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Abstract: Sufficient dimension reduction reduces the dimension of a regression

model without loss of information by replacing the original predictor with its

lower-dimensional linear combinations. Partial (sufficient) dimension reduction

arises when the predictors naturally fall into two sets X and W, and pursues a

partial dimension reduction of X. Though partial dimension reduction is a very

general problem, only very few research results are available when W is con-

tinuous. To the best of our knowledge, these methods generally perform poorly

when X and W are related, furthermore, none can deal with the situation where

the reduced lower-dimensional subspace of X varies with W. To address such

issue, we in this paper propose a novel variable dependent partial dimension

reduction framework and adapt classical sufficient dimension reduction methods

into this general paradigm. The asymptotic consistency of our method is investi-

gated. Extensive numerical studies and real data analysis show that our Variable

Dependent Partial Dimension Reduction method has superior performance com-

paring to the existing methods.
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tion; Sliced Inverse Regression; Sufficient dimension reduction; Order determi-

nation.

1. Introduction

The rapid developments of brain imaging, microarray data analysis,

computer vision, network analysis, econometrics, and many other applica-

tions call for the analysis of high-dimensional data. Sufficient dimension

reduction (SDR) (Li, 1991; Cook, 1998) is arguably one of the most im-

portant tools in analyzing high-dimensional data. Let Y be a univariate

response, X = (X1, . . . , Xp)
T ∈ Rp be a p-dimensional predictors, sufficient

dimension reduction methods, aim to find a lower-dimensional subspace

of X without loss of information on the conditional distribution of Y |X,

and without pre-specifying a model for the regression. This subspace is

then called a dimension reduction subspace for the regression. The goal of

SDR is to search for the smallest dimension reduction subspace, the cen-

tral subspace (CS, SY |X) and its dimension d, which is called the structural

dimension of the regression. We refer readers to Cook (1998) for more de-

tails. Many methods have been developed in the past two decades due to

the ubiquity of large high-dimension data sets which are now more readily

available than in the past. To name a few: sliced inverse regression (SIR;

Li (1991)), sliced average variance estimation (SAVE; Cook and Weisberg
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(1991)), minimum average variance estimation (MAVE; Xia et al. (2002)),

the kth moment estimation (Yin and Cook, 2002, 2003), inverse regression

(Cook and Ni, 2005), directional regression (DR; Li and Wang (2007)),

sliced regression (SR; Wang and Xia (2008)), likelihood acquired directions

(LAD; Cook and Forzani (2009)), and semiparametric approaches of Ma

and Zhu (2012, 2013a,b, 2014). More detailed discussion can be found in

Xue, Wang and Yin (2018).

Partial dimension reduction (PDR) (Chiaromonte et al., 2002; Wen and

Cook, 2007; Feng et al., 2013) arises when the predictors naturally fall into

two groups, X = (X1, . . . , Xp)
T and W = (W1, . . . ,Wq)

T, and pursues a

partial dimension reduction of X. This might happen when W plays a

particular role in the regression and must, therefore, be shielded from the

reduction process. Considering the Boston Housing dataset (Feng et al.,

2013), which was collected by the U.S. Census Service concerning housing

in the 18 area of Boston, where the goal was to study how the house prices

are affected by certain given attributes regarding those houses. Among all

those features, it is well known that Crime rate (W), plays an important

role in the housing price, hence it should be treated discriminately and the

dimension reduction should focus on the remaining features (X).

To be specific, PDR performs regression of Y on (X,W) by seeking a
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projection PSX of X that preserves information on Y | (X,W), where PS

indicates the projection onto the subspace S in the usual inner product. If

the intersection of all subspaces S ⊆ Rp such that

Y X|(PSX,W), (1.1)

also satisfies condition (1.1), we call it the partial central subspace, and

denote it by S(W)
Y |X . And dim{S(W)

Y |X} = d is called the structural dimension

of the partial central subspace. The concept of partial central subspace

was first proposed by Chiaromonte et al. (2002) to deal with regressions

with a mixture of continuous (X) and categorical predictors (W). Feng et

al. (2013) developed a method called PDEE to incorporate the continuous

W scenario via a dichotomization transformation. Though PDEE widens

the application of PDR, it could not deal with the situation where S(W)
Y |X

varies with continuous W, which is often the case in real-world applications.

It is also worth addressing that PDEE depends on the fact that W is

independent of X, which is a considerably stronger condition in the real

problem in the practice.

To overcome the limitations mentioned above, we propose the concept

of Variable Dependent Partial Dimension Reduction, where the partial CS,
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S(W)
Y |X is allowed to vary with W which is dependent or independent of

variable X. Hence the aim of variable dependent partial dimension reduc-

tion is to find a matrix of smooth functions of W with minimum rank,

B(W) ∈ Rp×d(W), such that

Y X|(BT(W)X,W). (1.2)

Then d(W) , rank{B(W)} is the structural dimension function of the

variable dependent partial CS. It is worth noting that the covariance matrix

Cov(X|W), the column space of B(W) and the structural dimension d(W)

may all vary as w changes, which poses a great challenge for the estimation

procedure.

The contribution of this paper is threefold. First, to the best of our

knowledge, the proposed variable dependent partial dimension reduction is

the first attempt to perform partial dimension reduction for the case that

S(W)
Y |X varies with W that is dependent or independent of variable X. Second,

we adapt three classical SDR methods into the new framework to develop

variable dependent partial dimension reduction methods and establish the

corresponding asymptotic normality and consistency properties rigorously.

Last but not the least, we propose to determine the structural dimension
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by a nonparametric version of the ladle estimator(Luo and Li, 2016), and

also derive the consistency property for our nonparametric ladle estimator

as well.

The rest of this paper is organized as follows. In Section 2, we first

introduce the principles of variable dependent partial dimension reduction,

then develop variable dependent partial SIR, and also propose its estima-

tion schemes along with the large sample theories. In Section 3, we develop

the nonparametric ladle estimator to determine the structural dimension of

variable dependent partial dimension reduction subspace. Section 4 focuses

on how to conduct the bandwidth selection involved in the kernel estima-

tion. Results extended to variable dependent partial SAVE and DR are

included in section 5. Section 6 presents the finite sample performance of

our proposed methods via extensive simulation studies. To illustrate the

efficiency of our proposed methods, four real data analysis are conducted in

section 7. For the ease of presentation, we defer all proofs to the Appendix.

2. The Principle of Variable Dependent Partial Dimension Re-

duction

Let (Xw, Yw) denote a generic pair distributed like (X, Y )|(W = w),

and SY |(X,W=w) = SYw|Xw . As we discussed in Section 1, the aim of variable

dependent PDR is to find a subspace spanned by the columns of matrix
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B(w) ∈ Rp×d(w) such that

Yw Xw|BT(w)Xw, (1.3)

where B(w) is a matrix of smooth functions of w. The meaning of Xw and

Yw may not be intuitive. Then we present a simple example here. Suppose

W is gender, predictor X is a vector include a person’s some characters,

such as weight, height, age and something else, response variable Y is blood

pressure. If w is male, then Xw represents the male’s characters and Yw is

the male’s blood pressure.

We employ nonparametric covariance models to analyze this variable

dependent scenario. Let m(w) = (m1(w), . . . ,mp(w))T and Σw = {σij(w)}p×p

denote the mean and covariance of Xw, where both m(w) and Σw are

smooth functions of w. Equation (1.3) implies the reduction of the pre-

dictor from Xw to BT(w)Xw. If Σw is invertible, one can also work with

the standardized data Zw = Σw
−1/2{X − m(w)} to obtain SYw|Zw and

then recover the variable dependent partial CS, SYw|Xw by the well-known

invariance property SYw|Xw = Σw
−1/2SYw|Zw (see Cook (1998) Proposition

6.1). Note that the estimation of SYw|Xw consists of two parts, the order

determination for d(w) and the basis estimation for SYw|Xw . We first con-
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sider the basis estimation assuming d(w) is known, then propose an order

determination method for d(w).

2.1 Variable Dependent Partial SIR

We adopt three popular sufficient dimension reduction approaches, SIR

(Li, 1991), SAVE (Cook and Weisberg, 1991), DR (Li and Wang, 2007), to

perform variable dependent PDR. We now illustrate the variable dependent

partial SIR in full details here.

Let B(w) ∈ Rp×d(w) be a matrix such that Span(B(w)) = SXw|Yw .

Prior to the main development of our variable dependent partial dimension

reduction methods, we first present the following two assumptions,

(A1) (Linear Conditional Mean) E{Xw|BT(w)Xw} is a linear function of

BT(w)Xw.

(A2) (Constant Conditional Variance) Cov{Xw|BT(w)Xw} is a nonran-

dom matrix.

Condition (A1) has been commonly assumed in sufficient dimension reduc-

tion literature and it is indispensable for almost all inverse-regression based

methods. Condition (A2) is similar to (A1) in nature, and is important for

all the second-order sufficient dimension reduction methods. Both condi-

tions (A1) and (A2) are guaranteed when Xw is normally distributed. More
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discussions about conditions (A1) and (A2) can be found in Chiaromonte

et al. (2002), Li et al. (2003), Li and Dong (2009) and Dong and Li (2010),

Li (2018), etc.

Firstly, we briefly review the development of SIR (Li, 1991). The

main idea of SIR is to work with the inverse regression, the conditional

distribution of X|Y , and in particular by examining the kernel matrix

Cov{E(X|Y)}. SIR procedure starts with the partition of the response

Y . Let {J1, J2, . . . , JH} be a measurable partition of the sample space of Y ,

consider the discretized version Ỹ =
∑H

l=1 l · 1(Y ∈ Jl). If Y is categorical

or H is sufficiently large (H ≥ d+1), Bura and Cook (2001) and Cook and

Forzani (2009) verified that there is no loss of information for identifying

SY |X when Y is replaced with Ỹ .

Let PB(w) be the projection on to SYw|Xw with respect to the inner

product ⟨a, b⟩ := aTΣwb, assuming (A1), the following proposition states

that the random vector Σ−1
w {E(Xw|Yw)−m(w)} belongs to SYw|Xw almost

surely.

Proposition 1. Given W = w, suppose that the linear conditional mean

condition (A1) holds, then

Σ−1
w (E{X|(Y,W = w)} −m(w)) = PB(w)Σ

−1
w (E{X|(Y,W = w)} −m(w)).
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Proposition 1 indicates that the random vector Σ−1
w (E(Xw|Yw)−m(w))

belongs to the range of the projection operator PB(w), which is actually

SYw|Xw . Consequently, the column space of the matrix Σ−1
w Cov{E(Xw|Yw)}

is a subspace of SYw|Xw . The proof of Proposition 1 relies on Li and Dong

(2009), and is provided in the Appendix.

Motivated by this finding, we now construct the following kernel matrix

for variable dependent partial SIR,

MSIR(w) , Cov{E(X|Ỹ,w)}

=
H∑
l=1

Pl,w(Vl,w −m(w))(Vl,w −m(w))T

=
H∑
l=1

Pl,wVl,wV
T
l,w −m(w)m(w)T,

(1.4)

where Pl,w = pr(Ỹ = l|w), Vl,w = E{X|Ỹ = l,w} and m(w) = E(Xw).

Note that the term Vl,w = E{X|Ỹ = l,w} contains two conditional vari-

ables, and thus makes it hard to deal with. However, this difficulty can be

overcome by using the following proposition, whose proof is provided in the

Appendix.

Proposition 2. Given W = w, for each l = 1, 2, . . . , H, we have

E(X|Ỹ = l,w) =
E{X1(Ỹ = l)|w}
E{1(Ỹ = l)|w}

, (1.5)
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where 1(.) is the indicator function. Proposition 2 shows that the term

Vl,w in (1.4) can be written as a fraction of simple conditional expectations.

We can rewrite the kernel matrix MSIR(w) in the following form:

MSIR(w) =
H∑
l=1

Ul,wU
T
l,w

Pl,w

−m(w)m(w)T, (1.6)

where Ul,w = E{X1(Ỹ = l)|w}.

Let {(Yi,Xi,Wi), i = 1, . . . , n} be random samples from (Y,X,W).

Since the structure of Σ−1
w MSIR(w) is variable dependent, we employ the

nonparametric covariance model Yin et al. (2010) for estimation. Specifi-

cally, we adopt the following Nadaraya-Watson estimator Nadaraya (1964),

Watson (1964) of m(w)

m̂(w) =

∑n
i=1XiKh(Wi −w)∑n
i=1Kh(Wi −w)

.

Similarly, the Nadaraya-Watson estimators of Ul,w and Pl,w are given by

Ûl,w =

∑n
i=1 Xi1(Ỹi = l)Kh(Wi −w)∑n

i=1Kh(Wi −w)
, P̂l,w =

∑n
i=1 1(Ỹi = l)Kh(Wi −w)∑n

i=1Kh(wi −w)
.

Then it’s straightforward to obtain the sample estimator of MSIR(w) by
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substituting m̂(w), Ûl,w, and P̂l,w into equation (1.6), that is,

M̂SIR(w) =
∑H

l=1

Ûl,wÛ
T
l,w

P̂l,w

− m̂(w)m̂(w)T. (1.7)

Remark 1. As for the estimation of the conditional covariance matrix, one

may use different bandwidths for different elements of Σw. However, the

resulting estimate with different bandwidth is not guaranteed to be positive

definite (Li and Zhu, 2007), which is the desired property in practice. Thus,

we suggest using the same bandwidth for all elements. And the selection of

bandwidth will be discussed in Section .

