial rate of n. SIS was extended to generalised linear models in Fan and Song (2010). Fan,
Feng, and Song (2011) proposed nonparametric independence screening (NIS) for non-
parametric models with additive structure using nonparametric marginal ranking. Many
other feature screening methodologies have been developed, such as Xue and Zou (2011),
Wang (2012), Zhao and Li (2012), Chang, Tang, and Wu (2013) and Niu, Zhang, Liu, and
Li (2020).

However, all the aforementioned procedures aremodel-based andmight yield poor per-
formance when the models are misspecified. Motivated by this fact, model-free feature
screening procedures, which can identify the important predictors without specifying the
model structure, were developed. To list a few: Zhu, Li, Li, and Zhu (2011) proposed a sure
independent ranking and screening (SIRS) method. Lin, Sun, and Zhu (2013) proposed
a nonparametric ranking feature screening (NRS) using the function-correlation between
the response and the predictors. He, Wang, and Hong (2013) proposed quantile-adaptive
model-free screening through the marginal quantile regression. Mai and Zou (2015) pro-
posed the fused Kolmogorov filter approach, which performs feature screening for the
data with many types of predictors and response. For discriminant analysis with high-
dimensional data, model-free feature screening has been studied by Mai and Zou (2013),
Cui, Li, and Zhong (2014), and Pan, Wang, and Li (2015).

Recently, under the paradigm of sufficient dimension reduction (Li 1991; Cook 1998),
which aims to find the linear combinations of the predictors such that the response is inde-
pendent with the original predictors given these linear combinations without requiring the
knowledge of the model structure, Yu, Dong, and Zhu (2016) proposed a novel model-
free feature screening method, the forward trace pursuit (FTP). Although Yu et al. (2016)
focused on conducting model-free feature screening via the three most well-known suf-
ficient dimension reduction methods: sliced inverse regression (SIR) (Li 1991), sliced
average variance estimation (SAVE) (Cook andWeisberg 1991), and directional regression
(DR) (Li and Wang 2007), the general principle of FTP can be easily extended to other
sufficient dimension reduction methods. The screening consistency property of forward
regression in linear models is established inWang (2009), which is extended to model-free
setting via SIR-based forward trace pursuit in Yu et al. (2016).

The performance of all these feature screening procedures is heavily influenced by the
correlations among the predictors, as mentioned in Fan and Lv (2008), Zhu et al. (2011),
and Barut, Fan, and Verhasselt (2016). As Barut et al. (2016) pointed out, the correla-
tions among predictors might cause false positives (where the unimportant predictors
are mistakenly considered as important ones through the screening procedure), and/or
false negatives (where the important predictors are screened out as the unimportant ones).
Unfortunately, the correlations among predictors are unavoidable for high-dimensional
data analysis (Hall and Li 1993; Fan and Lv 2008), since spurious correlations among pre-
dictors always exist as p diverges. To obtain the sure screening property, feature screening
procedures usually need to impose some restrictions on the correlation structure among
predictors.

One possible way to alleviate the above problem is to consider conditional screening
method, since researchers in many applications have some prior information regarding
the importance of certain predictors, such as the treatment effects in biological studies and
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market risk factors in financial studies, it is natural to consider feature screening methods
conditioning on these known important predictors.

For example, consider the leukaemia data studied by Golub et al. (1999), Barut
et al. (2016) and others, where gene expression data from72 patientswith two types of acute
leukaemia, acute lymphoblastic leukaemia (ALL) and acute myeloid leukaemia (AML)
were collected. Gene expression levels were measured for 7129 genes. Golub et al. (1999)
described that two genes, Zyxin and Transcriptional activator hSNF2b, had empirically
high correlations for the difference between patients withAML andALL. Barut et al. (2016)
proposed a conditional screening method called conditional sure independence screening
(CSIS) to conduct screening procedure in the presence of the known set of predictors. They
applied CSIS to the aforementioned leukaemia data conditioning on the two known genes,
and was able to select TCRD (T-cell receptor delta locus) which had not been detected
before. Numerical studies also showed that, compared with SIS, CSIS makes it possible
to identify those significant hidden predictors whose contributions might otherwise get
cancelled out due to the correlations with other predictors. Also, when there are high cor-
relations among significant predictors and insignificant ones, CSIS can help to reduce the
number of false negatives.

Although CSIS improves the performance of the screening procedure by using prior
information, however, it is still a model-based screening procedure for generalised linear
models, it might fail when the model assumption is not satisfied. To address this issue,
we propose a model-free conditional screening method via sufficient dimension reduction
in this article. Conditioning on a few known important predictors which should always
be included in the regression, we conduct feature screening procedure on the remaining
predictors without assuming an underlying model between the response and predictors.
Specifically, our method is based on the partial sufficient dimension reduction procedure
proposed by Feng,Wen, Yu, and Zhu (2013).We employ the framework of partial sufficient
dimension reduction while splitting the original predictors into two groups: those known
important ones and the rest of the predictors which we will conduct feature screening on.
Chang, Tang, andWu (2016) proposed a nonparametric local independent feature screen-
ing method using the marginal empirical likelihood in conjunction with marginal kernel
smoothingmethods. They also developed an iterative version to deal with the situation that
some predictors are marginally unrelated but jointly related to the response, which is dif-
ferent from our conditioning feature screening approach. Lu and Lin (2020) and Chu and
Lin (2020) also studied model-free conditional feature screening methods via conditional
distance correlation and empirical likelihood, respectively.

The rest of this paper is organised as the following. In Section 2, we briefly review partial
sufficient dimension reduction. We then propose our model-free conditional screening
method and discuss its properties in Section 3. Numerical studies and real data analysis
are provided in Section 4. A brief discussion and conclusion are given in Section 5. We
defer all proofs to the Appendix.

