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a b s t r a c t

We consider a studywhichmonitors the occurrences of a recurrent
event for n subjects or units. Recurrent event data have many
features which are worth looking into in the estimation process.
In this manuscript, we consider the problem of estimating the
distribution function of the inter-event times by taking into
account two of these features: correlation among the inter-event
times and the dependence and informative aspect of the right-
censoring random variables. The parametric approach to the
problem has been dealt with in Zamba and Adekpedjou (2011)
[25]. The semiparametric approach is considered in this article. We
derive a Kaplan–Meier type estimator of the distribution function
under the gamma frailty model and an informative monitoring
model for recurrent events by extending an approach due to Sellke
(1988) [20]. The sampling distribution properties of the proposed
estimators are examined through simulation studies. Furthermore,
the performance of our proposed estimator is assessedwith respect
to the existing ones. The procedures are applied to a recurrent
event dataset.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

Recurrent event data is a multivariate lifetime data where the event of interest recurs a random
number of times over a random observation window. Recurrent events are observed in many disci-
plines such as biomedical, economic, engineering, actuarial science, and social sciences applications
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to name but a few. Examples of such events include recurrent hospitalization of patients with chronic
disease, repeated failure of machines in engineering, habitual claim filing in insurance, and recurrent
economic recessions. It is therefore of interest to develop stochastic models for analyzing recurrence
behavior. Recognizing this need, Peña and Hollander [16] introduced a flexible class of models for
analyzing these types of data. Their proposed models incorporate most of the different aspects of re-
current event data, such as the impacts of event accumulation, the effects of covariates, the impacts
of performed intervention after each event occurrence, the impacts of informative and dependent
censoring, and the impacts of latent or unobserved variables which induce a correlation among inter-
event times.

Estimation of the distribution function governing the time to occurrence of a recurrent event has
been widely studied over the past several decades [19,24,6,7,23,22]. For instance, [19], assuming the
inter-event times represent an independent and identically distributed (i.i.d.) sample from a fixed
distribution, propose a generalization of the Kaplan–Meier estimator (cf. [10]) and showed that it
has the nonparametric maximum likelihood estimator property under the i.i.d. assumption on the
gap time. Furthermore, they show that their estimator is inconsistent in the case where the inter-
occurrence times satisfy a multiplicative frailty model. Their proposed estimator does not account
for the effect of informative monitoring. Wang and Chang [24] propose an estimator that is valid
for both i.i.d. and correlated inter-event times, but their estimator ignores informative monitoring
(a point to which we return later) and accounts for the right-censoring random variables only when a
unit does not have a complete observation. Consequently, information is ignored. This work proposes
and investigates the properties of an estimator that utilizes all the right-censored observations on
all subjects whether or not a unit has a complete observation. Other works in the area include that
of [12,8]. In [12], the dependence between events and risk of deathwasmodeled using a shared frailty
model. In [8], association between the recurrent events process and the failure timewasmodeledwith
a common subject-specific latent variable. For a detailed review of literature on the topic, we refer the
reader to [4].

Two very important features of recurrent event data are: (1) informativeness and dependence of
the right-censoring random variable and (2) a possible correlation among inter-event times. These
two topics are discussed, respectively. Denote by Tij = Sij − Si,j−1, i = 1, . . . , n; j = 1, 2, . . . the
inter-event times, where Sij are the calendar times, with Si0 = 0. The Tijs are assumed to be i.i.d.
(for now) with distribution function, F . Ki is the random number of event recurrences observed over
the observation window [0, τi]. Therefore, the random observable for subject i is represented by the
vector Di = (Ki, τi, Ti1, . . . , TiKi , τi − SiKi). The vector (Ti1, . . . , TiKi , TiKi+1) satisfies the sum-quota
constraint given by

Ki
j=1 Tij ≤ τi <

Ki
j=1 Tij + Ti,Ki+1. Hence, the random observation window [0, τi]

is informative of the inter-event times distribution. Furthermore, the time after which they have been
censored defines the duration of their monitoring. Therefore, the recurrent event data accrual scheme
has both an informative censoring mechanism as well as a dependent censoring structure which
we refer to as informative monitoring. In the single event setting, informative censoring occurs when
the observation window is terminated by something other than the event of interest, usually called
competing risks. Note that the two concepts coincide in the single event setting. Now, the assumption
that the Tijs are i.i.d. is sometimes a restrictive assumption, especially in biomedical studies where the
Tijs are more likely to be correlated. This correlation induces a random effect component inherent to
each subject. If these two features are not properly accounted for, erroneous conclusions can bemade
on the estimation of model parameter. [5,21,17,4].