Recall that SYw|Xw is a d(w)-dimensional subspace of Rp. Proposition 1

leads us to consider the singular value decomposition of Σ̂−1
w M̂SIR(w). Let

Σ−1
w MSIR(w) =

p∑
k=1

λSIR
k (w)βSIR

k (w)ηSIR
k (w), λSIR

1 (w) ≥ · · · ≥ λSIR
d (w) = 0 = · · · = λSIR

p (w),

Σ̂−1
w M̂SIR(w) =

p∑
k=1

λ̂SIR
k (w)β̂SIR

k (w)η̂SIR
k (w), λ̂SIR

1 (w) ≥ · · · ≥ λ̂SIR
d (w) ≥ · · · ≥ λ̂SIR

p (w),

be the singular value decomposition of Σ−1
w MSIR(w) and Σ̂−1

w M̂SIR(w), re-

spectively.

Then we can use Span{β̂SIR
1 (w), . . . , β̂SIR

d(w)(w)} to estimate SYw|Xw . By

large sample theory and singular value decomposition, the asymptotic nor-
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mality of M̂SIR(w) and the asymptotic expansion of β̂SIR
k (w) are presented

in Theorem 1.

Theorem 1. Let G ⊂ {w : f(w) > 0} be a compact subset on the support

of W, where f(w) is the density of W. Under the condition (A1) and

assumptions (C1)-(C8) listed in the Appendix, we have

√
nh
(
vech{M̂SIR(w)} − vech{MSIR(w)} − vech{BSIR(w)}

)
d−→ N

(
0, f−1(w)ω0C

SIR(w)
)
.

Assume that Xw has finite fourth moment and all the nonzero eigenvalues

of MSIR(w) are distinct, then for k = 1, . . . , d(w), we have

√
nh
(
β̂SIR
k (w)− βSIR

k (w)−BSIR
k (w)

)
d−→ N(0,ΣSIR

k (w)),

where vech(·) is the vectorization of the upper triangular part of a matrix,

and the closed forms of BSIR(w), ω0, CSIR(w), BSIR
k (w) and ΣSIR

k (w) are

provided by (S2.9), (S2.11), (S2.12), (S2.22) and (S2.23) in the Appendix,

respectively.

3. Determination of Dimensionality d(w)

Recall that when we estimate the SYw|Xw in Section , we assume that

the variable dependent structural dimension d(w) is known. However, d(w)
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is usually unknown in practice, and its estimation is of independent interest.

In this section, we extend the state-of-the-art ladle estimator in Luo and Li

(2016) into a nonparametric version and establish its consistency property

as well.

Let F be the distribution function of (Xw, Yw), and let Fn be the em-

pirical distribution based on (X1, Y1), . . . , (Xn, Yn) conditional on W = w.

Let {(X∗
1,i, Y

∗
1,i), . . . , (X

∗
n,i, Y

∗
n,i)}ni=1 be n independent and identically dis-

tributed bootstrap sample from Fn, and let F ∗
n be the empirical distribution

based on the bootstrap sample.

Let M(w) denote the kernel matrix of a specific dimension reduction ap-

proach, let G(w) = Σ−1
w M(w), and d(w) be the rank of G(w). Rearrange

the eigenvalues of G(w) as λ1(w) ≥ . . . ≥ λd(w) > 0 = λd+1(w) = . . . =

λp(w), and denote the corresponding eigenvectors by β1(w), . . . ,βp(w). Let

Ĝ(w) be the sample kernel matrix based on the sample {Yi,Xi,Wi}ni=1,

and G∗(w) be the sample kernel matrix based on the bootstrap sam-

ple. In parallel, we can define {λ̂1(w), . . . , λ̂p(w), β̂1(w), . . . , β̂p(w)} and

{λ∗
1(w), . . . , λ∗

p(w),β∗
1(w), . . . ,β∗

p(w)} for Ĝ(w) and G∗(w). For each k <

p, let

Tk(w) =
(
β1(w), . . . ,βk(w)

)
, T̂k(w) =

(
β̂1(w), . . . , β̂k(w)

)
,
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T∗
k(w) =

(
β∗
1(w), . . . ,β∗

k(w)
)
.

Since T∗
k(w) is repeatedly calculated for n bootstrap samples, we denote

its realization at the ith bootstrap sample by T∗
k,i(w).

Conditional on W = w, define a function from {0, 1, . . . , p− 1} to R as

f 0
n(w, k) =


0, k = 0;

n−1
∑n

i=1[1− | det{T̂T
k(w)T∗

k,i(w)}|], k = 1, . . . , p− 1.

As in Ye and Weiss (2003), 1−| det{T̂T
k(w)T∗

k,i(w)}| is a number between 0

and 1 that measures the discrepancy between column spaces of T̂k(w) and

T∗
k,i(w), with 1 representing the largest discrepancy. Therefore, f 0

n(w, k)

measures the variability of the bootstrap estimates T∗
k,1(w), . . . ,T∗

k,n(w)

around the full sample estimate T̂k(w). We then normalize f 0
n(w, k) to

be fn(w, k) = f 0
n(w, k)/{1 +

∑p−1
i=0 f

0
n(w, i)}. The asymptotic behavior of

fn(w, ·) is presented in Lemma 1 in the Appendix.

Similarly, we normalize the sample eigenvalues and define the function

ϕn(w, ·) : {0, . . . , p} → R as

ϕn(w, k) = λ̂k+1(w)/{1 +
p−1∑
i=0

λ̂i+1(w)},
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where the constant 1 in the denominator is introduced to stabilize the per-

formance of the criterion when d(w) = 0. The technique here is to shift the

eigenvalues so that ϕn(w, ·) takes a small value at k = d(w) instead of at

k = d(w) + 1. Lemma 2 gives the asymptotic property of ϕn(w, ·) in the

Appendix. Now, we can define the objective function of our estimator as

gn(w, ·) : {0, . . . , p− 1} → R, gn(w, k) = fn(w, k) + ϕn(w, k), (1.8)

which collects information from both the eigenvectors and the eigenvalues.

The reason for using this objective function is that, the eigenvalue term

ϕn(w, ·) is small when k < d(w), while the eigenvector term fn(w, ·) is

large when k > d(w), and they are both small when k = d(w).

As a rule of thumb, in most applications it is reasonable to assume

d(w) ≤ ⌊p/ log(p)⌋, where ⌊a⌋ stands for the greatest integer less than or

equal to a, thus it suffices to minimize gn(w, ·) over {0, 1, . . . , ⌊p/ log(p)⌋},

which yields

gn(w, k) = fn(w, k) + ϕn(w, k)

=
f 0
n(w, k)

1 +
∑⌊p/ log(p)⌋

i=0 f 0
n(w, i)

+
λ̂k+1(w)

1 +
∑⌊p/ log(p)⌋

i=0 λ̂i+1(w)
.

(1.9)

Let D(f) denote the domain of a function f . Since the sample estimator of
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G(w) is a nonparametric estimator, which is similar to the ladle estimator

in Luo and Li (2016), we define the nonparametric ladle estimator for d(w)

by

d̂(w) = argmin{gn(w, k) : k ∈ D[gn(w, ·)]}, (1.10)

where gn(w, ·) is defined by (1.8) if p ≤ 10 or by (1.9) if p > 10.

The following theorem 2 establishes the consistency of the nonparamet-

ric ladle estimator for variable dependent partial dimension reduction.

Theorem 2. Under assumptions (C9), (C10), (C11) and (C12), for posi-

tive semi-definite matrix G(w) ∈ Rp×p of rank d(w) ∈ {0, . . . , p− 1}, the

nonparametric ladle estimator (1.10) enjoys the following property:

P
{
lim
n→∞

P(d̂(w) = d(w)|S) = 1
}
= 1.

4. The Bandwidth Selection for Variable Dependent Partial SIR

Bandwidth selection for both kernel regression estimator and local es-

timator has been well studied. Since Cook and Yin (2001) showed that

SIR can be viewed as linear discriminant analysis, we can choose the band-

width in a way similar to the tuning parameter selection based on linear

discriminant analysis.

Assuming that X|(Ỹ = l,W = w) ∼ N(ml(w),Σlw), with density
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function fX|Ỹ=l,W=w(x), thus, X|w follows a mixture multivariate normal

distribution, and its likelihood function is given by

L(ml(w),Σlw|x) =
n∏

i=1

H∑
l=1

Pl,wfX|Ỹ=l,W=w(xi)

=
n∏

i=1

H∑
l=1

Pl,w

[
e−

1
2
{xi−ml(w)}TΣ−1

l,w{xi−ml(w)}√
(2π)p|Σl,w|

]
,

(1.11)

where Pl,w is defined as before. Recall that ml(w) and Σlw are both of

conditional structure, so we propose to estimate them by the following

Nadaraya-Watson (NW) kernel estimators

m̂l(w) =

∑n
i=1 xi1(Ỹi = l)Kh(wi −w)∑n
i=1 1(Ỹi = l)Kh(wi −w)

,

Σ̂lw =

∑n
i=1 xix

T
i 1(Ỹi = l)Kh(wi −w)∑n

i=1 1(Ỹi = l)Kh(wi −w)
− m̂l(w)m̂T

l (w), Σ̂w =
H∑
l=1

P̂l,wΣ̂lw.

Since it’s too hard to calculate the log-likelihood type of (1.11) directly, we

consider finding out the optimal bandwidth in each slice instead of targeting

at the overall bandwidth, which is much more reasonable and computation-

ally feasible. Following the argument of leave-one-out cross validation in

Jiang et al. (2017), we propose to find the hl which is the bandwidth for
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l-th slice such that

CV (hl) =
1

nl

nl∑
i=1

[
{xi − m̂

(−i)
l (w)}TΣ̂−1

w(−i)(w){xi − m̂
(−i)
l (w)}+ log |Σ̂w(−i)(w)|

]
(1.12)

is minimized, where m̂
(−i)
l (w) and Σ̂w(−i) are estimators of the mean and

covariance matrix of X|Ỹ = l,W = w, computed without the i-th observa-

tion, nl is the total number of observations in the l-th slice. We choose the

value of hl which maximizes (1.11) as hopt, which is the bandwidth selected

for variable dependent partial SIR.

5. Variable Dependent Partial SAVE and DR

In this section, we also prove the large sample properties of proposed

variable dependent partial SAVE and DR. We present the estimation pro-

cedure of variable dependent partial SAVE and DR in the Appendix. The

order determination for variable dependent SAVE and DR is similar to the

variable dependent SIR, which replaces the SIR matrix with SAVE or DR

matrix. And in the Appendix, we also introduce the bandwidth selection

for variable dependent SAVE and DR in detail, which are quite different

from the variable dependent partial SIR.

Using large sample theory and singular value decomposition, we get

the asymptotic normality of M̂SAVE(w) and the asymptotic expansion of
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β̂SAVE
k (w) as follows.

Theorem 3. Let G ⊂ {w : f(w) > 0} be a compact subset on the support

of W, where f(w) is the density of W. Under the condition (A1), (A2)

and assumptions (C1)-(C8) listed in Appendix, we have

√
nh
(
vech{M̂SAVE(w)} − vech{MSAVE(w)} − vech{BSAVE(w)}

)
d−→ N(0, f−1(w)ω0C

SAVE(w)).

Assume that Xw has finite fourth moment and all the nonzero eigenvalues

of MSAVE(w) are distinct, then for k = 1, . . . , d(w), we have

√
nh
(
β̂SAVE
k (w)− βSAVE

k (w)−BSAVE
k (w)

)
d−→ N(0,ΣSAVE

k (w)),

where the closed form of ω0, BSAVE(w), CSAVE(w), BSAVE
k (w) and ΣSAVE

k (w)

are provided by (S2.11), (S3.31), (S3.34), (S3.35) and (S3.36) in the Ap-

pendix, respectively.

Similarly, the asymptotic normality of M̂DR(w) and the asymptotic

expansion of β̂DR
k (w) are presented in Theorem 4.

Theorem 4. Let G ⊂ {w : f(w) > 0} be a compact subset on the support

of W, where f(w) is the density function of W. Under the condition (A1),
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(A2) and assumptions (C1)-(C8) listed in Appendix, we have

√
nh
(
vech{M̂DR(w)} − vech{MDR(w)} − vech{BDR(w)}

)
d−→ N(0, f−1(w)ω0C

DR(w)).

Assume that Xw has finite fourth moment and all the nonzero eigenvalues

of MDR(w) are distinct, then for k = 1, . . . , d(w), we have

√
nh
(
β̂DR
k (w)− βDR

k (w)−BDR
k (w)

)
d−→ N(0,ΣDR

k (w)),

where the closed form of ω0, BDR(w), CDR(w), BDR
k (w) and ΣDR

k (w) are

provided by (S2.11), (S4.38) (S4.40), (S4.41) and (S4.42) in the Appendix,

respectively.