2. Partial sufficient dimension reduction

In this section, we give a brief introduction of the partial sufficient dimension reduction
since our model-free conditional screening method is based on it. For a typical regression
analysis with a response variableY and a vector of randompredictorsX = (X1, . . . ,Xp)

T ∈
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R
p, we seek a parsimonious characterisation of the conditional distribution of Y |X.

Li (1991) and Cook (1998) proposed sufficient dimension reduction to reduce the dimen-
sion of X without loss of information on the original regression and without requiring a
pre-specified parametric model. The basic idea is to replace X by a minimal set of linear
combinations of X without loss of information on Y |X. So we seek a p × dmatrix η, with
d ≤ p such that

Y X | ηTX, (1)

where indicates independence. When (1) holds, to study the relationship between X
and Y, it is sufficient to focus only on the d reduced variables βTi X.

Partial sufficient dimension reduction (Chiaromonte, Cook, and Li 2002; Feng
et al. 2013) arises when one considers the predictive role of all predictors but limits dimen-
sion reduction to a subset of the predictors. Those predictors which dimension reduction
is performed on are referred to as the predictors of primary interest, and the rest of predic-
tors are referred to as the predictors of secondary interest. Partial dimension reduction is of
practical use, since inmany applications, some predictors play a particular role andmust be
shielded from the dimension reduction process. Considering the leukaemia data discussed
in Section 1, the two predictors (genes), Zyxin and Transcriptional activator hSNF2b, are
the predictors of ‘secondary interest’, since prior knowledge indicated that further dimen-
sion reduction should be conducted on other predictors (genes) while conditioning on
these two predictors.

Let Y be a univariate random response, X = {X1,X2, . . . ,Xp} ∈ Rp be a vector of con-
tinuous predictors of primary interest, and W = {W1,W2, . . . ,Wq} ∈ Rq be a vector of
predictors of secondary interest. The aim of partial sufficient dimension reduction is to
find the partial central subspace S(W)Y|X , which is the intersection of all subspaces S such
that

Y X | (PSX,W), (2)

where stands for independence and PS is the orthogonal projection on subspaceS . The
concept of partial central subspace was first proposed by Chiaromonte et al. (2002) to deal
with dimension reductions for regressions with a mixture of continuous and categorical
predictors where the dimension reduction procedure focused on continuous predictors.
Although it expands the scope of sufficient dimension reduction with practical applica-
tions, the method developed by Chiaromonte et al. (2002) is only limited to situations
whereW is categorical, and is difficult to be extended to cases with continuousW. Hilafu
and Wu (2017) proposed partial projective resampling dimension reduction (PPR-DR) to
estimate the partial central subspace for any types of W by changing the role of W from
predictor to the response variable. However, the subspace they estimated is larger than the
partial central subspace whenW is not independent with X given PS(W)Y|X

X.

Feng et al. (2013) proposed partial discretisation–expectation estimation (PDEE) to
estimate the partial central subspace S(W)Y|X when W is continuous, which our model-
free conditional screening method is based on. A brief review of PDEE is given below.
First, the continuous W is discretised into a set of binary variables by defining W(T) =
(I{W1≤T1}, I{W2≤T2}, . . . , I{Wq≤Tq}), where T = {T1,T2, . . . ,Tq} ∈ Rq is an independent
copy of W with support of Rq

T, and I{Wi≤Ti} is an indicator function taking value 1 for
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Wi ≤ Ti, and 0 otherwise, for i = 1, . . . , q. Then, let SW(t)
Y|X be the partial central subspace

of Y | (X,W(t)), for T = t ∈ Rq
T, Feng et al. (2013) showed that

S(W)Y|X =
⋃
t∈Rq

T

SW(t)
Y|X . (3)

Hence, an estimate of S(W)Y|X can be obtained via those SW(t)
Y|X .

For simplicity, (Y ,X) |W(t) is denoted as (Xt,Yt) for any fixed t ∈ Rq
T. We can con-

struct kernelmatricesM(t) such that Span{M(t)} = SW(t)
Y|X to infer about the partial central

subspace SW(t)
Y|X . Note that (3) not only provides a general framework for estimating the

partial central subspace, it can also be combined with many different sufficient dimen-
sion reduction methods by choosing different kernel matricesM(t). The following are the
kernel matrices of the three most popular sufficient dimension reduction methods:

SIR: M(t) = c−1Var{E(Xt |Yt)}�−1
t ;

SAVE: M(t) = �−1
t E{�t − Var(Xt |Yt)}2�−1

t ;

DR: M(t) = �−1
t E{2�t − E((X̃t − Xt)(X̃t − Xt)T |Yt, Ỹt)}2�−1

t ,

where �t = Var(Xt), and (Ỹt, X̃t) is an independent copy of (Yt,Xt). Interested readers
may refer to Li and Dong (2009) and Li, Kim, and Altman (2010) for further details.

The following conditions are commonly used in sufficient dimension reduction area to
ensure that Span{M(t)} = SW(t)

Y|X holds for the above choices ofM(t).

Condition 2.1: For any t ∈ Rq
T, we assume that

(a) E(Xt | PSW(t)
Y|X

Xt) is linear combination of PSW(t)
Y|X

Xt;

(b) Var(Xt | PSW(t)
Y|X

Xt) is nonrandom.

Condition 2.1(a) is also called the linear conditional mean (LCM) assumption, while Con-
dition 2.1(b) is the constant conditional variance (CCV) assumption. Both conditions hold
for normally distributed X. When X is not normally distributed, please refer to Cook and
Nachtsheim (1994), Li and Dong (2009), Dong and Li (2010) for possible options. SIR
(Li 1991) only requires Condition 2.1(a), while SAVE (Cook and Weisberg 1991) and DR
(Li and Wang 2007) need both conditions.

Feng et al. (2013) showed that it suffices to take the expectation over the aforementioned
random vector T (an independent copy of W) to obtain the target matrix M = E{M(T)}
such that Span{M} = S(W)Y|X .