To account for informative monitoring, we consider the estimation of the distribution function
of the inter-event times F when there is an additional structure in the model through a relationship
between F andG, whereG is the distribution of τ . The relationship postulates that the existence β > 0
such that 1− G = (1− F)β . This model was introduced in [11] for the single event setting and is well
known in the literature as the Koziol–Green (KG)model. In the randomcensorshipmodel (single event
setting), β is referred to as the censoring parameter since the probability of being censored under the
model is β/(1 + β). The KG model for recurrent events was introduced in [4] and was referred to
as the generalized KG model. Furthermore, β was referred to as the monitoring parameter since it
determines the length of the monitoring period relative to the inter-event times. We acknowledge
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that the KG model is a strong assumption connecting monitoring time and gap time distributions.
However, just as in the single event setting, the utility of the generalized KGmodel is not primarily to
provide a practical and realistic model, but rather to provide amedium inwhich to examine analytical
properties of inference procedures with recurrent event data. To model the association among the
inter-event times, we use the frailtymodel. Frailties are unobservable random effect components that
are used in survival analysis. A specific model for correlated recurrence times is the multiplicative
frailty model which is described in detail in Section 2.1.

The joint analysis of correlated recurrence time and informative monitoring when the distribution
function of the inter-event time is assumed to be fully parametric has been considered in [25]. The
current manuscript deals with the semiparametric approach and aims to develop a semiparametric
estimator of the inter-event times distribution under the generalized KG and multiplicative
frailty models. Furthermore, the performance of the proposed estimator with respect to a fully
nonparametric estimator in [19] as well as the estimator in [3] is assessed. The main contribution of
this manuscript is the introduction of informative monitoring in recurrent event models with frailty.
This is in addition to the right-censored gap times which are always informative of Ti,Ki+1 .

We now outline the contents of this manuscript. In Section 2, we describe the multiplicative
gamma frailty model, the random entities and the relevant stochastic processes which are used to
derive the proposed estimator in Section 2.3. We adopt the framework of analyzing failure time data
introduced by Aalen [1] using counting processes andmartingale theory. In Section 3, we outline steps
for estimating the frailties and the model parameters. Finally, Sections 4 and 5 summarize the results
of simulation studies, and illustrate the estimation procedures using the gastroenterology data of [2].

2. Semiparametric estimation

2.1. Correlated recurrence time data and random entities

Consider n experimental units with the ith unit monitored for occurrence of a recurrent event
over a period [0, τi]. The τi’s are right-censoring random variables, i.i.d. with distribution function
G(t) = P(τi ≤ t) and survivor function Ḡ ≡ 1 − G. For each unit i, observe events at calendar times
0 = Si0 < Si1 < · · · with Ki = max{k ∈ N : Sik ≤ τi} the total number of event occurrences per unit.
Denote by Tij ≡ Sij − Sij−1 the successive inter-event times. These are assumed to represent an i.i.d.
sample from the distribution function F0. Recall, the random observable for the ith subject is

Di = (Ki, τi, Ti1, . . . , TiKi , τi − SiKi), i = 1, 2, . . . , n. (1)

To describe correlated recurrence times, we assume that there exists a per unit random variable Zi,
i.i.d. with distribution function H(·|θ) where θ ∈ Θ ⊆ ℜ

p. If the Zis are known quantities, then the
Tijs are assumed to be i.i.d. with distribution function F having a hazard rate and survivor function
given by

λF (t|Zi) = Ziλ0(t) and F̄(t|Zi = zi) = {F̄0(t)}zi = {exp(−Λ0(t))}zi , (2)

respectively, where λ0(t) is the baseline hazard rate function, Λ0(t) is the cumulative baseline
hazard rate function, and F̄0(t) is the baseline survivor function. However, since the Zis are random
quantities, they will be estimated using Eq. (15). The frailty distribution considered in this work is a
gamma distribution with equal scale and shape parameters α. The parameter α controls the degree
of association among the inter-event times. In particular, if α → ∞, we obtain the estimator in the
i.i.d. setting. The equal parameters restriction is imposed to ensure model identifiability. Thus, under
the gamma frailty model, the common conditional survivor function is given by

F̄(t|Z = z) = {F̄0(t)}z = {exp(−Λ0(t))}z =


α

α + Λ0(t)

α

. (3)

Note that the observable random vector for subject i with correlated recurrence times is still the
observable in (1) since the Zis are not observed.
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2.2. Stochastic process formulation

For more details on what follows, we refer the reader to [18,19]. (Ω, F , P) is the probability space
onwhich all random entities are defined. For i = 1, 2, . . . , n; j = 1, 2, . . . , and s ∈ ℜ, let the calendar
time processes be defined by

NĎ
i (s) =

∞
j=1

I{Sij ≤ s ∧ τi}, Y Ď
i (s) = I{τi ≥ s}, and Nτ

i (s) = I{τi ≤ s}. (4)

The processes in (4) counts the number of failures for unit i; indicates whether unit i is still under
observation at time s; and indicates if unit i is past its monitoring time at time s, respectively. We
augment our probability space by the natural filtration F = {Fs : s ≥ 0}, where Fs is the history
of the process up to time s. For each s, define the backward recurrence time via Ri(s) = s − SiNĎ

i (s−)
.