6. Simulation studies

In this section, we conduct simulation studies to evaluate our variable

dependent PDR methods. We consider the following six models:

Model I: Y = X1|W |+ 3X2 cosW + 0.2ε,

Model II: Y = 2 exp{X1 exp(W )−X2 cosW +1} · sign{0.01X1 cosW +

2(W + 1)2X2}+ 0.2ε,

Model III: Y = {X1 sin(W ) + 5X2 cos(W )}2 + 0.2ε,

Model IV: Y = exp{(X1|W |+X2)
2} log{(X3 cosW )2}+ 0.2ε,

Model V: Y = 10 exp{X1 sinW+5X2|W |}
X1 exp(W )−X2 cosW

+ 0.2ε,
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Model VI: Y = X1(W2+10)+X2 sinW1+7
X1 exp(W1)+10X2 cosW2

+ 0.2ε,

where sign(·) is the sign function, and ε ∼ N(0, 1). For Models I-V, W is

univariate and has a uniform distribution U(−1, 1), X|W ∼ Np(m(W ),ΣW ),

where m(W ) = sin(W )
2

1p, ΣW = (σij)p×p with σij = 1 for i = j, σij =

1
2
sin(W ) for i ̸= j. For Model VI, W = (W1,W2)

T is a two-dimensional

vector with W1,W2
iid∼ U(−1, 1), X|W ∼ Np(m(W),ΣW), where m(W) =

sin(W1)+cos(W2)
2

1p, and ΣW = (σij)p×p with σij = 1 for i = j, σij =
1
2
(sin(W1)+

cos(W2)) for i ̸= j. Hence, d(w) = 1 for Models I and III, and d(w) = 2

for Models II, IV and VI. For Model V, d(w) = 2 when w ̸= 0, and 1 when

w = 0.

Our simulation studies are two folds. We first use the nonparametric

ladle estimator in (1.10) to determine d(w) for each model. And then

estimate the basis for SYw|Xw on the estimated structural dimension. Since

the inverse conditional mean is symmetric about 0 for Models III and IV,

we expect that variable dependent partial SIR may provide a poor estimate

for these two models. However, partial variable dependent SIR might have

advantages over variable dependent partial SAVE and DR for the rest of

simulation models when the sample size is small since SIR is based on first

inverse moments.

6.1. Estimation of Structural Dimension
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Table 1: Correct order determinations among 100 runs for Models I-V

Model w
(n, p) = (150, 5) (n, p) = (300, 10)

VDPSIR VDPSAVE VDPDR VDPSIR VDPSAVE VDPDR

I

0 100 97 100 100 90 100
-1 100 96 100 99 91 99
1 100 96 100 100 89 99

-0.5 100 96 100 98 93 99
0.5 100 96 100 99 92 99

II

0 100 86 100 100 87 100
-1 100 84 100 100 86 100
1 100 85 100 100 87 100

-0.5 100 86 99 100 86 100
0.5 100 86 100 100 87 100

III

0 7 99 95 17 90 84
-1 8 96 94 17 87 84
1 8 98 95 18 88 85

-0.5 7 97 96 18 88 86
0.5 9 99 96 14 88 82

IV

0 0 97 97 1 99 99
-1 0 97 97 1 99 99
1 0 98 98 3 99 99

-0.5 0 99 98 1 99 99
0.5 0 98 97 3 99 99

V

-1 100 72 73 99 70 70
1 100 74 83 99 71 79

-0.5 100 71 79 98 70 77
0.5 100 76 87 99 72 82

Based on the nonparametric ladle estimator, we use variable dependent

partial SIR (VDPSIR), variable dependent partial SAVE (VDPSAVE) and

variable dependent partial DR (VDPDR) to estimate d(w) for different w.

The percentages of correct order estimates in 100 runs are presented in Table

1. It shows that our proposed nonparametric ladle estimator works pretty

well, with the percentage of correct order estimation approaches 100%.

Also, as we expected, variable dependent partial SIR fails for Models III

and IV, and outperforms the other two variable dependent PDR methods

for the remaining models due to the small sample sizes we have (n = 150
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or 300) in our simulation studies.

Table 2: Order determination for Model V with w in a neighborhood of 0

Model w
(n, p) = (150, 5) (n, p) = (300, 10)

VDPSIR VDPSAVE VDPDR VDPSIR VDPSAVE VDPDR

V

0.01 100 72 83 99 70 80
0.02 100 74 82 98 71 79
0.03 100 75 85 100 72 81
0.04 100 71 83 99 69 80
0.05 100 72 82 99 71 79
-0.01 100 72 83 98 69 80
-0.02 100 75 83 99 72 81
-0.03 100 76 80 99 73 77
-0.04 100 71 80 98 69 78
-0.05 100 69 84 99 67 81

Table 2 shows that, for Model V, under the scenario (n, p) = (150, 5),

if w ̸= 0, the structural dimension can be accurately estimated by variable

dependent partial SIR approach all the times. When (n, p) = (300, 10), at

least 98% of the times, variable dependent partial SIR provides with the

correct estimates of d = 2.

Table 3 suggests that the percentage of correct estimation for Model

V when w = 0 is somewhat unsatisfactory when the sample size n is

small. However, as n increases, the correct estimation percentage improves

steadily, which is consistent with large sample theory.

Table 3: Order determination for Model V with w = 0

(n, p) VDPSIR VDPSAVE VDPDR (n, p) VDPSIR VDPSAVE VDPDR
(150, 5) 62 21 25 (300, 10) 59 19 27
(500, 5) 73 51 60 (500, 10) 65 42 53
(800, 5) 86 74 82 (800, 10) 75 57 68
(1000, 5) 93 88 90 (1000, 10) 81 70 78

For Model VI, since W = (W1,W2) is two-dimensional, we present the
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order determination results for different w values in Tables 4 and 5. The

entries are the counts of correct estimates of the structural dimension out

of 100 repetitions by variable dependent partial SIR, variable dependent

partial SAVE, variable dependent partial DR, respectively.

Table 4: Order Determination for Model VI with (n, p) = (150, 5)

w1

w2 -1 -0.5 0 0.5 1
-1 88 76 85 88 76 86 92 78 86 90 84 86 91 78 86

-0.5 90 77 87 90 77 84 89 80 87 89 82 86 93 77 87
0 89 77 85 89 84 85 91 75 87 89 78 87 88 77 88

0.5 91 77 87 90 75 87 91 76 87 91 80 87 88 80 89
1 92 78 83 91 79 87 89 76 84 88 79 86 89 85 86

Table 5: Order Determination for Model VI with (n, p) = (300, 10)

w1

w2 -1 -0.5 0 0.5 1
-1 97 80 98 97 81 98 97 78 98 96 81 98 95 78 98

-0.5 96 84 98 95 78 98 95 77 99 97 81 98 97 86 98
0 97 82 99 97 78 98 95 80 98 95 77 98 97 77 98

0.5 95 79 98 96 83 98 96 86 98 95 80 99 96 82 98
1 96 79 99 98 79 98 97 79 99 96 80 99 97 80 98

Table 4 and 5 suggest that our nonparametric ladles works pretty well

for estimation of structural dimension when W is two dimensional.

We also use PDEE methods to estimate the dimension of B based on

the ladle estimator. Since PDEE methods cannot estimate the dimension of

B(w), it could not deal with situations such as Model V, the following table

gives the number of correct estimates of structural dimensions among 100

simulation runs for all models except Model V. It is easy to see that PDEE
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methods perform poorly regarding the order determination, especially for

complex models. Further, simulation results (unreported here) also show

that, when PDEE fails to select the correct structural dimension, it tends

to under-select the dimension than to over-select it, which makes PDEE

even less desirable in practice.

Table 6: Estimated structural dimension based on 100 replications for
PDEE methods

PDEE-SIR PDEE-SAVE PDEE-DR

(n,p)=(150,5)

Model I 63 5 100
Model II 0 0 0
Model III 0 6 39
Model IV 0 0 8
Model VI 0 0 1

(n,p)=(300,10)

Model I 100 11 100
Model II 0 0 0
Model III 0 9 76
Model IV 0 0 18
Model VI 0 0 0

6.2. Estimation of SYw|Xw

To assess the accuracy of our variable dependent PDR methods, we

adopt the trace correlation r2d(w) proposed by Ferre (1998). Let S1 and S2

be two d(w)-dimensional subspaces of Rp, the distance between subspace

S1 and S2 can be measured by the following trace correlation coefficient,

r2d(w) = Tr(PS1PS2)/d(w),
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where PS1 and PS2 are orthogonal projections onto S1 and S2, and Tr(·) is

the trace of a square matrix. It can be justified that r2d(w) ∈ [0, 1], r2d(w) = 1

if S1 = S2, and r2d(w) = 0 if S1 ⊥ S2 (the two subspaces are perpendicular).

Note that a larger value of r2d(w) implies that S1 and S2 are closer. Li

and Dong (2009) and Dong and Li (2010) applied a similar criterion to

assess the performance of sufficient dimension reduction estimator with non-

elliptically distributed predictors.

We first compare the performance among the three variable depen-

dent PDR methods under two configurations (n, p) = (150, 5) and (n, p) =

(300, 10). To be fair, we set the number of slices H to be 5 for all three

methods. Due to space limitations, we only present part of the results.

We present in Table 7 the mean of trace correlations between the true and

estimated variable dependent partial CS at different values of w for the

first five models based on 100 repetitions. Table 7 shows that variable de-

pendent partial SIR works pretty well in most cases except for Models III

and IV just as expected, while both variable dependent partial SAVE and

DR perform stably for all models, providing with trace correlations greater

than 0.9 most of the time.

Simulation results for Model VI are provided in Tables 8 and 9 based

on different combinations of W = (W1,W2). These results reaffirm the
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Table 7: Trace Correlation for the Models 1-5

Model w
(n, p) = (150, 5) (n, p) = (300, 10)

VDPSIR VDPSAVE VDPDR VDPSIR VDPSAVE VDPDR

I

0 0.978 0.962 0.945 0.980 0.958 0.933
-1 0.892 0.920 0.918 0.889 0.918 0.919
1 0.894 0.920 0.922 0.888 0.919 0.918

-0.5 0.991 0.994 0.985 0.989 0.992 0.978
0.5 0.990 0.995 0.986 0.988 0.992 0.977

II

0 0.973 0.909 0.914 0.958 0.835 0.856
-1 0.940 0.910 0.911 0.927 0.831 0.854
1 0.941 0.898 0.913 0.932 0.817 0.851

-0.5 0.961 0.909 0.913 0.947 0.835 0.856
0.5 0.969 0.905 0.914 0.959 0.830 0.854

III

0 0.297 0.967 0.967 0.313 0.955 0.952
-1 0.218 0.880 0.858 0.203 0.847 0.838
1 0.492 0.941 0.945 0.536 0.939 0.945

-0.5 0.230 0.956 0.950 0.242 0.938 0.935
0.5 0.389 0.965 0.969 0.418 0.957 0.955

IV

0 0.361 0.906 0.908 0.221 0.878 0.879
-1 0.433 0.938 0.940 0.321 0.919 0.917
1 0.418 0.941 0.941 0.320 0.916 0.918

-0.5 0.379 0.965 0.966 0.256 0.940 0.940
0.5 0.375 0.966 0.966 0.249 0.940 0.941

V

0 0.895 0.850 0.883 0.833 0.813 0.814
-1 0.833 0.827 0.857 0.813 0.815 0.821
1 0.904 0.847 0.884 0.951 0.840 0.898

-0.5 0.912 0.826 0.872 0.905 0.818 0.839
0.5 0.946 0.871 0.890 0.948 0.873 0.903

good performance of our variable dependent PDR methods even when W

is multivariate.

Table 8: Trace Correlation for Model 6 with (n, p) = (150, 5)

w1

w2 -1 -0.5 0 0.5 1

-1 .851 .829 .842 .874 .868 .876 .880 .890 .888 .862 .892 .874 .815 .872 .825
-0.5 .884 .861 .873 .906 .896 .898 .912 .912 .915 .894 .915 .931 .864 .899 .893

0 .905 .881 .907 .925 .912 .919 .929 .924 .931 .915 .927 .92 .886 .911 .921
0.5 .912 .893 .90 .931 .919 .925 .935 .924 .931 .921 .920 .918 .894 .903 .896
1 .900 .883 .892 .925 .900 .925 .930 .908 .922 .916 .894 .910 .883 .859 .864

The following Figures give a direct visual presentation of our simulation

results, which also agree with what we discussed previously. It seems that

variable dependent partial SAVE and DR are very reliable and accurate
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Table 9: Trace Correlation for Model VI with (n, p) = (300, 10)

w1

w2 -1 -0.5 0 0.5 1

-1 .872 .830 .880 .891 .861 .875 .890 .880 .885 .885 .883 .878 .824 .869 .837
-0.5 .894 .859 .876 .921 .889 .911 .923 .910 .915 .906 .909 .903 .879 .896 .854

0 .915 .878 .908 .931 .910 .924 .945 .921 .926 .923 .922 .91 .894 .908 .8778
0.5 .927 .890 .921 .947 .918 .932 .951 .921 .945 .936 .918 .931 .903 .899 .900
1 .907 .876 .898 .932 .892 .92 .936 .903 .924 .925 .890 .916 .889 .856 .876

regarding the estimation of the variable dependent partial CS in all models,

while variable dependent partial SIR might fail under certain conditions.

We recommend variable dependent partial DR, and use variable dependent

partial SIR as a complementary method.