3. Conditional screening through trace pursuit

For model-free conditional screening, we set W as the set of predictors which should be
retained in the model based on the prior knowledge, and perform feature screening on X
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while conditioning onW. We seek the smallest active index setA such that

Y XAc | (XA,W), (4)

where Ac is the complement set of A with respective to the index set I = {1, . . . , p}.
From (4), it is obvious that XA just includes all important predictors for predicting Y
given W. Without loss of generality, we may assume the active index set A = {1, . . . ,K}
for ease of exposition. We can see that (4) is equivalent to PHS(W)Y|X = Op, where H =
Span{(0(p−K)×K , Ip−K)

T} is the subspace of the primary predictor space, corresponding
to the coordinates of the inactive predictors, andOp is the origin in R

p.
Cook (2004) first considered variable selection via a testing hypothesis approach by test-

ing Y XAc |XA, when the predictors are treated indiscriminately. Under the context of
the regression of Y versus X, Cook (2004) proposed a test for the testing hypothesis of
Y XAc |XA based on a generalised least square rederivation of the SIR estimator for
SY|X. Shao, Cook, and Weisberg (2007) and many others also investigated the same test-
ing problem based on other estimators of SY|X. Zhong, Zhang, Zhu, and Liu (2012) and
Jiang and Liu (2013) tackled the problem when n<p via sliced inverse regression (SIR)
method. However, both methods require the estimation of the rank of SY|X (the so-called
order determination), which is a very challenging problem when n<p. The trace pur-
suit approach proposed by Yu et al. (2016) successfully circumvents the need for order
determination to conduct model-free variable selection via sufficient dimension reduc-
tion approach for n<p. In this article, we will conduct conditional variable screening via
testing approach (4) from the partial sufficient dimension reduction perspective.We give a
detailed discussion of ourmethod using SIR (Li 1991), thoughwe can extend our approach
to other sufficient dimension reduction methods such as SAVE (Cook andWeisberg 1991)
and DR (Li and Wang 2007) by using different kernel matricesM.

Let μt = E(Xt), Zt = �
−1/2
t (Xt − μt) and denote the Z-scaled central space as SW(t)

Y|Z .
By the so-called invariance property Cook (1998), SW(t)

Y|X = �
−1/2
t SW(t)

Y|Z . We will work
with the Z-scaled central spaces first in the following discussions. For any given t ∈ Rq

T,
partition the range of Yt into Ht nonoverlapping slices Jt1, . . . , J

t
Ht
. Let pht = Pr(Yt ∈ Jtht),

Uht = E(Xt |Yt ∈ Jtht)− μt, then the SIR-based Z-scaled kernel matrix M = E{M(t)} =
E{�−1/2

t (
∑Ht

ht=1 phtUhtU
�
ht)�

−1/2
t }. Note that for easy of exposition, with a slight abuse

of notation, we keep using the same notation M, for Z-scaled kernel matrices as the
X-scaled ones, which were previously discussed in Section 2. For any index set F , we
denote Xt

F = {Xt
i , i ∈ F}, μF ,t = E(Xt

F ), UF ,ht = E(Xt
F |Yt ∈ Jtht)− μF ,t and �F ,t =

Var(Xt
F ). Moreover, we define MF (t) = �

−1/2
F ,t (

∑Ht
ht=1 phtUF ,htU

�
F ,ht)�

−1/2
F ,t and MF =

E(MF (t)), then we have the following proposition.

Proposition 3.1: Suppose Condition 2.1 holds, then for any index setF such thatA ⊆ F ⊆
I , we have tr(MA) = tr(MF ) = tr(MI).

Proposition 3.1 shows that tr(MF ) can be used to capture the strength of the relationship
between Y and X givenW. IfA is a subset of F , then the kernel matrixMF has the same
trace asMA.
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DenoteF ∪ j as the index set consisting of j and all the indices inF . Suppose we already
have the index set F selected in the model, and F does not contain A, based on the fol-
lowing theorem, we can use the difference between tr(MF∪j) and tr(MF ) to measure the
contribution of the additional Xj to Y given (XF ,W).

Theorem 3.1: For any t ∈ Rq
T, suppose that we have

E(Xt
j |Xt

F ) is a linear function of Xt
F , for any j /∈ F and F ⊆ I . (5)

Then

• IfA ⊆ F , then tr(MF∪j)− tr(MF ) = 0.
• If A 	⊆ F , then tr(MF∪j)− tr(MF ) = ET(

∑Ht
ht=1 pht(γ

t
j|F ,ht)

2), where μt
j|F =

E(γ j|F |T = t) and γ t
j|F ,ht = E(γ j|F |Y ∈ Jht ,T= t)−μt

j|F with Xj|F =Xj − E(Xj|XF ),
σ 2
j|F = Var(Xj|F ), and γ j|F = Xj|F/σj|F .

Condition 5 is parallel to Condition 2.1(a). When Xt follows an elliptical contour dis-
tribution for any t, both conditions are satisfied. The first part of Theorem 3.1 shows that
the trace difference betweenMF∪j andMF is 0, when the active setA is already included
in the setF . The second part provides a formula to calculate the trace difference, when the
set F does not include all the active predictors.

For the derivation of the asymptotic consistency of our method, we hence assume that

�t = �, for any t ∈ Rq
T (6)

Although simulation studies suggest that our method still performs reasonably well in
applications where this ‘homogeneous variance condition’ does not hold.

Suppose that d = dim(S(W)Y|Z ) = dim(S(W)Y|X ), and let λ1 ≥, . . . ,≥ λd be the nonzero
eigenvalues for M and η1, . . . , ηd be the corresponding eigenvectors. Denote β i =
�−1/2ηi = (βi,1, . . . ,βi,p)�, for i = 1, . . . , d. Under Condition 2.1, we have Span{β1, . . . ,
βd} = S(W)Y|X . Furthermore, we define β2min = minj∈A

∑d
i=1 β

2
i,j, where λmin and λmax are

the smallest and the largest eigenvalues of �, respectively.