This expression indicates the length of time elapsed since the last event occurrence. This is an F-
adapted and left-continuous process, hence F-predictable. Assuming the generalized KGmodel holds,
notice that the hazard functions of τi and Tij under the correlated recurrent event data are given by
ΛG(·) = βzΛ0(·) and ΛF (·) = zΛ0(·), respectively. If the frailty model holds, conditional on Zi = zi,
let

AĎi (s|zi) =

 s

0
Y Ď
i (w)ziλ0(Ri(w))dw and Aτ

i (s|zi) =

 s

0
Y Ď
i (w)βziλ0(w)dw. (5)

From stochastic integration theory, AĎi (s|zi) and Aτ
i (s|zi) are the compensators of NĎ

i (s) and Nτ
i (s),

respectively. Therefore,

MĎ
i (s|zi) = NĎ

i (s) − AĎi (s|zi) and Mτ
i (s, β|zi) = Nτ

i (s) − Aτ
i (s, β|zi) (6)

are, for each i, square-integrable martingales with respect to the filtration F. Observe that the
first process in (6) is a calendar time process. For estimating Λ0(t), gap time processes should
be considered. Since the calendar time processes involve the random argument Ri(w), the usual
martingale theory can not be directly applied. As such, the processes in (6) will be transformed by
extending the idea of [20] to obtain processes that make the connection between calendar time and
gap time, thereby enabling the use ofmartingalemethods. Those transformations are described below.

2.3. Method of moment estimation

Let (s, t) ∈ [0, ∞)2, where s represents calendar time and t represents gap time. Define the process
Zi(s, t) = I(Ri(s) ≤ t)which indicates whether at most t units of time has elapsed since the last event
recurrence. Following [18], define the doubly-indexed processes as

Ni(s, t) =

 s

0
Zi(w, t)dNĎ

i (w),

Ai(s, t|zi) =

 s

0
Zi(w, t)dAĎi (w|zi),

Mi(s, t|zi) =

 s

0
Zi(w, t)dMĎ

i (w|zi).

It can be shown that Ai(s, t|zi) =
 t
0 Yi(s, w)ziλ0(w)dw (cf. Proposition 1 of [18]), where

Yi(s, t) =

NĎ
i (s−)
j=1

I{Tij ≥ t} + I

(s ∧ τi) − SiNĎ

i (s−)
≥ t


. (7)

The process Ni(s, t) represents the number of events that have occurred on or before calendar time s
for the ith subject and whose inter-event times are at most t , whereas the process Yi(s, t) represents
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the generalized at-risk process. Furthermore, since the components of Yi(s, t) are i.i.d. processes, we
have (cf. Proposition 2, [19])

sup
s∈[0,t⋆]

1n
n

i=1

Yi(s, t) − y(s, t)

 = op(1),

as n → ∞, where y(s, t) = E{Y1(s, t)} = F̄(t)Ḡ(t) + F̄(t)I{t ≤ s}
 s
t ρ(w − t)dG(w) and

ρ(t) is the renewal function of F0. Using Proposition 1 of [18], we have the identity Mi(s, t|zi) =

Ni(s, t) − Ai(s, t|zi) = Ni(s, t) −
 t
0 Yi(s, w)ziλ0(w)dw. Letting z = (z1, . . . , zn), we define the

aggregated processes

M(s, t|z) =

n
i=1

Mi(s, t|zi) and Mτ (t, β|z) =

n
i=1

Mτ
i (t, β|zi).

It follows that, for a given study period [0, s] and a fixed gap time t , a method of moments estimator
of Λ0(t), given the frailties z1, . . . , zn, denoted by Λ̂0(s, t|β̂, z1, . . . , zn) is given by

Λ̂0(s, t|β̂; z) =

 t

0
J(s, w; β̂|zi)


N(s, dw) + Nτ (dw)

n
i=1

zi(Yi(s, w) + β̂Y τ
i (w))


