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ABSTRACT
Variable selection is a very important tool when dealing with high
dimensional data. However, most popular variable selection meth-
ods are model based, which might provide misleading results when
the model assumption is not satisfied. Sufficient dimension reduc-
tion provides a general framework for model-free variable selection
methods. In this paper, we propose a model-free variable selec-
tion method via sufficient dimension reduction, which incorporates
the grouping information into the selection procedure for multi-
population data. Theoretical properties of our selectionmethods are
also discussed. Simulation studies suggest that our method greatly
outperforms those ignoring the grouping information.
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1. Introduction

The importance of variable selection becomes more critical nowadays since modern sci-
entific innovations allow scientists to collect massive and high-dimensional data at a rapid
rate. Often the dimensions of the predictors (p) may greatly surpass the relative small
sample size (n). Many methods have been developed in recent years to extract the signifi-
cant variables effectively under the so-called n<p context. However, most of the popular
variable selection methods, such as nonnegative garrotte (Breiman 1995), LASSO (Tibshi-
rani 1996), SCAD (Fan and Li 2001), adaptive LASSO (Zou 2006), group LASSO (Yuan
and Lin 2006), Dantzig selector (Candes and Tao 2007) and MCP (Zhang 2010), are
model based, where a linear model or generalised linear model is assumed. Such methods
might generate biased results if the underlying modelling assumption is violated, which is
typically the case for complex or unknown models. Hence, model-free variable selection
method, which does not require the full knowledge of the underlying true model, is called
for.

Let X = (X1, . . . ,Xp)
T be the p-dimensional predictor and Y be the scalar response.

Let I = {1, 2, . . . , p} denote the complete index set. Model-free variable selection aims to
identify the index setA ⊂ I such that

Y XAc |XA, (1)
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whereAc is the complement set ofA andXA = {Xi : i ∈ A}. The goal here is to identify the
smallest XA which contains all the active predictors. Yin and Hilafu (2015) gave a detailed
discussion of the existence and uniqueness of such a setA. As pointed out by Bondell and
Li (2009), the general framework of sufficient dimension reduction (Li 1991; Cook 1998)
is very useful for model-free variable selection since no pre-specified underlying models
between the response and the predictors are required.

When n>p, Ni, Cook, and Tsai (2005), Li andNachtsheim (2006) and Li andYin (2008)
proposed model-free variable selections by reformulating sufficient dimension reduction
as a penalised regression problem. Li (2007) proposed a unified approach combining SDR
and shrinkage estimation to produce sparse estimators of the central subspace. Wang and
Zhu (2015) proposed a distribution-weighted lasso method for the single index model.
Chen, Zou, and Cook (2010) proposed coordinate-independent sparse dimension reduc-
tion (CISE) imposing a subspace-oriented penalty. However, none of those model-free
variable selections can deal with variable selection when n<p. Such situations do arise in
many high dimensional data sets in bioinformatics, machine learning and pattern recogni-
tion. Recently, Yin and Hilafu (2015) proposed a sequential method which transforms the
original problem to the regular n<p one, by decomposing the original data into pieces.
However, there might be some issues with implementations of their method since differ-
ent partitions of the predictors might lead to different results. Yu, Dong, and Zhu (2016)
developed a novel model-free variable selection method under the n<p context, the trace
pursuitmethod, which could be combined with many existing sufficient dimension reduc-
tion methods. Their method provides a versatile framework for variable selection via
stepwise trace pursuit (STP), which can be viewed as a model-free counterpart of the
classical stepwise regression.

However, in practice, we often deal with situations where the data came from different
groups, say, males or females. It would be desirable to incorporate those grouping infor-
mation into the variable selection procedure, since it might be related to both the response
and the predictors. In this paper, we extend the trace pursuit method to data with multiple
groups. Our simulation studies suggest that the selection performances could be greatly
improved with the utilisation of the grouping information. Specifically, the underfit (omis-
sion of significant variables) rate is greatly reduced, while the correct fit rate is significantly
improved.

The rest of this article is organised as follows. We first give a brief introduction of suf-
ficient dimension reduction methods and trace pursuit method for a single population in
Section 2. In Section 3, we present our new estimation method in details and also discuss
its related asymptotic properties. We illustrate the performance of our methods via simu-
lation studies in Section 4. Brief conclusions and a discussion on future research directions
are given in Section 5.