Proposition 3.2: Suppose that condition 5 in Theorem 3.1 holds, for any F which A 	⊆ F
we have

max
j∈A∩F c

(
tr(MF∪j)− tr(MF )

) ≥ λdλ
−1
maxλminβ

2
min. (7)

Under the sufficient dimension reduction framework, we know Y X|(βT
1X, . . . ,

βT
dX,W). Since A is the smallest active index set such that Y X|(XA,W), then∑d
i=1 β

2
i,j > 0 for any j ∈ A. Hence, for any F which does not include all the active pre-

dictors, the maximum difference betweenMF∪j andMF over j ∈ F c ∩ A is larger than 0
based on the result in Proposition 3.2.

Let (Xi,Yi,Wi), i = 1, . . . , n be simple random sample of size n. Follow Feng
et al. (2013), for easy of implementation, we choose ln different t’s of which ln is of order
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O(n) and use nt to denote the subsample size for a given t. Then, we can rewrite the sam-
ple as (Xt

i ,Y
t
i ), i = 1, . . . , nt for a given t. Let M̂(t) be the sample estimate ofM(t), then we

can estimate M using M̂ = 1
ln

∑ln
i=1 M̂(ti). Regarding the choice of t, theoretically speak-

ing, we only need ln = On different values of t to obtain a
√
n consistent estimator of M.

One easy way is to choose ln = n, and ti = Wi. However, when q, the dimension of W is
large, for many Wi, the set of contaminated points {(Xi,Yi)} associated with the super-
cube {Wj : I(Wj ≤ Wi)} are very few and then the partial central subspace Span{M(Wi)}
cannot be estimated well. Hence, 1n

∑n
i=1Mn(Wi) cannot provide a good estimator of the

partial central subspace Span{M}. To deal with this issue, we follow Feng et al. (2013) and
use

1
qn

q∑
k=1

n∑
i=1

Mn(W∞
ik )

as an estimator for M, where W∞
ik is the column vector of which only the kth compo-

nent is the same as that of Wi and the other components are the maximum values of the
corresponding components of allWi’s. Please refer to Feng et al. (2013) for further details.

Follow the SIR-based forward trace pursuit algorithm in Yu et al. (2016), the screening
procedure starts with an empty index setF0, then at each step, the index which maximises
the difference between the traces of successive kernel matrices to the working set is added,
until we acquire a working index set with n indices. Hence, we obtain a sequence of n
nested working index sets F1, . . . ,Fn. In order to select a model from this sequence of
nested working index sets, we use the modified BIC criterion defined in Yu et al. (2016):

BIC(F) = − log
{
tr(M̂F )

}+ n−1|F |(log n + 2 log p),

where |F | denotes the cardinality of set F .
To obtain the sure screening property of conditional forward trace pursuit based on SIR,

we need the following conditions.

Condition 3.1: (a) There exist some constants α0 > 0 and 0 < b0 < 1/2 such that

min
F : A 	⊆F

max
j∈A∩F c

(
tr(MF∪j)− tr(MF )

) ≥ a0n−b0 . (8)

(b) X and Xt follows multi-normal distributions for any t ∈ Rq
T.

(c) There exist c1 > 0 and c2 > 0 such that c1 < λmin < λmax < c2.
(d) There exist constants a1, b1 and b2 such that log(p) ≤ a1nθ1 , |A| ≤ a1nb2 and 2b0 +

b1 + 2b2 < 1.
(e) There exists constant b3 such that ln = O(nb3) and ntm = O(n1−b3) for any tm among

the ln points where 0.5(1 − c3) < b3 < 1 − c3.

Motivated by the conclusion in Proposition 3.2, we assume that Condition 3.1(a) holds.
Condition 3.1(b,c) are common for variable screening of high-dimensional data. Assum-
ing Condition 3.1(b,c), Wang (2009) studied the sure screening property of forward linear
regression. Condition 3.1(d) allows the dimension p and the number of important pre-
dictors to go to infinity as sample size n goes to infinity. We assume Condition 3.1(e) to
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guarantee that it is not too sparse for each subsample and M̂(tm) is
√
n consistent estimator

ofM(tm) form = 1, . . . , ln.

Theorem 3.2: Assume Condition 2.1 and Condition 3.1 hold, then we have

Pr(A ⊂ Fm̂) → 1,

as n → ∞ and p → ∞, where m̂ = argmin1≤k≤n BIC(Fk).

Theorem 3.2 shows that our conditional forward trace pursuit method based on SIR has
the desired sure screening property.

4. Numerical studies

4.1. Simulation studies

In this part, we compare the screening performance of our conditional forward trace pur-
suit (CFTP)methodwithCSIS Barut et al. (2016). Based on 100 repetitions, we evaluate the
performance using the true model coverage rate (CR, the rate of all the significant predic-
tors being selected), the average model size (MS), the average false positive rate (FP), and
the average false-negative rate (FN). For CSIS, we use random decoupling, which was dis-
cussed in Barut et al. (2016), to select the threshold parameters and determine the model
size for Model I-VI; while for Model VII-IX, [n/ log(n)] is used as the model size since
those provided by random decoupling method would be too small.

The following models are considered.

(I) Y = 3W1 + 3W2 + 3W3 + 3W4 + 3W5 − 7.5X1 + ε,

(II) Y = (3W1 + 3W2 + 3W3 + 3W4 + 3W5 − 7.5X1 + ε)2,

(III) Y = exp(3W1 + 3W2 + 3W3 + 3W4 + 3W5 − 7.5X1)+ ε,

(IV) Y = 5W + 2Xp + ε,

(V) Y = (5W + 2Xp)
2 + ε,

(VI) Y = exp(5W + 2Xp)+ (5W + 2Xp)
3 + ε,

(VII) Y = 8W1 − 6W2 + 5W3 + (X1 + Xp)
2 + ε,

(VIII) Y = 2W1 − 1.5W2 + exp(Xp−1)+ 2X4
p + ε,

(IX) Y = sign(W1 − W2)exp(X1 + X2 + Xp−1 + Xp)+ ε.