, (8)

where J(s, w; β̂|zi) = I{zi(Yi(s, w) + β̂Y τ
i (w) > 0)} is a bounded left-continuous predictable process

and β̂ is the maximum likelihood estimate of β . The maximum likelihood estimate of β is obtained
using a procedure wewill describe in Section 4. Note that Λ̂0(s, t|β̂; z) is a semiparametric maximum
likelihood estimator and lim

s→∞
Λ̂0(s, t|β̂; z) = Λ̂0(t|β̂; z). Moreover, the estimator is a generalized

version of the estimator obtained in Section 4.2 of [19]. As zi
p

→ 1 (here
p

→ denotes convergence
in probability), which corresponds to the frailty-less case (the i.i.d. case), we recover the estimator
in [3], whereas, if β → 0, we recover the estimator in [19]. Notice here also that at the degenerate
case, the reducedmodel still accounts for informative monitoring because of the presence of the term
β̂I{τi ≥ s}. With the choice of gamma distribution with equal parameters for the frailties, and from
(3), the common marginal survival function is given by

ˆ̄F(s, t|β̂; z) =


α̂

α̂ + Λ̂0(s, t|β̂; z)

α̂

, (9)

where α̂ is the MLE of α obtained via the procedure described in Section 4. The asymptotic behavior
of Λ̂0(t|β̂; z) can be obtained by extending the results of [13] to recurrent events. We defer this
development to futurework. For now,we are content to investigate its finite sample behavior through
simulation in Section 5.

In the upcoming sections, denote by Λ̌(s, t|β̌) the estimator derived under informativemonitoring
in the i.i.d. case, that is with Zi ≡ 1.

2.4. Inconsistency of Λ̌(s, ·|β̌).

The product-limit estimator Λ̌(s, t|β̌) in [3] was developed under the i.i.d. assumption for the
recurrence times and is expected to yield a biased estimator of the marginal survivor function
for correlated recurrence times. Peña et al. [17] addressed the consequences of analyzing datasets
generated from a model with frailty using procedures developed from the model without frailty
(under-specification) and vice versa. They have shown, using a simulation study that under-
specification could lead to non-negligible systematic biases in the resulting estimators.

In [3], a semiparametric estimator of the cumulative hazard without frailty was given by

Λ̌(s, t|β̌) =

 t

0
J(s, w; β̌)


N(s, dw) + Nτ (dw)

Y (s, w) + β̌Y τ (w)


, (10)
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where J(s, t; β̌) = I{Y (s, w) + β̌Y τ (w) > 0} and β̌ is the MLE under the i.i.d. assumption. The
following result characterizes the asymptotic behavior of Λ̌(s, t|β̌)when the inter-event times satisfy
the frailty model. In what follows, for s → ∞, let Λ̌(s, t|β̌) ≡ Λ̌(∞, t|β̌) ≡ Λ̌(t).

Theorem 1. Let t⋆ > 0 and t ≤ t⋆. Assume E{(Y (s, t⋆) + βY τ (t⋆))/n} > 0 and Λ(t⋆) < ∞. Then,
under the generalized KG model and the frailty model, Λ̌(t)

p
→
 t
0 φ(∞, w)λ0(w)dw as n → ∞, where

φ(∞, w) =
E{Z1(y(w|F̄0

Z1
) + β F̄0(w)βZ1)}

E{y(w|F̄0
Z1

) + β F̄0(w)βZ1}
.

Proof. The expression in (10) can also be written as

Λ̌(s, t|β̌) =

n
i=1

 t

0

J(s, w; β̌)(Mi(s, dw|Zi) + Mτ
i (dw|Zi))

Y (s, w) + β̌Y τ (w)

+

n
i=1

 t

0

Zi{Yi(s, w) + β̌Y τ
i (w)}

Y (s, w) + β̌Y τ (w)
λ0(w)dw. (11)

Proposition 1 of [19] can be used to show that the first term in the right hand side of (11) is a zero-mean
square-integrablemartingalewith respect to Funder the frailtymodel. Next, consider the second term
in the right hand side of (11). We have

n
i=1

 t

0

Zi(Yi(s, w) + β̌Y τ
i (w))

Y (s, w) + β̌Y τ (w)
λ0(w)dw =

n
i=1

 t

0

{Zi(Yi(s, w) + β̌Y τ
i (w))}/n

{Y (s, w) + β̌Y τ (w)}/n
λ0(w)dw.