(a) Model 1 (b) Model 2 (c) Model 3 (d) Model 4

Figure 1: Trace correlation coefficient for Models I-IV with (n, p) = (150, 5)

(a) Model 1 (b) Model 2 (c) Model 3 (d) Model 4

Figure 2: Trace correlation coefficient for Models I-IV with (n, p) = (300, 10)

The 3D plot for Model VI is omitted since it cannot clearly demonstrate

the trend of trace correlation coefficient when W is two-dimensional.

Furthermore, to illustrate the advantages of our variable dependent

approach, we compare the average trace correlation coefficient deriving from
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(a) (n, p) = (150, 5) (b) (n, p) = (300, 10)

Figure 3: Trace correlation coefficient for Model VI

those at different w values, with the trace correlation coefficient obtained

via PDEE (Feng et al., 2013) estimation methods. Since the PDEE method

can not handle variable dependent structural dimension scenario, we only

investigate the estimation accuracy in Model I-IV and VI, given a fixed

estimated structural dimension. The results of the mean trace correlation

coefficient from 100 simulation runs are shown in Table 10.

Table 10: Mean trace correlation coefficients of 100 replications

(n,p) Model VDPSIR VDPSAVE VDPDR PDEE-SIR PDEE-SAVE PDEE-DR

(150,5)

I 0.9723 0.9646 0.9665 0.9483 0.7848 0.3897
II 0.8076 0.6940 0.7936 0.7935 0.5222 0.5387
III 0.1911 0.9147 0.9290 0.4937 0.8638 0.8739
IV 0.3721 0.9033 0.9278 0.5951 0.8722 0.8832
VI 0.9090 0.9104 0.9055 0.8214 0.6437 0.7446

(300,10)

I 0.9728 0.9600 0.9633 0.9553 0.6892 0.3234
II 0.8096 0.5844 0.7881 0.8014 0.3758 0.4826

III 0.1520 0.9218 0.9207 0.3959 0.7600 0.8461
IV 0.1929 0.8948 0.9104 0.4931 0.8490 0.8625
VI 0.8929 0.8631 0.8746 0.8659 0.5161 0.6868

It is noticeable that our proposals consistently outperform PDEE ap-

proaches. Our methods can estimate B(W) at W = w, which changes

with the value of w, while the PDEE approach can only estimate B, which
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is fixed no matter how w varies. As a result, the variable dependent PDR

is a better approach to handle partial dimension reduction with continuous

W.

7. Real Data Analysis

In this section, we consider analyzing four real-world datasets: Body Fat

data, Wage data, Hongkong environmental data, and Boston Housing data.

For each dataset, we compare our proposals, variable dependent partial SIR,

variable dependent partial SAVE, and variable dependent partial DR with

the PDEE methods which include PDEE-SIR, PDEE-SAVE, and PDEE-

DR.

To implement each of the methods, we first need to estimate the struc-

tural dimension. For our proposed methods, we use the nonparametric ladle

estimator in (1.10) to estimate d(w), while using the ladle estimator in Luo

and Li (2016) to estimate d for the PDEE methods. Then based on the

estimated structural dimension, we obtain the variable dependent partial

dimension reduction directions B̂(w) and partial dimension reduction di-

rections B̂. We use the distance correlations (Szekely et al., 2007) between

Y and B̂T(w)X (or B̂TX) to evaluate the performance of the estimates

B̂(w) and B̂.

7.1. Description of the Datasets
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We illustrate the application of variable dependent PDR to the following

four data sets in the literature.

Body Fat dataset. we first consider the Body Fat data, which has been

analyzed in Penrose et al. (1985), Hoeting et al. (1999), Leng (2010). The

Body Fat data contains 252 observations and 14 attributes. Following the

analysis of Leng (2010), we treat brozek as the response Y , age as W , and

the other 12 predictors (i.e. weight, height, neck, chest, abdomen, hip, thigh,

knee, ankle, biceps, forearm, wrist) as X. For the structural determination,

we get d̂(w) = d̂ = 1. This is consistent with the previous studies in Leng

(2010) and Zhang et al. (2013), both estimated the structural dimension as

1.

Wage dataset. Wage dataset contains the wage information of 534 workers

and their education, living region, gender, union membership, race, occu-

pation, sector, marriage status information and their years of experience.

This data set has been investigated in Berndt (1991), Xie and Huang (2009)

and Zhang et al. (2013). We take wage as the response Y , years of experi-

ence as W , and the remaining 8 predictors as X. The order determination

procedure yields that d̂(w) = d̂ = 1.

Hongkong environmental dataset. Hongkong environmental dataset

has been analyzed in Li et al. (2015). This data set was collected between
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January 1 of 1994 and December 31 of 1995. To be more specific, it is a

collection of numbers of daily total hospital admissions for circulationary

and respirationary problems, measurements of pollutants and many other

environmental factors in Hong Kong. We take the number of daily total

hospital admissions for circulationary and respirationary problems as the

response Y , time as W , and the remaining predictors as X. The order

determination procedure yields that d̂(w) = d̂ = 1.

Boston Housing dataset. Boston housing data (Harrison and Rubin-

feld 1978) has been widely used as a classical dataset in regression study.

For example, it has been studied in Fan and Huang (2005) and Chen et

al. (2010). It contains information collected by the U.S. Census Service

concerning housing in the area of Boston. The original data consist of 14

variables (features) and 506 data points. Following Chen et al. (2010), we

only keep 374 observations with per capita crime rate by twon smaller than

3.2 in the subsequent analysis. We take the median value of the owner-

occupied homes in $1000’s as the response Y , crime rate as W , and the

remaining predictors as X. The order determination procedure yields that

d̂(w) = d̂ = 2.

7.2. Comparison of each method for the data analysis

The distance correlations between Y and B̂(w)TX are reported in columns
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2-4 in Table 11, where B̂(w) is the estimate by our proposals (i.e. VDPSIR,

VDPSAVE, VDPDR), and the distance correlations between Y and B̂TX

are reported in columns 5-7, where B̂ is the estimate by PDEE methods

(i.e. PDEE-SIR, PDEE-SAVE, PDEE-DR). It’s obvious that our variable

Table 11: Distance correlation for each estimation approaches
Dataset VDPSIR VDPSAVE VDPDR PDEE-SIR PDEE-SAVE PDEE-DR

Body Fat 0.8301 0.2149 0.5310 0.6906 0.1664 0.2665
Wage 0.5195 0.2215 0.5044 0.5171 0.1512 0.1500

Hongkong environmental 0.4592 0.2060 0.1942 0.2155 0.1379 0.1193
Boston Housing 0.9112 0.6618 0.8688 0.8030 0.3418 0.5408

dependent methods consistently beat the PDEE approaches for each vari-

ant of SIR, SAVE, DR procedure. To be specific, for the Body Fat dataset,

the variable dependent partial SIR estimation gives a distance correlation

of 0.83, compared with 0.69 resulted from PDEE-SIR. For the Boston Hous-

ing dataset, the distance correlation from variable dependent partial DR is

0.87 comparing with 0.54 from PDEE-DR. The more accurate dimension

reduction estimates we obtained could greatly facilitate further modeling

and analysis.

8. Discussions

In this paper, we propose a variable dependent approach to better deal-

ing with partial sufficient dimension reduction. For the purpose of statisti-

cal estimation, a kernel matrix is developed and its asymptotic properties

are thoroughly investigated. We also develop a nonparametric ladle esti-
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mator to determine the structural dimension. For future work, we plan

to investigate how to apply variable dependent PDR to conduct variable

selections, which is of special practical importance since different w may

lead to different variable selection results.

Supplementary Materials

The proofs of Theorem 1, Theorem 2, Theorem 3 and Theorem 4 are

given in the online supplementary document.
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S1. Regularity conditions

To prove the theoretical results of this paper, we need some regularity

conditions. They are not the weakest possible conditions, but they are

imposed to facilitate the proofs.

(C1). (The density of the index variable) We assume that W has a compact

support. Then, on the support, we further assume that the probabil-

ity density function of W , denoted by f(W ), is bounded away from

0 and has continuous derivatives up to second order.

(C2). (The moment requirement) For any 1 ≤ j1, j2 ≤ p, there exists a

constant δ ∈ [0, 1], such that supw E{|Xj1(w)Xj2(w)|}2+δ < ∞.
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(C3). (Smoothness of the conditional mean) Assume that the conditional

mean mj(·) has continuous derivatives up to second order.

(C4). (Smoothness of the conditional variance) We assume that E{Xk1
j1
Xk2

j2
Xk3

j3
Xk4

j4
|W =

w} has continuous derivatives up to second order in w for k1, k2, k3, k4 ∈

{0, 1}, where j1, j2, j3, j4 are not necessarily different components in

the (X,W) vectors.

(C5). (Smoothness of the conditional indicator mean) Assume that the

conditional indicator mean E{X1(Y ∈ Jl)|W = w} has continuous

derivatives up to second order, where l = 1, . . . , H.

(C6). (Smoothness of the conditional indicator variance) We assume that

E{Xk1
j1
Xk2

j2
Xk3

j3

Xk4
j4
1(Ỹ = l)|W = w} has continuous derivatives up to second order

in w for k1, k2, k3, k4 ∈ {0, 1}, l = 1, . . . , H, where j1, j2, j3, j4 are not

necessarily different components in the (X,W) vectors.

(C7). (The bandwidth) h → 0 and nh5 → c > 0 for some c > 0.

(C8). (The kernel function) We assume that K(w) is a bounded proba-

bility density function symmetric about 0. Furthermore, for the δ in

(C2), we assume that
∫
K2+δ(v)vjdv < ∞, for j = 0, 1, 2. Lastly, for
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two arbitrary indices w1 and w2, we must have |K(w1) −K(w2)| ≤

Kc|w1 −w2| for some positive constant Kc.

(C9) The bootstrap estimator M∗ satisfies

(nh)1/2{vech(M∗)− vech(M̂)− vech(B∗)} d−→ N(0,VarF [vech{H(X, Y )}]).

(S1.1)

(C10) For any sequence of nonnegative random variables {Zn : n =

1, 2, . . .} involved hereafter, if Zn = O(cn) for some sequence {cn :

n ∈ N} with cn > 0, then E(c−1
n Zn) exists for each n and E(c−1

n Zn) =

O(1).

(C11)
∞∑
n=3

(h/ log log n)E{S2I(|S| > an)} < ∞, where S represents response

variable in nonparametric regression function and an = o{(nh−1 log log n)1/2/(log n)2}.

(C12) limϵ→0 lim supn→∞ supm∈Γn,ϵ
|h(m)/h(n) − 1| = 0, where Γn,ϵ = {m :

|m− n| ≤ ϵn}.

Both conditions (C1) and (C2) are standard technical assumptions [Yin

et al. (2010)], and conditions (C3), (C4), (C5) and (C6) are necessary

smoothness constraints [Fan (1993); Yao and Tong (1998)]. By condition

(C7) we know that the optimal convergence rate of n−1/5 can be used. Con-
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dition (C8) is a standard requirement for the kernel function [Yao and Tong

(1996)] , which is trivially satisfied by both Gaussian kernel and Epanech-

nikov kernel.

Condition (C9) is quite mild: it is satisfied if the statistical functional

M is Fréchet differentiable [Luo and Li (2016)], where B∗ represents the bias

term of M∗−M̂. Condition (C10) amounts to asserting that the asymptotic

behaviour of (nh)1/2(M∗ − M̂−B∗) mimics that of (nh)1/2(M̂−M−B),

where B represents the bias term of M̂ − M. The validity of this self-

similarity has been discussed [Bickel and Freedman (1981), Luo and Li

(2016)], where vech(·) is the vectorization of the upper triangular part of

a matrix and varF [vech{H(X, Y )}] is positive definite. Condition (C11)

and condition (C12) are widely used in law of the iterated logarithm for

nonparametric regression Hardle (1984). These conditions should not be

too restrictive on the applicability of our estimator.

S2. The proofs of the main results

Proof of Proposition 1. Following Li et al. (2003), for convenience,

we often use the abbreviation

E{f(X, Y )|g(X),W = w} , E{f(Xw, Yw)|g(Xw)}.
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In our case, we define

E(X|Y,W = w) = E(Xw|Yw), E{X|Y,BT(w)X,W = w} = E{Xw|Yw,B
T(w)Xw}.

Since Xw satisfies linear conditional mean (A1), given W = w, it’s easy for

us to get

E{Xw|BT(w)Xw} =
[
B(w){BT(w)ΣwB(w)}−1BT(w)Σw

]T
Xw.

Hence,

Σ−1
w {E(X|Y,W = w)−m(w)}

= Σ−1
w {E(Xw|Yw)− E(Xw)}

= Σ−1
w [E{E(Xw|Yw,B

T(w)Xw)|Yw} − E{E(Xw|BT(w)Xw)}]

= Σ−1
w [E{E(Xw|BT(w)Xw)|Yw} − E{E(Xw|BT(w)Xw)}]

= Σ−1
w [B(w){BT(w)ΣwB(w)}−1BT(w)Σw]

T{E(Xw|Yw)− E(Xw)}

= B(w){BT(w)ΣwB(w)}−1BT(w)ΣwΣ
−1
w {E(X|Y,W = w)−m(w)}.
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The second equality follows tower property about conditional expectation.