We set the sample size n = 400 for all models. The random error ε follows a standard nor-
mal distribution N(0, 1) and is independent with W and X. For Model I, II and III, we
generate [W�,X�]� from N(0,�), where � = 0.5Iq+p + 0.5Jq+p, q = 5, p+ q = 2000.
We use Ip to denote the p-dimensional identity matrix, and Jp is the p × p square matrix of
all ones. Model I was also studied in Barut et al. (2016) to show that the conditional screen-
ing can recover the hidden significant predictors since Cov(Y ,X1) = 0 under the setting
in this model. For Model IV, V and VI, [W,X] are also generated from multivariate nor-
mal distribution with zeromean vector. In these threemodels, we set q = 1, p+ q = 2000,
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X1, . . . ,Xp−1 and W are all correlated with each other with correlation coefficient of 0.8,
while Xp is independent with all of them. Under this setting, we have Cov(Y ,Xi) = 4 for
i = 1, . . . , p − 1, and Cov(Y ,Xp) = 2 for Model IV. Barut et al. (2016) discussed a similar
model and show that conditional screening can reduce the false negative rate. In Model
VII,Wi, i = 1, 2, 3, are independently generated fromU[0, 1], andX followsN(0,�)with
elements σi,j = ρ|i−j| for i, j = 1, . . . , p and p = 2000. For Model VIII, [W�,X�]� are
generated fromN(0,�), where σi,j = ρ|i−j|, q = 2, p+ q = 2000. InModel IX, Var(X|W)

is dependent onW, which violates the homogeneous variance assumption. Here,W1 and
W2 are independently generated from U[0, 1], and X is generated from N(0,�). As in
Model VII, we set σi,j = ρ|i−j| for i, j = 1, . . . , p and p = 2000. However, in this model,
we consider ρ = ρ	 which takes two different values depending on the difference between
W1 andW2: ρ	 = 0 ifW1 − W2 > 0, and ρ	 = 0.5 otherwise.

Table 1 compares the performance of our method with CSIS for Model I–III. As
expected, the SAVE based method does not perform well as it could not deal with lin-
ear trends well Cook and Forzani (2009). However, both SIR and DR based conditional
forward trace pursuit methods outperform CSIS: the true model coverage rates provided
by our methods are 1, which means that our method can always include all the significant
predictors; the false positive rate and false-negative rate are also much smaller than those
of CSIS; the average model sizes are also much smaller than those of CSIS. For example,
for Model III, CR and FN from CSIS are 0.18 and 0.82, respectively, comparing with 1 (the
closer to one the better) and 0 (the smaller the better) from our method.

Table 2 gives simulation results for Model IV–VI. Still, CSIS is outperformed by our SIR
and DR based methods. Our methods can provide screening results with much smaller
model sizes, similar or better coverage rates, smaller false positive rates and/or smaller false
negative rates for all three models. The nonlinear model structure does not affect the per-
formance of our screening method, however it adversely affects the performance of CSIS
greatly for Model V and VI. Results for Model VII and VIII are given on Table 3. Model
VII has a quadratic structure in the mean function where SAVE is expected to perform
well, which agrees with the simulation results. For Model VIII, DR based method dom-
inates all the other methods. Simulation results for Model IX with different correlation
structures are shown on Table 4. We discussed before, when ρ = ρ∗, the homogeneous
variance assumption is violated. As we can see, both SIR and DR based methods still out-
perform CSIS. Though DR based method does not perform as well as SIR based method

Table 1. Results for Model I, II and III.

Model Method CR MS FP FN

I CFTP-SIR 1 8.3 0.0037 0
CFTP-SAVE 0 31.8 0.0159 1
CFTP-DR 1 32.3 0.0157 0
CSIS 1 859 0.4303 0

II CFTP-SIR 1 13 0.0065 0
CFTP-SAVE 0 30 0.0150 1
CFTP-DR 1 33 0.0165 0
CSIS 0.1 16.5 0.0082 0.9

III CFTP-SIR 1 11.2 0.005 0
CFTP-SAVE 0 32.3 0.016 1
CFTP-DR 1 33.3 0.016 0
CSIS 0.18 10.5 0.052 0.82
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Table 2. Results for Model IV, V and VI.

Model Method CR MS FP FN

IV CFTP-SIR 1 9.75 0.0044 0
CFTP-SAVE 0 27 0.0135 1
CFTP-DR 0.97 28.6 0.0138 0.03

CSIS 1 221 0.1106 0
V CFTP-SIR 1 9.2 0.0041 0

CFTP-SAVE 0.04 27.1 0.0135 0.96
CFTP-DR 1 28.1 0.0136 0
CSIS 0.01 223.94 0.1121 0.99

VI CFTP-SIR 1 9.1 0.0041 0
CFTP-SAVE 0 27.1 0.0135 1
CFTP-DR 1 28.3 0.0137 0
CSIS 0.13 209.05 0.1046 0.87

Table 3. Results for Model VII and VIII.

ρ = 0 ρ = 0.5

Model Method CR MS FP FN CR MS FP FN

VII CFTP-SIR 0 15.5 0.0078 1 0 15.15 0.0076 0.975
CFTP-SAVE 1 30.6 0.0143 0 1 30.3 0.0142 0
CFTP-DR 0.94 33.6 0.0159 0.060 1 33.6 0.0158 0
CSIS 0 67 0.0333 0.885 0 67 0.0333 0.865

VIII CFTP-SIR 0.03 11.9 0.0050 0.475 0.10 12.36 0.0056 0.450
CFTP-SAVE 0.20 27.5 0.0132 0.400 0.08 27.3 0.0132 0.465
CFTP-DR 1 32.4 0.0152 0 1 32.2 0.0151 0
CSIS 0 67 0.0332 0.810 0 67 0.0332 0.790

Table 4. Results for Model IX.