From the Weak Law of Large Numbers and the consistency of β̌ (cf. [3]), we obtain
n

i=1

 t

0

Zi{Yi(s, w) + β̌Y τ
i (w)}/n

{Y (s, w) + β̌Y τ (w)}/n
λ0(w)dw

p
→

 t

0

E{Z1(Y1(s, w) + βY τ
1 (w))}

E{Y1(s, w) + βY τ
1 (w)}

λ0(w)dw,

Let s = ∞ and set Y (∞, t) ≡ Y (t). Using the iterated expectation, we have E{Z1Y1(w)} =

E{Z1E(Y (w)|Z1)} = E{Z1y(w|F̄0
Z1

)} where y(w|F̄0
Z1

) = E(Y (w)|Z1) and E{Z1Y τ
1 (w)} =

E{Z1F̄0(w)βZ1}. To find y(t|F̄0
Z1

), apply Proposition 2 of [19] to obtain

y(t|F̄0
Z1

) = F̄ Z1
0 (t)Ḡ(t−) + F̄(t)


∞

t
ρ(w − t|F̄0

Z1
)dG(w),

where Ḡ(w) = F̄ Z1β(w) is the survival function for the monitoring time given Z1 and ρ(·|F̄0
Z1

) is the
renewal function associated with the conditional gap time survival function F̄(·|Z1) = F̄0(·)Z1 . �

2.5. Theoretical variance of Λ̂0(s, ·|β̂, z)

Given z, β and for fixed t , the covariation process of the hat estimator Λ̂0(s, ·)|β̂, z is:

⟨Λ̂0(·, t|β̂, z), Λ̂0(·, t|β, z)⟩(·) =

 t

0

J(s, w|β, z)
n

i=1
zi{Yi(s, w) + βY τ

i (w)}

λ0(w)dw.

For fixed (s, t), under the gamma frailty model, let K(Λ(s, t), α) =


1 +

Λ(s,t)
α

−α

. We can rewrite
the hat estimator as:

ˆ̄F(s, t|α, β, z) = K(Λ0(s, t), α) + K ′(Λ∗(s, t), α)

Λ̂(s, t|β, z) − Λ0(s, t)


,
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where Λ∗(s, t) ∈


Λ̂(s, t|β, z), Λ0(s, t)


and K ′(Λ∗(s, t), α) is the partial derivative of K(·) with

respect to Λ(s, t) for fixed (s, t). Hence,

V ( ˆ̄F(s, t|α, β, z)) = K ′(Λ⋆(s, t), α)2
 t

0

J(s, w|β, z)
n

i=1
zi{Yi(s, w) + βY τ

i (w)}

λ0(w)dw.

Consequently, the asymptotic variance of
√
nV ( ˆ̄F(s, t|α, β, z)) becomes

V (
√
n ˆ̄F(s, t|α, β, z))

p
→ K ′(Λ0(s, t), α)2

 t

0

P

Z1Y1(s, w) + Z1βY τ

1 (w) > 0


E{Z1(y(w|F̄0
Z1

) + β F̄0(w)βZ1)}
λ0(w)dw,

where

y(w|F̄0
Z1

) = F̄0
Z1

(w)F̄0(w)Z1β + F̄0
Z1

(w)


∞

w

ρ(v − w|F̄0
Z1

)dG(v).

Using similar arguments, the asymptotic variance of the Kaplan–Meier estimator with frailty [19]
√
nV ( ˜̄F(s, t|α, β, z)) under the KG model is

V (
√
n ˜̄F(s, t|α, z))

p
→ K ′(Λ0(s, t), α)2

 t

0

P (Z1Y1(s, w) > 0)

E{Z1y(w|F̄0
Z1

)}
λ0(w)dw. (12)

3. Estimation of frailties and model parameters

As developed in Section 2.3, the nonparametric estimator of the cumulative hazard under
informative monitoring and the frailty models is given by

Λ̂0(s, t|β̂; z) =

 t

0
J(s, w; β̂)


N(s, dw) + Nτ (dw)

n
i=1

zi{Yi(s, w) + β̂Y τ
i (w)}


. (13)

Because the Zis are unobservable, Λ̂0(s, t|β̂, z1, . . . , zn) cannot be computed. The goal of this section
is to obtain an estimate of the unobserved frailties. We begin with the full data conditional likelihood
over [0, s]. Following [9], we have

L(s, β|z) =

n
i=1

s
w=0

{ziY
Ď
i (w)λ0(Ri(w))dw}

dNĎ
i (w)

{1 − ziY
Ď
i (w)λ0(w)dw}

1−dNĎ
i (w)

×

s
w=0

{ziβY Ď
i (w)λ0(w)dw}

dNτ
i (w)

{1 − ziβY Ď
i (w)λ0(w)dw}

1−dNτ
i (w).

Applying Bayes’ rule by multiplying the likelihood L(s, β|z) by the joint density of z = (z1, . . . , zn)
(each zi has density ααzα−1

i exp{−αzi}/Γ (α)), we obtain

L(s, β; z) = L(s, β|z) ×

n
i=1

f (zi)

=

n
i=1

s
w=0

{ziY
Ď
i (w)λ0(Ri(w))dw}

dNĎ
i (w)

s
w=0

{ziβY Ď
i (w)λ0(w)dw}

dNτ
i (w)

× exp

−zi

 s

0
Y Ď
i (w){λ0(Ri(w)) + βλ0(w)}dw


×

ααzα−1
i exp(−αzi)

Γ (α)
,
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which can also be written

L(s, β; z1, . . . , zn) =

n
i=1

βNτ
i (s) αα

Γ (α)
z
NĎ
i (s)+Nτ

i (s)+α−1
i

×

s
w=0

{Y Ď
i (w)λ0(Ri(w))dw}

dNĎ
i (w)

s
w=0

{βY Ď
i (w)λ0(w)dw}

dNτ
i (w) (14)

× exp

−zi


α +

 s

0
Y Ď
i (w){λ0(Ri(w)) + βλ0(w)}dw


.