Then the third equality is based on the fact that

Yw Xw|BT(w)Xw.

Denote PB(w) = B(w){BT(w)ΣwB(w)}−1BT(w)Σw. Then we have,

Σ−1
w {E(X|Y,W = w)−m(w)} = PB(w)Σ

−1
w {E(X|Y,W = w)−m(w)}.

�

Proof of Proposition 2. At first, we need to prove the left side of the

equation (1.5),

E(X|Ỹ = l,w) =

∫
X
f(X, Ỹ = l,w)

f(Ỹ = l,w)
dX

=

∫
X
f(X,w|Ỹ = l)P(Ỹ = l)

f(w|Ỹ = l)P(Ỹ = l)
dX

=

∫
Xf(X,w|Ỹ = l)dX

f(w|Ỹ = l)
.
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Then we show the right side of the equation (1.5), since

E(1(Ỹ = l)|w) =

1(Ỹ = l)
H∑
k=1

f(w|Ỹ = k)P(Ỹ = k)

f(w)
=

f(w|Ỹ = l)P(Ỹ = l)

f(w)
,

(S2.2)

where f(w) is the density function of w. Hence

E(X1(Ỹ = l)|w) =

∫
X1(Ỹ = l)

f(X, Ỹ = l,w)

f(w)
dXdỸ

=

∫
X1(Ỹ = l)

H∑
k=1

f(X,w|Ỹ = k)P(Ỹ = k)

f(w)
dX

=

∫
Xf(X,w|Ỹ = l)P(Ỹ = l)

f(w)
.

(S2.3)

Thus, we get

E{X1(Ỹ = l)|w}
E{1(Ỹ = l)|w}

=

∫
Xf(X,w|Ỹ = l)P (Ỹ = l)dX/f(w)

f(w|Ỹ = l)P (Ỹ = l)/f(w)

=

∫
f(X,w|Ỹ = l)dX

f(w|Ỹ = l)
= E(X|Ỹ = l,w).

�
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Proof of Theorem 1. Denote ki(w) = K(wi−w
h

), we get

1

nh

n∑
i=1

ki(w) =
1

nh

n∑
i=1

K

(
wi −w

h

)
= f̂(w).

Then under condition (C1) and (C8), by Yin et al. (2010), we conclude that

|f̂(w)− f(w)| = OP

{√
log(n)
nh

+ h2

}
. Next under condition (C1), we have

uniformly for w ∈ G,

{
1

nh

n∑
i=1

ki(w)

}−1

= f−1(w)

{
1 +OP

(√
log(n)

nh
+ h2

)}
.

Define for j = 1, 2,

sj(w) =
1

nh

n∑
i=1

(
wi −w

h

)
K

(
wi −w

h

)
.

Then, by the same method as in Yin et al. (2010), we have

s1(w)− hṖl,wω2 = Op

(√
log(n)

nh
+ o(h)

)
= oP (h), (S2.4)

where ω2 =
∫∞
−∞w2K(w)dw. Next, by Lemma 2 of Yao and Tong (1998)

we know that

sup
w∈R

|s2(w)− f(w)ω2| = oP (1). (S2.5)
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By Taylor’s expansion, we then have

P̂l,w −Pl,w

=
1

nhf(w)

{
1 +OP

(√
log(n)

nh
+ h2

)}
n∑

i=1

K

(
wi −w

h

){
1(Ỹi = l)−Pl,wi

}
+

1

f(w)

{
1 +OP

(√
log(n)

nh
+ h2

)}{
hṖl,ws1(w) +

h2P̈l,w

2
s2(w) + o(h2)

}
(S2.6)

Then it follows by (S2.4) and (S2.5) that

P̂l,w −Pl,w = CP,w +BP,w +OP{R1(w)}. (S2.7)

where

CP,w =
1

nhf(w)

n∑
i=1

ki(w)
{
1(Ỹi = l)−Pl,wi

}
, BP,w =

h2ω2

2

(
2
ḟ(w)

f(w)
Ṗl,w + P̈l,w

)
,

and

R1(w) =
1

nf(w)

[∣∣∣∣∣
n∑

i=1

K

(
wi −w

h

)
{1(Ỹi = l)−Pl,wi

}

∣∣∣∣∣
]
+ o(h2).

P̂l,w −Pl,w follows by the similar argument. Then,

Ûl,w −Ul,w = CU,w +BU,w +OP{R2(w)}, (S2.8)
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where

CU,w =
1

nhf(w)

n∑
i=1

ki(w)
{
xi1(Ỹi = l)−Ul,wi

}
, BU,w =

h2ω2

2

(
2
ḟ(w)

f(w)
U̇l,w + Ül,w

)
,

and

R2(w) =
1

nf(w)

{∣∣∣∣∣
n∑

i=1

K

(
wi −w

h

)(
xi1(Ỹi = l)−Ul,wi

)∣∣∣∣∣
}

+ o(h2),

Yin et al. (2010) has already shown us that

m̂(w)−m(w) = Cm,w +Bm,w +OP{R3(w)}, Σ̂w −Σw = CΣ,w +BΣ,w +OP{R4(w)},

where

Cm,w =
1

nhf(w)

n∑
i=1

ki(w) {xi −m(wi)} , Bm,w =
h2ω2

2

(
2
ḟ(w)

f(w)
ṁ(w) + m̈(w)

)
,

CΣ,w =
1

nhf(w)

n∑
i=1

ki(w)
[
{xi − m̂(wi)} {xi − m̂(wi)}T −Σw − (wi −w)Σ̇w

]
,

BΣ,w = h2Σ̇wω2
ḟ(w)

f(w)
,
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and

R3(w) =
1

nf(w)

{∣∣∣∣∣
n∑

i=1

K

(
wi −w

h

)
(xi −m(wi))

∣∣∣∣∣
}

+ o(h2),

R4(w) =
1

nf(w)

{∣∣∣∣∣
n∑

i=1

K

(
wi −w

h

)[
{xi − m̂(wi)} {xi − m̂(wi)}T −Σw − (wi −w)Σ̇w

]∣∣∣∣∣
}

+ o(h2),

Thus

M̂SIR(w)−MSIR(w)

=
H∑
l=1

(
Ûl,wÛ

T
l,w

P̂l,w

−
H∑
l=1

Ul,wU
T
l,w

Pl,w

)
+m(w)m(w)T − m̂(w)m̂(w)T

=
H∑
l=1

{
(Ûl,w −Ul,w)U

T
l,w

Pl,w

+
Ul,w(Ûl,w −Ul,w)

T

Pl,w

− 1

P2
l,w

(P̂l,w −Pl,w)Ul,wU
T
l,w

}

− {m̂(w)−m(w)}m(w)T −m(w){m̂(w)−m(w)}T + oP

(
1√
nh

)
= BSIR(w) +CSIR(w) + oP

(
1√
nh

)
,

where

BSIR(w) =
H∑
l=1

{
BU,wU

T
l,w +Ul,wB

T
U,w

Pl,w

− 1

P2
l,w

BP,wUl,wU
T
l,w

}
−Bm,wm(w)T −m(w)BT

m,w,

(S2.9)
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and

CSIR(w) =
H∑
l=1

{
CU,wU

T
l,w +Ul,wB

T
U,w

Pl,w

− 1

P2
l,w

CP,wUl,wU
T
l,w

}
−Cm,wm(w)T −m(w)CT

m,w.

Following by the similar argument of Theorem 1 in Yin et al. (2010), we

have

√
nh
(
vech{M̂SIR(w)} − vech{MSIR(w)} − vech{BSIR(w)}

)
d−→ N(0, f−1(w)ω0C

SIR(w)),

(S2.10)

where

ω0 =

∫ ∞

−∞
K2(w)dw. (S2.11)

Hence

CSIR(w) = Cov [vech{CSIR(w)}|w] . (S2.12)

This completes the proof of the part one of Theorem 1, then we prove the

part two. Observe that λk(w) and βk(w) satisfy the following singular

value decomposition equation:

G(w)GT(w)βk(w) = λ2
k(w)βk(w), k = 1, . . . , p;
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where G(w) = Σ−1
w M(w). Hence,

Σ−1
w M(w)MT(w)Σ−1

w βk(w) = λ2
k(w)βk(w), k = 1, . . . , p;

where βT
k (w)βk(w) = 1 and βT

k (w)βρ(w) = 0 for k ̸= ρ. Similarly, in the

sample level, we have

Σ̂−1
w M̂(w)M̂T(w)Σ̂−1

w β̂k(w) = λ̂2
k(w)β̂k(w), k = 1, . . . , p;

and β̂T
k (w)β̂k(w) = 1 and β̂T

k (w)β̂ρ(w) = 0 for k ̸= ρ. The singular value

decomposition form in the sample level implies that

Σ−1
w M(w){Σ−1

w M(w)}T{β̂k(w)− βk(w)}+ (Σ̂−1
w −Σ−1

w )M(w)MT(w)Σ−1
w βk(w)

+Σ−1
w {M̂(w)−M(w)}MT(w)Σ−1

w βk(w) +Σ−1
w M(w)MT(w)(Σ̂−1

w −Σ−1
w )βk(w)

+Σ−1
w M(w){M̂(w)−M(w)}TΣ−1

w βk(w) = λk(w){λ̂k(w)− λk(w)}βk(w)

+{λ̂k(w)− λk(w)}λk(w)βk(w) + λ2
k(w){β̂k(w)− βk(w)}+ op(

1√
nh

),

(S2.13)

for k = 1, . . . , d. Multiply both sides of (S2.13) by βT
k (w) from the left, we

get

βT
k (w)

[
(Σ̂−1

w −Σ−1
w )M(w)MT(w)Σ−1

w +Σ−1
w {M̂(w)−M(w)}MT(w)Σ−1

w
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+Σ−1
w M(w)MT(w)(Σ̂−1

w −Σ−1
w ) +Σ−1

w M(w){M̂(w)−M(w)}TΣ−1
w

]
βk(w)

= {λ̂k(w)− λk(w)}λk(w) + λk{λ̂k(w)− λk(w)}+ op(
1√
nh

),

which further suggests that

λ̂k(w) =λk(w) +
βT
k (w)

2λk(w)

[
(Σ̂−1

w −Σ−1
w )M(w)MT(w)Σ−1

w

+Σ−1
w {M̂(w)−M(w)}MT(w)Σ−1

w +Σ−1
w M(w)MT(w)(Σ̂−1

w −Σ−1
w )

+Σ−1
w M(w){M̂(w)−M(w)TΣ−1

w }

]
βk(w) + op(

1√
nh

).

(S2.14)

By lemma A.2 of Cook and Ni (2005) we know that

Σ̂−1
w −Σ−1

w = −Σ−1
w (Σ̂w −Σw)Σ

−1
w + op(

1√
nh

).

Hence, equation (S2.14) becomes

λ̂k(w) =λk(w) +
βT
k (w)

2λk(w)

[
−Σ−1

w (Σ̂w −Σw)Σ
−1
w M(w)MT(w)Σ−1

w

+Σ−1
w {M̂(w)−M(w)}MT(w)Σ−1

w −Σ−1
w M(w)MT(w)Σ−1

w (Σ̂w −Σw)Σ
−1
w

+Σ−1
w M(w){M̂(w)−M(w)}TΣ−1

w

]
βk(w) + op(

1√
nh

),

=λk(w) +Cλk
(w) +Bλk

(w) + op(
1√
nh

)

(S2.15)
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where

Cλk
(w) =

βT
k (w)

2λk(w)

[
−Σ−1

w CΣ,wΣ
−1
w M(w)MT(w)Σ−1

w +Σ−1
w CM,wM

T(w)Σ−1
w

−Σ−1
w M(w)MT(w)Σ−1

w CΣ,wΣ
−1
w +Σ−1

w M(w)CT
M,wΣ

−1
w

]
βk(w),

(S2.16)

and

Bλk
(w) =

βT
k (w)

2λk(w)

[
−Σ−1

w BΣ,wΣ
−1
w M(w)MT(w)Σ−1

w +Σ−1
w BM,wM

T(w)Σ−1
w

−Σ−1
w M(w)MT(w)Σ−1

w BΣ,wΣ
−1
w +Σ−1

w M(w)BT
M,wΣ

−1
w

]
βk(w).

(S2.17)

Now we turn to the expansion of β̂k(w). Since (β1(w), . . . ,βp(w)) is a basis

of Rp, then there exists c∗kj for j = 1, . . . , p, such that β̂k(w) − βk(w) =∑p
j=1 c

∗
kjβj(w) and c∗kj = Op(

1√
nh

+ h2). We will derive the explicit form of

c∗kj in the next step. Note that (S2.13) can be rewritten as

[
Σ−1

w M(w)MT(w)Σ−1
w − λ2

k(w)
]∑p

j=1
c∗kjβj(w)

= λk(w)
{
λ̂k(w)− λk(w)

}
βk(w) +

{
λ̂k(w)− λk(w)

}
λk(w)βk(w)

+
[
Σ−1

w (Σ̂w −Σw)Σ
−1
w M(w)MT(w)Σ−1

w −Σ−1
w {M̂(w)−M(w)}MT(w)Σ−1

w

+Σ−1
w M(w)MT(w)Σ−1

w (Σ̂w −Σw)Σ
−1
w −Σ−1

w M(w){M̂(w)−M(w)}Σ−1
w

]
βk(w).