ρ Method CR MS FP FN

ρ = ρ	 CFTP-SIR 1 10.3 0.0032 0
CFTP-SAVE 0 30.9 0.0155 1
CFTP-DR 0.83 33.2 0.0148 0.075
CSIS 0.21 67 0.0325 0.455

since the constant variance condition required for DR does not hold for this model. The
false negative rates for SIR based method, DR based method, and CSIS are 0, 0.075, and
0.455 respectively; while the coverage rates for the three methods are 1, 0.83 and 0.21,
respectively. CSIS mistakenly screens out some of the significant predictors frequently. All
our simulation results suggest that DR based conditional forward trace pursuit method is
the most robust screeningmethod, while SIR based conditional forward trace pursuit con-
ditional forward trace pursuit method provides the best screening performance for most
of the time.We suggest to use SIR based screening method first, and use DR basedmethod
as a complement.

We also considered the following model whereW is not related to the response Y.

(X) Y = 5 ∗ sign(X2000)exp(X1)+ ε,

where X = (X1, . . . ,X2000) follows multivariate standard normal distribution, W and ε
are both univariate standard normal random variables. The sample size n is also set as 400.
Simulation results are given on Table 5. As expected, SAVE based method did not perform
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Table 5. Results for Model X.

Method CR MS FP FN

CFTP-SIR 0.95 7.46 5.51 0.05
CFTP-SAVE 0 26.34 26.33 1.99
CFTP-DR 0.92 25.72 23.81 0.09
CSIS 0.03 1.09 0.06 0.97

well as in Model I–III. The true model coverage rates provided by our conditional forward
trace pursuit method based on SIR and DR are 0.95 and 0.92, respectively, comparing with
0.03 from CSIS. Also the false negative rates for SIR based method, DR based method, and
CSIS are 0.05, 0.09, and 0.97, respectively, which agrees with the conclusion we draw from
previous simulation studies.

4.2. Real data analysis

In this section, we consider the aforementioned leukaemia data set, which was first studied
by Golub et al. (1999) and has become a benchmark in many gene expression studies. The
dataset consists of 72 samples and gene expression level of 7129 genes in two types of acute
leukaemia, acute lymphoblastic leukaemia (ALL) and acute myeloid leukaemia (AML).
There are 38 (27 ALL and 11 AML) training samples and 34 (20 ALL and 14 AML) testing
samples. Our goal is to select related genes and classify future patients to the two leukaemia
types based on those genes.

We standardised the gene expression dataset by centring and scaling each array with
mean 0 and standard deviation 1. The proposed conditional screening method and CSIS
are performed based on the following three different choices ofW.

• W1 ={X95735, D26156};
• W2 ={X95735, M27783};
• W3 ={X95735, MD88422}.

The genes X95735 (Zyxin) and D26156 (Transcriptional activator hSNF2b) in W1 have
empirically high correlations for the difference between patients with AML and ALL
and were used in Barut et al. (2016). The genes X95735 and M27783 (ELA2 Elastatse
2, neutrophil) in W2 are the two top-ranked genes from marginal screening SIS. For
W3, the genes X95735 and MD88422 (CYSTATIN A) were identified in Hong, Wang,
and He (2016). To compare with CSIS, we first perform our conditional forward trace
pursuit method to select genes based on the training samples givenWi, i = 1, 2, 3, respec-
tively. Next, we establish a classification rule through the logistic model based on the
genes being selected and apply this rule to the testing samples. The results are shown on
Table 6.

Conditioning on {X95735, D26156} (W1), we identified another gene Z32765 (GB
DEF = CD36 gene exon 15) using SIR-based conditional trace pursuit method. Arme-
silla, Calvo, and Vega (1996) showed that Gene CD36 was associated with acute myeloid
leukaemia. The classification rule based on these three genes can achieve 0/38 training
error rate and 1/34 testing error rate.
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Table 6. Results for Model V.

W1 W2 W3

Method Train Err Test Err Train Err Test Err Train Err Test Err

CSIS 0/38 2/34 1/38 5/34 0/38 2/34
CFTP-SIR 0/38 1/34 0/38 5/34 0/38 3/34
CFTP-SAVE 0/38 3/34 0/38 5/34 0/38 3/34
CFTP-DR 0/38 3/34 0/38 5/34 0/38 3/34

5. Conclusions

In this paper, we proposed a model-free conditional screening method to fully utilise
the prior information regarding the importance of certain predictors. Comparing to CSIS
developed by Barut et al. (2016), our method outperforms CSIS when the model structure
is nonlinear and is comparable to CSIS for generalised linear model. Numerical studies
suggest that our methods can provide screening results with much smaller model sizes,
similar or better coverage rates, smaller false-positive rates, and/or smaller false-negative
rates for nonlinear models.
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Appendix

Proof of Proposition 3.1: For any given t, we denote λt1 ≥ · · · ≥ λtdt as the nonzero eigenval-

ues for M(t) and η1(t), . . . , ηdt(t) as the corresponding eigenvectors. Let β i(t) = �
−1/2
t ηi(t) =

(βi,1(t), . . . ,βi,p(t))� for i = 1, . . . , dt. Since Y XAc |(XA,W), then we have βi,j(t) = 0, for
any j ∈ Ac. Recall that A = {1, . . . ,K}. Define βA,i(t) = (βi,1, . . . ,βi,K)� and βAc ,i(t) =
(βi,K+1, . . . ,βi,p)�, then β i,Ac(t) = 0.