The likelihood in (14) is proportional to that of a gamma distribution with shape parameter NĎ
i (s) +

Nτ
i (s) + α and scale parameter α +

 s
0 Y Ď

i (w){λ0(Ri(w)) + βλ0(w)}dw. As a consequence, if we let
Pi = {Y Ď

i (w),NĎ
i (w),Nτ

i (w); w ∈ [0, s]}, i = 1, . . . , n, then

E {Zi|α, β, Λ0(·), Pi} =
NĎ

i (s) + Nτ
i (s) + α

α +
 s
0 Y Ď

i (w){λ0(Ri(w)) + βλ0(w)}dw
. (15)

To obtain an estimate of the association parameter α and the monitoring parameter β one can
integrate out z1, . . . , zn in L(s, β; z) and the corresponding marginal likelihood function is

L(s; β, α) =

n
i=1

Γ (NĎ
i (s) + Nτ

i (s) + α)

Γ (α)

×


α

α +
 s
0 Y Ď

i (w){λ0(Ri(w)) + βλ0(w)}dw

NĎ
i (s)+Nτ

i (s)+α

×

s
w=0


Y Ď
i (w)λ0(Ri(w))

α

dNĎ
i (w) s

w=0


Y Ď
i (w)λ0(w)

α

dNτ
i (w)

βNτ
i (s). (16)

L(s; β, α) can be maximized with respect to α, β , and λ0(·) by mimicking the expectation and
maximization (EM) algorithm for missing data problems as done in [15] for gamma frailty models.
The next section details this application of the EM algorithm.

4. Computational forms

In this section, we will show how our estimator is implemented using any recurrent event data.
Let U =


uj

be a Q × 1 vector of pooled gap times and monitoring period given by,

Ut
=

n
i=1


τi, Ti1, Ti2, . . . , TiKi


.

Furthermore, define the Q × n at-risk matrices by YĎ(U) =


yĎij


and Y(s,U) =

yij(s)


, where

yĎij = Y Ď
i (uj) is defined in (4) and yij(s) = Yi(s, uj) is defined in (7). Define the Q × 1 jump vectors

d(s) =

dj(s)


=

N(s, ∆uj)


and dτ

=

dτ
j


=

Nτ (∆uj)


, where

dj(s) =

n
i=1

NĎ
i (s)

m=1

I

Tim = uj


and dτ

j =

n
i=1

I

τi = uj


.

Given an n×1 frailty vector Z and the parameter β , the computational form of the cumulative hazard
in (13) for t ∈ U is Λ̂0(s, t|β, z) =


j|uj≤t λ̂0(s, uj|β, z), where

λ̂0(s, uj|β, z) =
dj(s) + dτ

j
n

i=1
zi

yij(s) + βyĎij

 .
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The reason for estimating the cumulative hazard using this approach is that the parametric estimation
was not amenable to any closed-formmathematical estimation. Themodified EM algorithm proposed
by Peña et al. [19] is implemented in the following way to obtain (α̂, β̂). Start with the initial values:

α(0)
= 1, β(0)

= 0.001, and Z(0)
= {Zi = 1 : i = 1, 2, . . . , n} .

Consider the whole recurrent data set by letting s = s∗ = max(U). The E-step involves generating the
n×1 vector of posterior mean frailties given previous values of (α, β); that is, Z(q+1)

=


Z (q+1)
i


, i =

1, . . . , n, where

Z (q+1)
i =

Ki + 1 + α(q)

α(q) +

Q
j=1


yij(s∗) + β(q)yĎij


λ̂0(s∗, uj|β(q), Z(q))

.

In the M-step, maximum likelihood estimates of (α(q+1), β(q+1)) are obtained satisfying the condition
α̂(q+1), β̂(q+1)


= argmax

(α,β)


lF

α, β|λ̂0(·), Z(q+1)


,

where

lF

α, β|λ̂0(·), Z(q+1)


=

n
i=1

Ki
j=0

log(j + α) + nα log (α) (17)

+

Q
j=1

log
λ s, uj|β, Z(q+1) dj + dτ

j


−

n
i=1

(Ki + 1 + α) log


α +

Q
j=1

λ s, uj|β, Z(q+1) yij(s∗) + βyĎij


is the log-profile likelihood in (16) with λ̂0(·) in place of λ0(·). The solution to the maximization of LF
may be obtained using Newton–Raphson or Nelder–Mead simplex methods [14].