(S2.18)
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Denote

A(w) = Σ−1
w (Σ̂w −Σw)Σ

−1
w M(w)MT(w)Σ−1

w −Σ−1
w {M̂(w)−M(w)}MT(w)Σ−1

w

+Σ−1
w M(w)MT(w)Σ−1

w (Σ̂w −Σw)Σ
−1
w −Σ−1

w M(w){M̂(w)−M(w)}Σ−1
w .

Multiply both sides of (S2.18) by βT
j (w) (j ̸= k) from the left, we have

c∗kj =
βT
j (w)A(w)βk(w)

λ2
j(w)− λ2

k(w)
, j ̸= k;

in addition, βT
k (w)βk(w) = β̂T

k (w)β̂k(w) = 1 indicates that

0 = {
p∑

j=1

c∗kjβj(w)}Tβk(w) + βk(w)T{
p∑

j=1

c∗kjβj(w)},

which further implies that c∗kk = 0. Let

A1(w) = Σ−1
w BΣ,wΣ

−1
w M(w)MT(w)Σ−1

w −Σ−1
w BM,wM

T(w)Σ−1
w

+Σ−1
w M(w)MT(w)Σ−1

w BΣ,wΣ
−1
w −Σ−1

w M(w)BT
M,wΣ

−1
w ,

and

A2(w) = Σ−1
w CΣ,wΣ

−1
w M(w)MT(w)Σ−1

w −Σ−1
w CM,wM

T(w)Σ−1
w
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+Σ−1
w M(w)MT(w)Σ−1

w CΣ,wΣ
−1
w −Σ−1

w M(w)CT
M,wΣ

−1
w .

Hence, we have

β̂k(w) = βk(w) +Bk(w) +Ck(w) + oP (
1√
nh

). (S2.19)

Denote

Bk(w) =
∑
j ̸=k

βj(w)βT
j (w)A1(w)βk(w)

λ2
j(w)− λ2

k(w)
, (S2.20)

and

Ck(w) =
∑
j ̸=k

βj(w)βT
j (w)A2(w)βk(w)

λ2
j(w)− λ2

k(w)
. (S2.21)

The asymptotic normality is then straightforward via the central limit the-

orem and

Σk(w) = Cov{Ck(w)|w}.

In partial variable dependent SIR, denote G(w) = Σ−1
w MSIR(w), then sub-
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stitute it into (S2.20) and (S2.21),

BSIR
k (w) =

∑
j ̸=k

βSIR
j (w){βSIR

j (w)}T

{λSIR
j (w)}2 − {λSIR

k (w)}2
[
Σ−1

w BΣ,wΣ
−1
w MSIR(w)MT

SIR(w)Σ−1
w

−Σ−1
w BSIR(w)MT

SIR(w)Σ−1
w +Σ−1

w MSIR(w)MT
SIR(w)Σ−1

w BΣ,wΣ
−1
w

−Σ−1
w MSIR(w)BT

SIR(w)Σ−1
w

]
βSIR
k (w),

(S2.22)

CSIR
k (w) =

∑
j ̸=k

βSIR
j (w){βSIR

j (w)}T

{λSIR
j (w)}2 − {λSIR

k (w)}2
[
Σ−1

w CΣ,wΣ
−1
w MSIR(w)MT

SIR(w)Σ−1
w

−Σ−1
w CSIR(w)MT

SIR(w)Σ−1
w +Σ−1

w MSIR(w)MT
SIR(w)Σ−1

w CΣ,wΣ
−1
w

−Σ−1
w MSIR(w)CT

SIR(w)Σ−1
w

]
βSIR
k (w).

Hence,

ΣSIR
k (w) = Cov{CSIR

k (w)|w} (S2.23)

�

Theorem 2 is closely related to the following two assertions:

(a) if λk(w) > λk+1(w), then f 0
n(k) = OP (

1
nh
) almost surely PS given

W = w;

(b) if λk(w) = λk+1(w), then f 0
n(k) = O+

P (cn) almost surely PS given
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W = w,

where cn = [log{log(n)}]−1 and O+
P symbols has been shown in Luo and Li

(2016). We will prove these assertions, and then prove Theorem 2 based on

them.

The nonparametric ladle estimator can pinpoint the rank of a matrix

more precisely than the other order-determination methods when they are

used for the nonparametric model. We established the consistency of the

nonparametric ladle estimator. The next Lemma regulates the order be-

tween the eigenvalues and the variability of eigenvectors. In particular, it

shows that distant eigenvalues are related to the small variability of eigen-

vectors. Ladle estimator allows asymmetric matrices, therefore we apply

it to Ĝ(w)ĜT(w), which amounts to replacing the eigenvalues and eigen-

vectors of Ĝ(w) by its squared singular values and singular vectors, since

G(w) is not a symmetric and semi-positive definite matrix.

Lemma 1. Let cn = {log(log n)}−1. If conditions (C9), (C10), (C11) and

(C12) hold, and G(w)G(w)T ∈ Rp×p is a positive semi-definite matrix of

rank d(w) ∈ {0, . . . , p−1}, then for any k = 1, . . . , p−1, the following rela-
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tion holds for almost every sequence S = {(Y1,X1,W1), (Y2,X2,W2), . . .} :

fn(w, k) =


OP (

1
nh
), λk(w) > λk+1(w);

O+
P (cn), λk(w) = λk+1(w);

where O+
P is defined in Luo and Li (2016).

Lemma 2. Let cn = {log(log n)}−1 and r = ⌊p/ log(p)⌋. For any positive

semi-definite candidate matrix G(w)G(w)T ∈ Rp×p of rank d(w), and for

each k ∈ {0, 1, . . . , r}, we have

ϕn(w, k) =


O+

P (1), if k < d(w);

OP (
1√
cnnh

), if k ≥ d(w);

almost surely PS .

The asymptotic behavior of fn(w, ·) is presented in Lemma 1 and Lemma

2 gives the asymptotic property of ϕn(w, ·). The proof of Lemma 1 and 2

are similar to that of Theorem 1 and Lemma F in Luo and Li (2016), thus

omitted here.

Lemma 3. For any i, j = 1, . . . , p with i ̸= j,

|βT
i (w)β̂j(w)|[λi(w)− λj(w)− {Bλj

(w) +B(w)}] = Op(
1√
nh

),
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where the closed form of Bλj
(w) and B(w) are provided in (S2.17) and

(S2.26) in the Appendix, respectively.

Proof of Lemma 3. Luo and Li (2016) has shown that

G(w)β̂j(w) = G(w)

{
p∑

i=1

rijβi(w)

}
=

p∑
i=1

rijλi(w)βi(w), (S2.24)

and

G(w)β̂j(w) = Ĝ(w)β̂j(w) + {G(w)− Ĝ(w)}β̂j(w) = λ̂j(w)β̂j(w) + {G(w)− Ĝ(w)}β̂j(w),

(S2.25)

where rij = βT
i (w)β̂j(w), β̂j(w) =

∑p
i=1 rijβi(w) and

∑p
i=1 r

2
ij = 1. Ĝ(w)−

G(w) = B(w)+OP

(
1√
nh

)
and λ̂j(w)−λj(w) = Bλj

(w)+Op(
1√
nh
). Here,

we denote G(w) = Σ−1
w M(w). Since

Ĝ(w)−G(w) = Σ−1
w {M̂(w)−M(w)}+ (Σ̂−1

w −Σ−1
w )M(w) + op(

1√
nh

).

Hence

B(w) = Σ−1
w BM,w +Σ−1

w BΣ,wΣ
−1
w M(w). (S2.26)
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Combing (S2.24) and (S2.25), we have

p∑
i=1

rijλi(w)βi(w) =λj(w)β̂j(w) +Bλj
(w)β̂j(w) +B(w)β̂j(w) +Op(

1√
nh

)

=

p∑
i=1

rijλj(w)βi(w) + {Bλj
(w) +B(w)}β̂j(w) +Op(

1√
nh

)

=

p∑
i=1

rijλj(w)βi(w) +

p∑
i=1

rij{Bλj
(w) +B(w)}βi(w) +Op(

1√
nh

).

Hence

p∑
i=1

rij[λi(w)− λj(w)− {Bλj
(w) +B(w)}]βi(w) = Op(

1√
nh

).

Since β1(w), . . . ,βp(w) are orthogonal, we have, for each i ̸= j,

|βT
i (w)β̂j(w)|[λi(w)− λj(w)− {Bλj

(w) +B(w)}] = Op(
1√
nh

).

�

Since the order of bias term is h2, then under condition (C7),

√
nh× h2√
log(log n)

→ 0, as n → ∞,
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the bias term {Bλj
(w) +B(w)} will vanish, such that a direct application

of this Lemma leads to the next lemma.

Lemma 4. Under condition (C9) and (C13), for any positive semi-definite

candidate matrix G(w) ∈ Rp×p and any i, j ∈ {1, . . . , p}, if λi(w) >

λj(w),then

β̂i(w)Tβ∗
j (w) = OP (

1√
nh

),

almost surely PS .

Proof of Lemma 4. Let A1 ∈ F be the event that
{
(nh)1/2{λ̂i(w) −

λi(w)}/
√
log(log n) : n ∈ N

}
is a bounded sequence for each i = 1, . . . , p.

From Assumption (C12) it follows Hardle (1984) that the bias term of

λ̂i(w) − λi(w) vanishes. By the law of the iterated logarithm and Lemma

3.2 of Zhao et al. (1986), pr(A1) = 1. For any s ∈ A1 and i, j = 1, . . . , p,

we have

|λ̂i(w)− λ̂j(w)| = |λi(w)− λj(w)|+ o(1). (S2.27)

Let A2 ∈ F be the event in Assumption (C10). Then pr(A2) = 1. Hence

pr(A1 ∩ A2) = 1. For any fixed s ∈ A1 ∩ A2, by Lemma 3,

β̂T
i (w)β∗

j (w){λ̂i(w)− λ̂j(w)} = OP (
1√
nh

).
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By (S2.27), we have β̂T
i (w)β∗

j (w) = OP (
1√
nh
). �

Proof of Assertion (a). By the law of iterated logarithm, similar to

the proof of Assertion (a) of Luo and Li (2016), we can show that, when

λk(w) > λk+1(w),

1− |det{G11(w)}| = OP (
1

nh
) almost surely PS ,

where G11(w) = T̂T
kT

∗
k. Thus f 0

n(w, k) = OP (
1
nh
) almost surely PS , as

desired. �

Proof of Assertion (b) is omitted here since it’s similar in Luo and Li

(2016). We now prove Theorem 2 by combining lemma 1, lemma 2, lemma

3, lemma 4 and Assertion (a) and (b).

Proof of Theorem 2. It’s easy to see that

OP (
1

nh
) = oP (cn), O+

P (1) = O+
P (cn), OP (

1√
cnnh

) = oP (cn).

Let r = p − 1 if p ≤ 10 and r = [p/ log(p)] otherwise. By assertion (a),
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assertion (b) and Lemma 1 and 2, for any k ∈ {0, 1, . . . , r},


fn(w, k) ≥ 0, ϕn(w, k) = O+

P (cn), if k < d(w);

fn(w, k) = oP (cn), ϕn(w, k) = oP (cn), if k = d(w);

fn(w, k) = O+
P (cn), ϕn(w, k) > 0, if k > d(w);

almost surely PS . Since gn(w) = fn(w) + ϕn(w), lemma D (i) of Luo and

Li (2016) implies that

gn(w, k) =


O+

P (cn), if k ̸= d(w);

oP (cn), if k = d(w);

almost surely PS .

By Lemma D (ii) of Luo and Li (2016), gn is minimized at d(w) in proba-

bility almost surely PS . �

S3. Variable Dependent Partial SAVE

Though SIR has received much attention, it cannot recover any vector in

the central subspace SY |X if the regression function is symmetric about the

origin because SIR is based on the estimation of the conditional mean. To

address this, SAVE (Cook and Weisberg, 1991) was proposed to estimate
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the central space by utilizing the conditional variance function of the co-

variates when the response is given. For partial dimension reduction, Shao

et al. (2009) also developed partial SAVE and showed that partial SAVE is

more comprehensive than partial SIR. As an extension of partial SAVE, we

now develop the variable dependent partial SAVE, which is based on the

proposition S3.1. Parallel to SAVE, we define the following kernel matrix

for variable dependent partial SAVE.

MSAVE(w) , EỸ {Cov(Xw)− Cov(X|Ỹ = l,w)}2

=
∑H

l=1
Pl,w

(
Σw −Rl,w +Vl,wV

T
l,w

)2
,

where Rl,w = E(XXT|Ỹ = l,w) and Vl,w, Pl,w are defined as previously.

EỸ represents expectation with respect to Ỹ .

Proposition S3.1. Conditional on W = w, suppose that linear conditional

mean condition (A1) and constant conditional variance condition (A2) hold,

then

Σ−1
w {Σw − Cov(X|Y,W = w)} = PB(w){Ip −Σ−1

w Cov(X|Y,W = w)}PB(w).

Proof of Proposition S3.1. The proof of Proposition S3.1 is based on
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the Theorem 1 of Cook and Lee (1999). Use the similar abbreviation in

Proposition 1,

Cov(X|Y,W = w) = Cov(Xw|Yw).