Note thatM(t) = ∑dt
i=1 λ

t
iηi(t)ηi(t)

� = �
1/2
t (

∑dt
i=1 λ

t
iβ i(t)β i(t)�)�

1/2
t , then we have

tr(M(t)) = tr

⎧⎨⎩�t

⎛⎝ dt∑
i=1

λtiβ i(t)β i(t)
�
⎞⎠⎫⎬⎭ = tr

⎧⎨⎩�t,A

⎛⎝ dt∑
i=1

λtiβA,i(t)βA,i(t)
�
⎞⎠⎫⎬⎭ . (A1)

SinceMA(t) = Var{E(Zt
A|Yt ∈ Jtht)} = �

−1/2
A,t Var{E(Xt

A|Yt ∈ Jtht)}�
−1/2
A,t , we have

tr(MA(t)) = tr
{
�−1

A,tVar{E(Xt
A|Yt ∈ Jtht)}

}
. (A2)

Note that

Var{E(Xt|Yt ∈ Jtht)} = �
1/2
t M(t)�1/2

t = �t

⎛⎝ dt∑
i=1

λtiβ i(t)β i(t)
t

⎞⎠�t

=
(

�A,t �AAc ,t
�AcA,t �Ac ,t

)(∑dt
i=1 λ

t
iβA,i(t)βA,i(t)� 0

0 0

)(
�A,t �AAc ,t

�AcA,t �Ac ,t

)
. (A3)

From A3, it is obvious that Var{E(Xt
A|Yt ∈ Jtht)} = �A,t(

∑dt
i=1 λ

t
iβA,i(t)βA,i(t)t)�A,t. Combined

withA1 andA2, we have tr(MA(t)) = tr(MI(t)). Similarly, we have tr(MA(t)) = tr(MF (t)) for any
F such thatA ⊆ F . Then the conclusion follows. �

Proof of Theorem 3.1: From Proposition 3.1, we know that tr(MA) = tr(MF ) for anyF such that
A ⊆ F . Then the first part of Theorem 3.1 follows.
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For any fixed t, if Condition 5 holds, we have E(xtj |Xt
F ) = Cov(Xt

F ,Xt
j )�

−1
F ,tX

t
F . Let |F | denote

as the cardinality of F , then we construct two (|F | + 1)× (|F | + 1)matrices At and Ct as

At =
(

I|F | 0
Cov(Xt

F ,Xt
j )�

−1
F ,t 1

)
and Ct =

(
�F ,t 0
0 σ 2

j|F ,t

)
,

where σ 2
j|F ,t = Var(Xt

j|F ) with Xt
j|F = Xt

j − E(Xt
j |Xt

F ). Then we have that

AtXt
F∪j =

(
Xt
F

Xt
j|F

)
and AtUF∪j,ht =

(
UF ,ht

E(Xt
j|F |Yt ∈ Jtht)− E(Xt

j|F )

)
.

From the definition of Xt
j|F , it is obvious that Cov(Xt

j|F ,Xt
F ) = 0. Then we have Var(AtXt

F∪j) =
At�F∪j,tA�

t = Ct. Therefore, we have �−1
F∪j,t = AtC−1

t A�
t . Then we can rewrite tr(MF∪j(t)) as

tr(MF∪j(t)) = tr

⎧⎨⎩�
−1/2
F∪j,t

⎛⎝ Ht∑
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phtUF∪j,htU
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Then we have tr(MF∪j)− tr(MF ) = ET{tr(MF∪j(t))− tr(MF (t))} = ET(
∑Ht

ht=1 pht(γ
t
j|F ,ht)

2).
�

Proof of Proposition 3.2: Denote �F1F2,t = Cov(Xt
F1
,Xt

F2
) and �F1F2,t = Cov(XF1 ,XF2) for

any F1,F2 ⊆ I . Since we suppose � = �t, then we have that �F1F2,t = �F1F2,t. For any j ∈
F c ∩ A, we have

σ 2
j|F
(
tr(MF∪j)− tr(MF )

) = ET{Var(E(Xj|F |Y))}
= (− �F j�

−1
F , 1
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F , 1

)�. (A4)

For simplicity, we suppose the first |F | + 1 elements ofX is (XF ,Xj)
�, then P in A4 can be denoted

as P = (I|F |+1, 0(|F |+1)(p−|F |−1)). Since M = ET{Var(E(Zt|Yt ∈ Jtht))} = ∑d
i=1 λiηiη

�
i , and β i =
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It follows that (− �F j�
−1
F , 1

)
P�β i = (− �F j�
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F , 1
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P�(F∪j)Iβ i
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β i. (A6)

Let β i,F = {βi,j, j ∈ F}. Since (�jI − �jF�−1
F �FF )β i = 0 and β i,F c∩Ic = 0, we have(− �F j�
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F , 1

)
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F �FF c

)
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= (
�j(F c∩A) − �jF�−1

F �F(F c∩A)
)
β i,F c∩A, (A7)

for any i = 1, . . . , d. From A4, A5 and A7, it follows that
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)
β i,F c∩A}2.

Note that ∑
j∈F c

{(�j(F c∩A) − �jF�−1
F �F(F c∩A)

)
β i,F c∩A}2

= β�
i,F c∩A

(
�(F c∩A) − �(F c∩A)F�−1

F �F(F c∩A)
)2

β i,F c∩A
and

λmin
(
�(F c∩A) − �(F c∩A)F�−1

F �F(F c∩A)
)

= λ−1
max{

(
�(F c∩A) − �(F c∩A)F�−1

F �F(F c∩A)
)−1}

≥ λ−1
max(�

−1) = λmin.

Then we have that

max
j∈F c∩A

σ 2
j|F
(
tr(MF∪j)− tr(MF )

) ≥ |F c ∩ A|−1
∑

j∈F c∩A
[σ 2

j|F
(
tr(MF∪j)− tr(MF )

)
]

= |F c ∩ A|−1
d∑

i=1
λiβ

�
i,F c∩A

(
�(F c∩A) − �(F c∩A)F�−1

F �F(F c∩A)
)2

β i,F c∩A

≥ |F c ∩ A|−1
d∑

i=1
λiλ

2
min
(
�(F c∩A) − �(F c∩A)F�−1

F �F(F c∩A)
)2

β�
i,F c∩Aβ i,F c∩A

≥ λdλmin|F c ∩ A|−1
d∑

i=1
β�
i,F c∩Aβ i,F c∩A ≥ λdλ

−1
maxλminβ

2
min. �

To prove Theorem 3.2, we need the following lemmas.