2. Sufficient dimension reduction for a single population

For regression problems Y |X within a single population, Li (1991) and Cook (1998) pro-
posed sufficient dimension reduction that aims at reducing the dimension of X while
preserving the regression relationship between Y and X without requiring a parametric
model. Specifically, the scope of sufficient dimension reduction is to seek a set of linear
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combinations of X, say βTX, where β is a p × dmatrix with d ≤ p, such that

Y X | βTX. (2)

The column space of β is then called a dimension reduction space, and the smallest
dimension reduction space is defined as the central subspace, denoted by SY |X. It is the
intersection of all dimension reduction spaces. The goal of sufficient dimension reduction
is to make inferences about the central subspace and its dimension d, which is called the
structural dimension of the regression. Subsequent modelling and prediction can be built
upon those d reduced directions.

Sufficient dimension reduction has received considerable interests in recent years due to
the ubiquity of large high-dimension data sets which are now more readily available than
in the past. Many methods have been developed, including sliced inverse regression (SIR;
Li 1991), sliced average variance estimation (SAVE; Cook and Weisberg 1991), minimum
average variance estimation (MAVE; Xia, Tong, Li, and Zhu 2002), directional regres-
sion (DR; Li and Wang 2007), likelihood acquired directions (LAD; Cook and Farzani,
2009) , cumulative slicing estimation (CUME; Zhu, Wang, Zhu, and Ferré 2010), dimen-
sion reduction for special-structured X (Li, Kim, and Altman 2010), nonlinear sufficient
dimension reduction (Lee, Li, and Chiaromonte 2013), sufficient dimension reduction via
a semiparametric approach (Ma and Zhu 2012, 2013) and many others.

We now briefly review the most widely used sufficient dimension reduction method,
SIR (Li 1991). Let � = Cov(X) denote the marginal covariance matrix of X, μ = E(X),
and let Z = �−1/2(X − E(X)) be the standardized predictor. By the invariance property
(Cook 1998), we have SY |X = �−1/2SY |Z, where SY |Z is the central subspace for the
regression ofY |Z. Unlike traditional regressionmodelling, sufficient dimension reduction
methods rely on an assumption about the marginal distribution of Z instead of the con-
ditional distribution of Y |Z. The so-called linearity condition requires that E(Z | ρTZ) be
a linear function of ρTZ, where the columns of the p × d matrix ρ form an orthonormal
basis for SY |Z. For more detailed discussions of the linearity condition (LM condition),
please see Feng, Wen, Yu, and Zhu (2013) .

The linearity condition connects the central subspacewith the inverse regression ofZ on
Y . Li (1991) showed that E(Z |Y) ∈ SY |Z when it holds. When Y is continuous, Li (1991)
proposed estimating E(Z |Y) by replacing Y with a discrete version constructed by par-
titioning the range of Y into H fixed non-overlapping slices s1, . . . , sH . Let ph = Pr{Y ∈
sh}, mh = E(Z |Y ∈ sh), Msir = ∑H

h=1 phmhmT
h . Li (1991) showed that the eigenvectors

corresponding to the d nonzero eigenvalues ofMsir form a basis of SY |Z.
Let M̂sir denote a consistent estimate of Msir, SIR made use of the span of the eigen-

vectors corresponding to the d largest eigenvalues of M̂sir to estimate Span(Msir). The
eigenvalues provide a test statistic for hypotheses on the structural dimension, and the
eigenvectors can be linearly transformed back to theX-scale to form a basis for SY |X. This
is the so-called spectral decomposition approach (Wen and Cook 2009), since it is based
on a spectral decomposition of the sample kernel matrix M̂sir. SAVE (Cook and Weis-
berg 1991) and DR (Li and Wang 2007) took the same spectral decomposition approach
via different kernel matrices:Msave = E{Ip − Var(Z |Y)}2 andMdr = 2E{E2(ZZT |Y)} +
2E2{E(Z |Y)E(ZT |Y)} + 2E{E(ZT |Y)E(Z |Y)}E{E(Z |Y)E(ZT |Y)} − 2Ip. SAVE and
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DR require a constant conditional variance condition (Var(Z | ρTZ) is nonrandom) in
addition to the linearity condition.