Assume that Xw satisfies linear conditional mean (A1) and constant condi-

tional variance (A2), furthermore, constant conditional variance (A2) im-

plies Cov{Xw|BT(w)Xw} = Σw{Ip −PB(w)}. Conditional on W = w, it’s easy

for us to get

Σ−1
w Cov(X|Y,W = w) = Σ−1

w Cov(Xw|Yw)

= Σ−1
w E[Cov{Xw|BT(w)Xw,Yw}|Yw] +Σ−1

w Cov[E{Xw|BT(w)Xw,Yw}|Yw]

= Σ−1
w E[Cov{PT

B(w)Xw +QT
B(w)Xw|BT(w)Xw}|Yw] +Σ−1

w Cov[E{Xw|BT(w)Xw}|Yw]

= Σ−1
w QT

B(w)E[Cov{Xw|BT(w)Xw}|Yw]QB(w) +Σ−1
w PT

B(w)Cov(Xw|Yw)PB(w)

= QB(w)Σ
−1
w E[Cov{Xw|BT(w)Xw}|Yw]QB(w) +PB(w)Σ

−1
w Cov(Xw|Yw)PB(w)

= QB(w) +PB(w)Σ
−1
w Cov(Xw|Yw)PB(w),

where QB(w) = Ip −PB(w). Such that we can derive that

Ip −Σ−1
w Cov(X|Y,W = w) = PB(w){Ip −Σ−1

w Cov(X|Y,W = w)}PB(w).
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The proof is completed. �

Proposition S3.1 implies that Σ−1
w MSAVE(w) ⊆ SYw|Xw almost surely.

Similar to Proposition 2, the proposition S3.2 shows that the term Rl,w =

E(XXT|Ỹ = l,w) can be expressed as a fraction, whose numerator and

denominator are easy to be estimated.

Proposition S3.2. Conditional on W = w, for each l = 1, 2, . . . , H, we

have

E(XXT|Ỹ = l,w) =
E{XXT1(Ỹ = l)|w}

E{1(Ỹ = l)|w}
. (S3.28)

The proof of Proposition S3.2 is similar to that of Proposition 2, and

is omitted.

Thus, the kernel matrix of partial variable dependent SAVE can be

rewritten as

MSAVE(w) =
∑H

l=1
Pl,w

{
Σw − Nl,w

Pl,w

+
Ul,wU

T
l,w

Pl,wPl,w

}2

, (S3.29)

where Nl,w = E{XXT1(Ỹ = l)|w}.

Recall that the goal of variable dependent partial SAVE is to estimate

the SYw|Xw by the estimates of Σ−1
w MSAVE(w). Similar to variable depen-
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dent partial SIR, we have the following NW kernel estimator of Nl,w:

N̂l,w =

∑n
i=1 xix

T
i 1(Ỹi = l)Kh(wi −w)∑n
i=1 Kh(wi −w)

.

Then it is easy for us to get the sample estimator of MSAVE(w):

M̂SAVE(w) =
∑H

l=1
P̂l,w

{
Σ̂w − N̂l,w

P̂l,w

+
Ûl,wÛ

T
l,w

P̂l,wP̂l,w

}2

. (S3.30)

Now we can use Σ̂−1
w M̂SAVE(w) to estimate SYw|Xw . Proposition S3.1 also

leads us to consider the singular value decomposition. Let

Σ−1
w MSAVE(w) =

p∑
k=1

λSAVE
k (w)βSAVE

k (w)ηSAVE
k (w),

λSAVE
1 (w) ≥ · · · ≥ λSAVE

d (w) = 0 = · · · = λSAVE
p (w),

Σ̂−1
w M̂SAVE(w) =

p∑
k=1

λ̂SAVE
k (w)β̂SAVE

k (w)η̂SAVE
k (w),

λ̂SAVE
1 (w) ≥ · · · ≥ λ̂SAVE

d (w) ≥ · · · ≥ λ̂SAVE
p (w),

be the singular value decomposition of Σ−1
w MSAVE(w) and Σ̂−1

w M̂SAVE(w),

respectively. Note that Span{βSAVE
1 (w), . . . ,βSAVE

d(w) (w)} = SYw|Xw , natu-

rally, we propose to use Span{β̂SAVE
1 (w), . . . , β̂SAVE

d(w) (w)} to estimate SYw|Xw .

Proof of Theorem 3. Following by similar argument in Theorem 1, we
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have

N̂l,w −Nl,w = CN,w +BN,w +OP{R5(w)},

where

CN,w =
1

nhf(w)

n∑
i=1

ki(w)
{
xix

T
i 1(Ỹi = l)−Nl,wi

}
, BN,w =

h2ω2

2

(
2
ḟ(w)

f(w)
Ṅl,w + N̈l,w

)
,

and

R5(w) =
1

nf(w)

{∣∣∣∣∣
n∑

i=1

K(
wi −w

h
)
(
xix

T
i 1(Ỹi = l)−Nl,wi

)∣∣∣∣∣
}

+ o(h2).

Denote

El,w = Σw − Nl,w

Pl,w

+
Ul,wU

T
l,w

Pl,wPl,w

,

then the sample estimator of El,w is

Êl,w = Σ̂w − N̂l,w

P̂l,w

+
Ûl,wÛ

T
l,w

P̂l,wP̂l,w

,
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thus

M̂SAVE(w)−MSAVE(w) =
∑H

l=1

(
P̂l,wÊ

2
l,w −Pl,wE

2
l,w

)
=

H∑
l=1

{(
P̂l,w −Pl,w

)
Ê2

l,w +Pl,w

(
Ê2

l,w − E2
l,w

)}
=
∑H

l=1

(
P̂l,w −Pl,w

)
E2

l,w +
∑H

l=1
Pl,w

(
Êl,w − El,w

)
×
(
Êl,w + El,w

)
+ oP

(
1√
nh

)
=
∑H

l=1

(
P̂l,w −Pl,w

)
E2

l,w +
∑H

l=1
2Pl,w

{(
Σ̂w −Σw

)
Σw

+
Nl,w

(
P̂l,w −Pl,w

)
−
(
N̂l,w −Nl,w

)
Pl,w

P2
l,w

Σw

+

(
Ûl,w −Ul,w

)
UT

l,wPl,w +Ul,w

(
Ûl,w −Ul,w

)T
Pl,w − 2Ul,wU

T
l,w

(
P̂l,w −Pl,w

)
P3

l,w

Σw

−
(
Σ̂w −Σw

) Nl,w

Pl,w

−
Nl,w

(
P̂l,w −Pl,w

)
−
(
N̂l,w −Nl,w

)
Pl,w

P2
l,w

Nl,w

Pl,w

−

(
Ûl,w −Ul,w

)
UT

l,wPl,w +Ul,w

(
Ûl,w −Ul,w

)T
Pl,w − 2Ul,wU

T
l,w

(
P̂l,w −Pl,w

)
P3

l,w

Nl,w

Pl,w

+
(
Σ̂w −Σw

) Ul,wU
T
l,w

P2
l,w

+
Nl,w

(
P̂l,w −Pl,w

)
−
(
N̂l,w −Nl,w

)
Pl,w

P2
l,w

Ul,wU
T
l,w

P2
l,w

+

(
Ûl,w −Ul,w

)
UT

l,wPl,w +Ul,w

(
Ûl,w −Ul,w

)T
Pl,w − 2Ul,wU

T
l,w

(
P̂l,w −Pl,w

)
P3

l,w

Ul,wU
T
l,w

P2
l,w

}

+ oP

(
1√
nh

)
= BSAVE +CSAVE + oP

(
1√
nh

)
,
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where

BSAVE =
∑H

l=1
BP,wE

2
l,w + 2

∑H

l=1
Pl,w

{
BΣ,wΣw +

Nl,wBP,w −BN,wPl,w

P2
l,w

Σw

+
BU,wU

T
l,wPl,w +Ul,wB

T
U,wPl,w − 2Ul,wU

T
l,wBP,w

P3
l,w

Σw −BΣ,w
Nl,w

Pl,w

− Nl,wBP,w −BN,wPl,w

P2
l,w

Nl,w

Pl,w

−
BU,wU

T
l,wPl,w +Ul,wB

T
U,wPl,w − 2Ul,wU

T
l,wBP,w

P3
l,w

Nl,w

Pl,w

+BΣ,w

Ul,wU
T
l,w

P2
l,w

+
Nl,wBP,w −BN,wPl,w

P2
l,w

Ul,wU
T
l,w

P2
l,w

+
BU,wU

T
l,wPl,w +Ul,wB

T
U,wPl,w − 2Ul,wU

T
l,wBP,w

P3
l,w

Ul,wU
T
l,w

P2
l,w

}
,

(S3.31)

and

CSAVE =
∑H

l=1
CP,wE

2
l,w + 2

∑H

l=1
Pl,w

{
CΣ,wΣw +

Nl,wCP,w −CN,wPl,w

P2
l,w

Σw

+
CU,wU

T
l,wPl,w +Ul,wC

T
U,wPl,w − 2Ul,wU

T
l,wCP,w

P3
l,w

Σw −CΣ,w
Nl,w

Pl,w

− Nl,wCP,w −CN,wPl,w

P2
l,w

Nl,w

Pl,w

−
CU,wU

T
l,wPl,w +Ul,wC

T
U,wPl,w − 2Ul,wU

T
l,wCP,w

P3
l,w

Nl,w

Pl,w

+CΣ,w

Ul,wU
T
l,w

P2
l,w

+
Nl,wCP,w −CN,wPl,w

P2
l,w

Ul,wU
T
l,w

P2
l,w

+
CU,wU

T
l,wPl,w +Ul,wC

T
U,wPl,w − 2Ul,wU

T
l,wCP,w

P3
l,w

Ul,wU
T
l,w

P2
l,w

}
.

(S3.32)
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Similar to the proof of Theorem 1, we have

√
nh
(
vech{M̂SAVE(w)} − vech{MSAVE(w)} − vech{BSAVE(w)}

)
d−→ N(0, f−1(w)ω0C

SAVE(w)),

(S3.33)

where ω0 is defined as follows. Hence

CSAVE(w) = Cov[vech{CSAVE(w)}|w]. (S3.34)

Then for singular value decomposition, in partial variable dependent SAVE,

denote G(w) = Σ−1
w MSAVE(w), then substitute it into (S2.20) and (S2.21),

BSAVE
k (w) =

∑
j ̸=k

βSAVE
j (w){βSAVE

j (w)}T

{λSAVE
j (w)}2 − {λSAVE

k (w)}2
[
MT

SAVE(w)Σ−1
w BΣ,wΣ

−1
w Σ−1

w MSAVE(w)

−BT
SAVE(w)Σ−1

w Σ−1
w MSAVE(w) + {Σ−1

w MSAVE(w)}TΣ−1
w BΣ,wΣ

−1
w MSAVE(w)

− {Σ−1
w MSAVE(w)}TΣ−1

w BSAVE(w)
]
βSAVE
k (w),

(S3.35)

CSAVE
k (w) =

∑
j ̸=k

βSAVE
j (w){βSAVE

j (w)}T

{λSAVE
j (w)}2 − {λSAVE

k (w)}2
[
MT

SAVE(w)Σ−1
w CΣ,wΣ

−1
w Σ−1

w MSAVE(w)

−CSAVE(w)TΣ−1
w Σ−1

w MSAVE(w) + {Σ−1
w MSAVE(w)}TΣ−1

w CΣ,wΣ
−1
w MSAVE(w)

− {Σ−1
w MSAVE(w)}TΣ−1

w CSAVE(w)
]
βSAVE
k (w).
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Hence,

ΣSAVE
k (w) = Cov{CSAVE

k (w)|w} (S3.36)

�

S4. Variable Dependent Partial DR

Another popular method of sufficient dimension reduction is Directional

Regression (DR) (Li and Wang, 2007), which implicitly synthesizes sliced

inverse regression and sliced average variance estimation. DR enjoys the

advantage of high accuracy and convenient computation, and has received

substantial attention in the literature of sufficient dimension reduction (Yu,

2014; Yu and Dong, 2016). Parallel to variable dependent partial SIR and

variable dependent partial SAVE, we now propose variable dependent par-

tial DR approach to perform variable dependent partial dimension reduc-

tion.

Now we can define the kernel matrix for variable dependent partial DR,

MDR(w) , EY,Y̆ {2Σw − E{(X− X̆)(X− X̆)T|Y, Y̆ ,W = w}}2,

Where EY,Y̆ represents expectation with respect to Y and Y̆ .
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Proposition S4.3. Conditional on W = w, assume that linear conditional

mean condition (A1) and constant conditional variance condition (A2) hold,

then

Σ−1
w [2Σw − E{(X− X̆)(X− X̆)T|Y, Y̆ ,W = w}]

=PB(w)[2Ip −Σ−1
w E{(X− X̆)(X− X̆)T|Y, Y̆ ,W = w}]PB(w),

where (X̆, Y̆ ) is an independent copy of (X, Y ).