Lemma A.1: Let M̃ = 1/ln
∑ln

m=1M(tm), ψht = p−1/2
ht (I(Yt ∈ Jtht)) and ζht = �−1

t E(Xtψht), then

we have tr(M̃) = (H − 1)− 1
ln

∑ln
m=1

∑Htm
htm=1 E(ψhtm − ζ�

htm
Xtm)2, where H = 1/ln

∑ln
m=1Htm.

Proof of Lemma A.1: For any tm,m = 1, . . . , ln and htm , htm = 1, . . . ,Htm ,

E(ψht − ζ�
htm

Xtm)2 = E(ψ2
ht)− 2E(ψhtm ζ

�
htm

Xtm)+ E((ζ�
htm

XtmXtm�
ζhtm )

= E(ψ2
ht)− ζ�

htm
�tζhtm = (1 − pht)− p−1

ht E{Ztm�I(Yt ∈ Jtht)}E{ZtmI(Yt ∈ Jtht)}.
Then we have that

tr(M̃) = 1/ln
ln∑

m=1
tr(M(tm)) = 1/ln

ln∑
m=1

Htm∑
htm=1

p−1
ht E{Ztm�I(Yt ∈ Jtht)}E{ZtmI(Yt ∈ Jtht)}

= (H − 1)− 1
ln

ln∑
m=1

Htm∑
htm=1

E(ψhtm − ζ�
htm

Xtm)2. �
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Lemma A.2: Let DF∪j = tr(MF∪j)− tr(MF ) and D̂F∪j = tr(M̂F∪j)− tr(M̂F ). Suppose |F | =
O(nb0+b2) and Condition 3.1 holds, there exists some constant d0 such that D̂F∪j − DF∪j ≤
d0|F |

√
logp/n1−b3 with probability tending to 1.

Proof of Lemma A.2: Define D̃F∪j = tr(M̃F∪j)− tr(M̃F ), then we have that

D̂F∪j − DF∪j = [D̂F∪j − D̃F∪j] + [D̃F∪j − DF∪j]. (A8)

Form Lemma 7 in Yu et al. (2016), we know that V̂ar{E(Xtm
j|F )} − Var{E(Xtm

j|F )} = O(|F |√
logp/n1−b3) for any given tm, m = 1, . . . , ln. Furthermore, from the proof of Lemma 3 in Jiang

and Liu (2013), we have σ̂ 2
j|F ,t − σ 2

j|F ,t = O(|F |
√
logp/n1−b3). Then we have that{

tr(M̂F∪j(tm))− tr(M̂F (tm))
}− {

tr(M̃F∪j(tm))− tr(M̃F (tm))
}

= σ̂ 2
j|F ,tV̂ar{E(Xtm

j|F )} − σ 2
j|F ,tVar{E(Xtm

j|F )}
= {

σ̂ 2
j|F ,tV̂ar{E(Xtm

j|F )} − σ̂ 2
j|F ,tVar{E(Xtm

j|F )}
}

− {
σ̂ 2
j|F ,tVar{E(Xtm

j|F )} − σ 2
j|F ,tVar{E(Xtm

j|F )}
}

= O
(|F |

√
logp/n1−b3

)+ O
(|F |

√
logp/n1−b3

) = O
(|F |

√
logp/n1−b3

)
.

Hence, we have that

D̂F∪j − D̃F∪j

= 1
ln

ln∑
m=1

[{
tr(M̂F∪j(tm))− tr(M̂F (tm))

}− {
tr(M̃F∪j(tm))− tr(M̃F (tm))

}]

= 1
ln

ln∑
m=1

O
(|F |

√
logp/n1−b3

) = O
(|F |

√
logp/n1−b3

)
.

From this, it is obvious that there exists some constant d0 such that D̂F∪j − DF∪j ≤
d0|F |

√
logp/n1−b3 with probability tending to 1. �

Proof of Theorem 3.2: Firstly, we prove that CFTPmethod can select in all |A| important predictors
within [2Ha−1

0 a1nb0+b2 ] steps by showing that at least one important predictor in the model within
[2Ha−1

0 nb0 ] steps since |A| ≤ a1nb2 under Condition 3.1. Without loss of generality, we just show
that at least one important is selected in the model within the first [2Ha−1

0 nb0 ].
Recall that Fk is the index set after kth step, we let Q(k) = tr(M̂Fk)− tr(M̂Fk−1). We assume

that no important is selected in the model within the first [2Ha−1
0 nb0 ] steps. From lemma A.2 and

Condition 3.1, we have that

Q(k) ≥ 2−1(tr(MFk)− tr(MFk−1)− d0|Fk|
√
logp/n1−b3

)
≥ 2−1(a0n−b0 − d02Ha−1

0 a1nb0+b2
√
logp/n1−b3

) → 2−1a0n−b0

if Fk ∩ A = ∅ for any k = 1, . . . , [2Ha−1
0 nb0 ].

Hence, we have that

[2Ha−1
0 nb0 ]∑
k=1

Q(k) ≥ [2Ha−1
0 nb0 ] × 2−1a0n−b0 ≥ H.
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However, from Lemma A.1, we know

[2Ha−1
0 nb0 ]∑
k=1

Q(k) = tr(M̂F[2Ha−1
0 nb0 ]

) ≤ H − 1.

Therefore, this implies at least one important predictor is selected in the model within the first
[2Ha−1

0 nb0 ] steps.Moreover, follow the proof of Theorem 5.2 in Yu et al. (2016) and the proof
of Theorem 2 in Wang (2009), it is easy to prove that Pr(A ⊂ Fm̂) → 1, and the details are
omitted. �
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