5. Simulation studies

Simulation studies were performed to examine small to moderate sample size properties of two
survival estimators: the nonparametric estimator with frailty denoted by ˜̄F(s, t) proposed in [19], and
the semiparametric survival estimator denoted by ˆ̄F(s, t), which accounts for frailty and informative
monitoring. They are given by

˜̄F(s, t) =


1 +

Λ̃0(s, t|z̃)
α̃

−α̃

and ˆ̄F(s, t) =


1 +

Λ̂0(s, t|β̂, ẑ)
α̂

−α̂

, (18)

respectively. Here Λ̃0(s, t|z̃) =


j|uj≤t λ̃(s, uj|z̃) such that

λ̃(s, uj|z̃) =
dj(s)

n
i=1

yij(s)z̃i
,

where {α̃, z̃} and {(α̂, β̂), Ẑ} are the ML and frailties estimates at convergence of the EM algorithm.
The hat and tilde survival estimators were compared by generating recurrent event data

Oqr =


Ki, τi, Ti1, Ti2, . . . , TiKi , τi − SiKi


: i = 1, 2, . . . , nq

r ,
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where q is one of the 54 configurations described below:

i = 1, 2, . . . , n for n ∈ {20, 50} ;

zi ∼ Gamma(shape = α, scale = α) for α ∈ {2, 6, ∞} ;

Tij ∼ F(t|zi) such that F̄(t|zi) = F̄(t)zi and
F(t) ∼ Weibull(shape = η, scale = 1) for η ∈ {0.9, 1, 2} ; and
τi ∼ G(t|β, zi) such that Ḡ(t|β, zi) = F̄(t)ziβ for β ∈ {0.3, 0.5, 0.7} ,

and r = 1, 2, . . . ,M , (M = 2000) is the replication. The simulated data is constructed under the
informative monitoring model with and without frailty. For each replicate, the hat and tilde survival
estimates are calculated for time points {t0.02, t0.04, . . . , t0.98} where tp is the pth percentile of F .
Thus, our empirical mean square errors (MSE) with respect to our estimators are indexed by the qth
configuration and pth percentile:

MSEq(F̄(·),
∗

F̄(·), tp) =

M
r=1

{

∗

F̄ qr(tp) − (1 − p)}2

M

=

M
r=1

{

∗

F̄ qr(tp) −
∗

µq(tp)}2

M
+ {

∗

µq(tp) − (1 − p)}2, (19)

where
∗

F̄(·) can be a hat or a tilde estimator such that
∗

F̄ qr(·) is the hat or tilde estimator for the data set

Oqr , and
∗

µq(tp) = M−1M
r=1

∗

F̄ qr(tp). Observe that the first and second terms of (19) are the empirical
variance and squared bias, respectively. Efficiency comparisons are represented using empirical log-
efficiency of the tilde estimator over the hat estimator:

effq ̄F(·),̄F(·), tp


= log


MSEq(F̄(·),̄F(·), tp)


− log


MSEq(F̄(·),̄F(·), tp)


,

where positive values imply the tilde estimators are more efficient over the hat estimators and
negative values implying otherwise.

For brevity, 36 out of the 54 configurations are represented by omitting α = 1 in Fig. 1. The graphs
are laid out in a grid such that the first two columns pertain to survival function biases for n = 20 and
n = 50, respectively, and the last column contains the empirical log-efficiencies. The horizontal axis
is the p index which is equivalent to the true percentile values {F(t) : F(t) = 0.02, 0.04, . . . , 0.98}.
Results in Fig. 1(a) and (b) suggest that the tilde estimator is more negatively biased than the hat
estimator for all configurations in t ∈ (t0.05, t0.60) resulting in less efficiency over the hat estimator.
The opposite trend is observed for t > t.6 where the hat estimates have larger positive bias than
the tilde estimates. From a theoretical viewpoint, this positive bias for the generalized KG estimator
is brought about by φ(w) which is decreasing for increasing w resulting in under-estimation of
the cumulative hazard, thereby over-estimating the survivor function. On the other hand, the tilde
estimator is performing much better with bias values closer to zero and relative efficiency values
greater than one. Since the asymptotic efficiency is

effq
̄F(s, ·),̄F(s, ·), tp


p

→ log

 t

0

P

Z1Y1(s, w) + Z1βY τ

1 (w) > 0


E{Z1(y(w|F̄0
Z1

) + β F̄0(w)βZ1)}
λ0(w)dw



− log

 t

0

P (Z1Y1(s, w) > 0)