Proof of Proposition S4.3. Assume that Xw satisfies linear condi-

tional mean (A1) and constant conditional variance (A2), conditional on

W = w, it’s easy for us to get

Σ−1
w E{(X− X̆)(X− X̆)T|Y, Y̆ ,W = w}

= Σ−1
w E{(Xw − X̆w)(Xw − X̆w)

T|Yw, Y̆w}

= Σ−1
w {E(XwX

T
w|Yw)− E(Xw|Yw)E(X̆T

w|Y̆w)− E(X̆w|Y̆w)E(XT
w|Yw) + E(X̆wX̆

T
w|Y̆w)}

= Σ−1
w

(
E [E{XwX

T
w|BT(w)Xw, Yw}|Yw]− E[E{Xw|BT(w)Xw, Yw}|Yw]E[E{X̆T

w|BT(w)X̆w, Y̆w}|Y̆w]

− E[E{X̆w|BT(w)X̆w, Y̆w}|Y̆w]E[E{XT
w|BT(w)Xw, Yw}|Yw] + E [E{XwX

T
w|BT(w)Xw, Yw}|Yw]

)
= Σ−1

w

(
E [Cov{Xw|BT(w)Xw}|Yw] + E[E{Xw|BT(w)Xw}E{XT

w|BT(w)Xw}|Yw]

− E[E{Xw|BT(w)Xw}|Yw]E[E{X̆T
w|BT(w)X̆w}|Y̆w]− E[E{X̆w|BT(w)X̆w}|Y̆w]E[E{XT

w|BT(w)Xw}|Yw]

+ E
[
Cov{X̆w|BT(w)X̆w}|Y̆w

]
+ E

[
E{X̆w|BT(w)X̆w}E{X̆T

w|BT(w)X̆w}|Y̆w
] )
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= QB(w) +PB(w)Σ
−1
w E(XwX

T
w|Yw)PB(w) −PB(w)Σ

−1
w E(Xw|Yw)E(X̆T

w|Y̆w)PB(w)

−PB(w)Σ
−1
w E(X̆w|Y̆w)E(XT

w|Yw)PB(w) +QB(w) +PB(w)Σ
−1
w E(X̆wX̆

T
w|Y̆w)PB(w).

Recall that QB(w) = Ip −PB(w). Then we can derive that

Σ−1
w [2Σw − E{(X− X̆)(X− X̆)T|Y, Y̆ ,W = w}]

= PB(w)[2Ip −Σ−1
w E{(X− X̆)(X− X̆)T|Y, Y̆ ,W = w}]PB(w).

The proof is completed. �

Proposition S4.3 implies that Σ−1
w MDR(w) ⊆ SYw|Xw almost surely. Ac-

cording to Proposition 1 of Li and Wang (2007), the kernel matrix MDR(w)

can be rewritten as

MDR(w) =2
H∑
l=1

Pl,w (Rl,w −Σw)
2 + 2

(
H∑
l=1

Pl,wVl,wV
T
l,w

)2

+ 2

(
H∑
l=1

Pl,wV
T
l,wVl,w

)(
H∑
l=1

Pl,wVl,wV
T
l,w

)
,

where Pl,w, Rl,w and Vl,w are defined as previously. And the sample esti-
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mator of MDR(w) can be easily found by

M̂DR(w) =2
H∑
l=1

P̂l,w

(
R̂l,w − Σ̂w

)2
+ 2

(
H∑
l=1

P̂l,wV̂l,wV̂
T
l,w

)2

+ 2

(
H∑
l=1

P̂l,wV̂
T
l,wV̂l,w

)(
H∑
l=1

P̂l,wV̂l,wV̂
T
l,w

)
.

(S4.37)

Then we use Σ̂−1
w M̂DR(w) to estimate SYw|Xw . Proposition S4.3 also leads

us to consider the singular value decomposition. Let

Σ−1
w MDR(w) =

p∑
k=1

λDR
k (w)βDR

k (w)ηDR
k (w), λDR

1 (w) ≥ · · · ≥ λDR
d (w) = 0 = · · · = λDR

p (w),

Σ̂−1
w M̂DR(w) =

p∑
k=1

λ̂DR
k (w)β̂DR

k (w)η̂DR
k (w), λ̂DR

1 (w) ≥ · · · ≥ λ̂DR
d (w) ≥ · · · ≥ λ̂DR

p (w),

be the singular value decomposition of Σ−1
w MDR(w) and Σ̂−1

w M̂DR(w), re-

spectively. Then Span{βDR
1 (w), . . . ,βDR

d(w)(w)} = SYw|Xw , and the final

sample estimator of SYw|Xw is Span{β̂DR
1 (w), . . . , β̂DR

d(w)(w)}.

Proof of Theorem 4. Firstly, we have

M̂DR(w)−MDR(w)

= 2
H∑
l=1

{
P̂l,w

(
N̂l,w

P̂l,w

− Σ̂w

)2

−Pl,w

(
Nl,w

Pl,w
−Σw

)2
}

+ 2

{(
H∑
l=1

Ûl,wÛ
T
l,w

P̂l,w

)2

−

(
H∑
l=1

Ul,wU
T
l,w

Pl,w

)2}

+ 2

{(
H∑
l=1

ÛT
l,wÛl,w

P̂l,w

)(
H∑
l=1

Ûl,wÛ
T
l,w

P̂l,w

)
−

(
H∑
l=1

UT
l,wUl,w

Pl,w

)(
H∑
l=1

Ul,wU
T
l,w

Pl,w

)}
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= 2
H∑
l=1

{(
P̂l,w −Pl,w

)(Nl,w

Pl,w
−Σw

)2

+Pl,w

(
N̂l,w

P̂l,w

− Σ̂w +
Nl,w

Pl,w
−Σw

)

×

(
N̂l,w

P̂l,w

− Σ̂w −
Nl,w

Pl,w
+Σw

)}
+ 2

H∑
l=1

(
Ûl,wÛ

T
l,w

P̂l,w

+
Ul,wU

T
l,w

Pl,w

)

×
H∑
l=1

(
Ûl,wÛ

T
l,w

P̂l,w

−
Ul,wU

T
l,w

Pl,w

)
+ 2

H∑
l=1

(
ÛT

l,wÛl,w

P̂l,w

−
UT

l,wUl,w

Pl,w

)(
H∑
l=1

Ul,wU
T
l,w

Pl,w

)

+ 2

H∑
l=1

UT
l,wUl,w

Pl,w

H∑
l=1

(
Ûl,wÛ

T
l,w

P̂l,w

−
Ul,wU

T
l,w

Pl,w

)}
+ oP

(
1√
nh

)

= 2

H∑
l=1

{(
P̂l,w −Pl,w

)(Nl,w

Pl,w
−Σw

)2

+ 2Nl,w

(
N̂l,w

P̂l,w

−
Nl,w

Pl,w

)
− 2Nl,w

(
Σ̂w −Σw

)
− 2Pl,wΣw

(
N̂l,w

P̂l,w

−
Nl,w

Pl,w

)
+ 2Pl,wΣw

(
Σ̂w −Σw

)}

+ 4

{
H∑
l=1

Ul,wU
T
l,w

Pl,w

H∑
l=1

(
Ûl,wÛ

T
l,w

P̂l,w

−
Ul,wU

T
l,w

Pl,w

)}
+ 2

H∑
l=1

(
ÛT

l,wÛl,w

P̂l,w

−
UT

l,wUl,w

Pl,w

)(
H∑
l=1

Ul,wU
T
l,w

Pl,w

)

+ 2
H∑
l=1

UT
l,wUl,w

Pl,w

H∑
l=1

(
Ûl,wÛ

T
l,w

P̂l,w

−
Ul,wU

T
l,w

Pl,w

)
+ oP

(
1√
nh

)

= 2
H∑
l=1

{(
P̂l,w −Pl,w

)(Nl,w

Pl,w
−Σw

)2

+ 2Nl,w

(
N̂l,w −Nl,w

)
Pl,w −Nl,w

(
P̂l,w −Pl,w

)
P2

l,w

− 2Nl,w

(
Σ̂w −Σw

)
− 2Σw

(
N̂l,w −Nl,w

)
Pl,w −Nl,w

(
P̂l,w −Pl,w

)
Pl,w

+ 2Pl,wΣw

(
Σ̂w −Σw

)}

+ 2

H∑
l=1

(
2
Ul,wU

T
l,w

Pl,w
+

UT
l,wUl,w

Pl,w

)

×
H∑
l=1

(
Ûl,w −Ul,w

)
UT

l,wPl,w +Ul,w

(
Ûl,w −Ul,w

)T
Pl,w −Ul,wU

T
l,w

(
P̂l,w −Pl,w

)
P2

l,w

+ 2

H∑
l=1

(
Ûl,w −Ul,w

)T
Ul,wPl,w +UT

l,w

(
Ûl,w −Ul,w

)
Pl,w −UT

l,wUl,w

(
P̂l,w −Pl,w

)
P2

l,w

×

(
H∑
l=1

Ul,wU
T
l,w

Pl,w

)
+ oP

(
1√
nh

)
= BDR +CDR + oP

(
1√
nh

)
,
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where

BDR =2
H∑
l=1

{
BP,w

(
Nl,w

Pl,w

−Σw

)2

+ 2Nl,w
BN,wPl,w −Nl,wBP,w

P2
l,w

− 2Nl,wBΣ,w

− 2Σw
BN,wPl,w −Nl,wBP,w

Pl,w

+ 2Pl,wΣwBΣ,w

}
+ 2

H∑
l=1

(
2
Ul,wU

T
l,w

Pl,w

+
UT

l,wUl,w

Pl,w

)

×
H∑
l=1

BU,wU
T
l,wPl,w +Ul,wB

T
U,wPl,w −Ul,wU

T
l,wBP,w

P2
l,w

+ 2
H∑
l=1

BT
U,wUl,wPl,w +UT

l,wBU,wPl,w −UT
l,wUl,wBP,w

P2
l,w

(
H∑
l=1

Ul,wU
T
l,w

Pl,w

)
(S4.38)

and

CDR =2
H∑
l=1

{
CP,w

(
Nl,w

Pl,w

−Σw

)2

+ 2Nl,w
CN,wPl,w −Nl,wCP,w

P2
l,w

− 2Nl,wCΣ,w

− 2Σw
CN,wPl,w −Nl,wCP,w

Pl,w

+ 2Pl,wΣwCΣ,w

}
+ 2

H∑
l=1

(
2
Ul,wU

T
l,w

Pl,w

+
UT

l,wUl,w

Pl,w

)

×
H∑
l=1

CU,wU
T
l,wPl,w +Ul,wC

T
U,wPl,w −Ul,wU

T
l,wCP,w

P2
l,w

+ 2
H∑
l=1

CT
U,wUl,wPl,w +UT

l,wCU,wPl,w −UT
l,wUl,wCP,w

P2
l,w

(
H∑
l=1

Ul,wU
T
l,w

Pl,w

)
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Similar to the proof of Theorem 1 and 3, we have

√
nh
(
vech{M̂DR(w)} − vech{MDR(w)} − vech{BDR(w)}

)
d−→ N(0, f−1(w)ω0C

DR(w)),

(S4.39)

where ω0 is defined as previously. Hence

CDR(w) = Cov[vech{CDR(w)}|w]. (S4.40)

Then for singular value decomposition, in partial variable dependent DR,

denote G(w) = Σ−1
w MDR(w), then substitute it into (S2.20) and (S2.21),

BDR
k (w) =

∑
j ̸=k

βDR
j (w){βDR

j (w)}T

{λDR
j (w)}2 − {λDR

k (w)}2
[
MT

DR(w)Σ−1
w BΣ,wΣ

−1
w Σ−1

w MDR(w)

−BT
DR(w)Σ−1

w Σ−1
w MDR(w) + {Σ−1

w MDR(w)}TΣ−1
w BΣ,wΣ

−1
w MDR(w)

− {Σ−1
w MDR(w)}TΣ−1

w BDR(w)
]
βDR
k (w),

(S4.41)

CDR
k (w) =

∑
j ̸=k

βDR
j (w){βDR

j (w)}T

{λDR
j (w)}2 − {λDR

k (w)}2
[
MT

DR(w)Σ−1
w CΣ,wΣ

−1
w Σ−1

w MDR(w)

−CDR(w)TΣ−1
w Σ−1

w MDR(w) + {Σ−1
w MDR(w)}TΣ−1

w CΣ,wΣ
−1
w MDR(w)

− {Σ−1
w MDR(w)}TΣ−1

w CDR(w)
]
βDR
k (w).
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Hence,

ΣDR
k (w) = Cov{CDR

k (w)|w} (S4.42)

�

S5. The Bandwidth Selection for Variable Dependent Partial

SAVE and DR

For variable dependent partial SAVE, since Cook and Yin (2001) has shown

that SAVE is closely related to quadratic discriminant analysis, the band-

width selection can be conducted by first minimizing (S5.43), assuming that

X|(Ỹ = l,W = w) ∼ N(ml(w),Σlw), where Σlw is different in every slice,

CV (hl) =
1

nl

nl∑
i=1

[
{xi − m̂

(−i)
l (w)}TΣ̂−1

lw(−i)(w){xi − m̂
(−i)
l (w)}+ log |Σ̂lw(−i)(w)|

]
.

(S5.43)

The optimal bandwidth hopt for variable dependent partial SAVE is then

selected by choosing the value of hl which maximizes (1.11). For variable

dependent partial DR, we use the same bandwidth selection procedure as

variable dependent partial SAVE since DR synthesizes the dimension re-

duction methods based on the first two conditional moments.
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