E{Z1(y(w|F̄0
Z1

))}
λ0(w)dw


,

a negative log-efficiency on the lower t-values is brought about by

E{Z1(y(w|F̄0
Z1

) + β F̄0(w)βZ1)} ≥ E{Z1(y(w|F̄0
Z1

))}
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a b c

fed

Fig. 1. Simulation results for small andmoderate sample sizes. Figures (a) and (b) are the biases for the hat and tilde estimators
under the Weibull(0.9,1) for n = 20 and n = 50, respectively, and (c) is the log-efficiency under Weibull(0.9,1) for both
sample sizes. Similarly, Figures (d), (e) and (f) are the two biases under n = 20 and 50 and log-efficiency respectively under
Weibull(1,1) which is the unit exponential model.

and the positive log-efficiency on the tails is brought about by

P

Z1Y1(s, w) + Z1βY τ

1 (w) > 0


≥ P (Z1Y1(s, w) > 0)

The practical implication of the simulation results is that under the generalized KG model, the hat
estimator was able to perform well for shorter inter-occurrence times, but it overestimates on longer
ones. It is therefore desirable to use a combined estimator, say Ḟ(t) = pF̂(t) + (1 − p)F̃(t), where
p = 1 if both F̂(t) and F̃(t) are both less than or equal to .6; and use p = 0 if both are greater than
p = .6. Use p = .5 if one of the estimates is greater than .6 and the other is less than .6. Here p ∈ (0, 1)
is either predetermined or data-driven.

6. Application

The Migrating Motor Complex (MMC) [2] gastroenterology data is used to demonstrate the
applicability in a real data setting. This data contains observations where 19 individuals are observed



12 A. Adekpedjou et al. / Statistical Methodology 10 (2013) 1–13

a b c

Fig. 2. (a) A pictorial representation of the Migratory Motor Complex, (b) proportionality hazards plot for the gap and
monitoring times, and (c) the survival estimates.

during a fasting state. Calendar times are in minutes and gap times represent the time to the next
observed event (Fig. 2(a)).

A thorough mathematical development for testing the KG assumption is a daunting task and
is currently under investigation. For the time being, we have chosen a heuristic and graphical
approach to check this assumption. The validity of the model may be checked by plotting a non-
parametric estimate of the log cumulative hazards separately for inter-event times and monitoring
times, and using the pictorial representation to detect departure from the generalized KG model. In
case differences between these two hazards are constant over the domain where both curves overlap,
we will find graphical evidence in favor of the generalized KG model. To check the assumption with
the MMC data, a plot of the natural log of the non-parametric cumulative hazard [19] was created
separately for gap times and monitoring times and this graph was used to detect departures from the
proportional hazard assumption (Fig. 2(b)). On the interval where the curves overlap, the differences
are fairly stable; hence, we do not find any serious evidence against our model.

A plot of the semiparametric survival based on informative monitoring with frailty was used
for comparison with the non-parametric survival without informative monitoring and without
frailty [19], the non-parametric survival without informative monitoring but with frailty [19], and
semiparametric survival with informative monitoring but without frailty [3] in Fig. 2c. Our estimator
yielded α̂ = 1752.17 as compared to [19]’s estimator under frailty of α̃ = 9.64, which was slightly
different from the published value of α̃ = 10.17. The high α estimate resulted in a very small variance
estimate of 0.0005 implying that the estimated frailties do not differ significantly from 1. As to the
parameter estimate, our β̂ was 0.0109 which was the same as the estimated β for the informative
monitoring without frailty. The small value of β means there are a high number of gap times within
themonitoring times. Because of the highα and lowβ , all the curves are expected to be close as shown
in Fig. 2(c).

7. Concluding remarks

In this manuscript, we presented a recurrent event framework such that the gap times and the
monitoring times are reconciled through the generalized KG model and using frailties to account for
subject-specific variability. Using a stochastic process formulation, we obtained the semiparametric
survival estimator and its asymptotic variance. Similar to previous findings by Peña et al. [19], the
semiparametric estimator in [3] is inconsistent when the recurrence times are correlated but can be
corrected by subtracting the bias component as shown in Theorem 1. Simulation results comparing
the uncorrected (hat) estimator and the semiparametric (tilde) estimator without frailty for small and
moderate samples underWeibull gap timeswith frailty andwith informativemonitoring showed that
either one can be more efficient than the other which is consistent with the asymptotic efficiency
result. Finally, we used the Migratory Motor Complex data and compared our estimator to other
estimators developed under a no-frailty or without informative monitoring. In the MMC data, all
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survival curves were close due to long monitoring periods in comparison to gap times and small
variation in our estimated frailties.
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