3. Trace pursuit variable selection for multiple groups

3.1. The test statistics

For ease of exposition, we follow Yu et al. (2016) to assume thatA = {1, . . . , q}. Then (1) is
equivalent to the following hypothesis testingwithin the framework of sufficient dimension
reduction:

PHSY |X = Op, (3)

where P(.) denotes the projection operator with respect to the standard inner product,
H = Span{(0(p−q)×q, Ip−q)

T} is the subspace of the predictor space, corresponding to the
coordinates of the inactive predictors, and Op is the origin in R

p. Cook (2004) first pro-
posed a test for testing hypothesis of (3) based on a generalised least square rederivation of
the SIR estimator forSY |X. Shao, Cook, andWeisberg (2009) andmany others also consid-
ered (3) based on other estimators of SY |X. However, all those tests will not be applicable
when n<p, due to the difficulty of obtaining a sensible initial estimator for SY |X. Zhong,
Zhang, Zhu, and Liu (2012) and Jiang and Liu (2014) tackled testing (3) via SIR method.
However, both methods require the estimation of the rank of SY |X (the so-called order
determination), which is a very challenging problem when n<p. Yu et al. (2016) pro-
posed a novel trace pursuit approach to conductmodel-free variable selection via sufficient
dimension reduction approach for n<p, which successfully circumvents the need of order
determination. However, as we discussed in Section 1, none of those methods took the
grouping information into consideration for data from multiple groups. In this section,
we extend the trace pursuit method to deal with this specific issue. As Yu et al. (2016)
pointed out, the trace pursuit method can be combined with many commonly used suffi-
cient dimension reduction methods. We will propose our method with SIR in this article,
since themethodology can be extended to SAVEandDR similarly. In the numerical studies,
we provide simulation results via all three methods.

We first introduce the concept of partial central subspace which was proposed by
Chiaromonte, Cook, and Li (2002) when the predictor is amixture of a p-dimensional con-
tinuous vectorX and a categorical variableW, and the dimension reductionwas focused on
X alone. The partial central subspace (S(W)

Y |X) is defined as the intersection of all subspaces
Span(β) satisfying

Y X | (βTX,W), (4)

whereW ∈ {1, . . . ,K} is a categorical predictor (or group indicator). Let (Xw,Yw) denote
a generic pair of (X,Y) for the wth group, �w = Var(Xw), and Zw = �w

−1/2(Xw − μw).
Let SYw |Xw be the central subspace for the regression of Yw |Xw. The following equation
(Chiaromonte et al. 2002) connects the partial central subspacewith the conditional central
subspaces:

S(W)
Y |X =

K∑
w=1

SYw |Xw . (5)
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Equation (5) is the key to the connection between the partial central subspace and the con-
ditional central subspaces. It showed how we can obtain an estimate of the partial central
subspace through the conditional central subspaces. Partial SIR (Chiaromonte et al. 2002),
Partial OPIRE (Wen and Cook 2007) and PDEE (Feng et al. 2013) were all developed to
estimate the partial central subspace based on Equation (5). Equation (5) also suggests that
S(W)
Y |X contains each conditional central subspace SYw |Xw .
For multiple population data, the original testing problem (1) becomes

Y XAc | (XA,W), (6)

where W is the group indicator. Adopting the concept of partial central subspace, (6) is
equivalent to testing:

Ho : PHS(W)
Y |X = Op, (7)

versus not Ho.
Within group w, without loss of generality, we assume that E(Xw = 0). Partition the

range of Yw intoHw fixed non-overlapping slices s1, . . . , sHw. Let pw = Pr(W = w), phw =
Pr{Yw ∈ shw}, Uhw = E(Xw |Yw ∈ shw). Based on (5), we can hence construct the ker-
nel matrix for SIR as M = ∑K

w=1 pw�w
−1/2(

∑Hw
h=1 phwUhwUT

hw)�w
−1/2. For any index

set F , denote XF = {Xi : i ∈ F}, Var(XF |W = w) = �wF and UF ,hw = E(XF |Yw ∈
shw,W = w). Define MF = ∑K

w=1 pw�w
−1/2
F (

∑Hw
h=1 phwUF ,hwUT

F ,hw)�w
−1/2
F , we have

the following proposition.

Proposition 3.1: Assuming the linearity condition for X within each group, then for any
index setF such thatA ⊆ F ⊆ I , we have tr(MA) = tr(MF ) = tr(MI), whereA denotes
the active index set such that Y XAc | (XA,W), and Is denotes the full index set.

The proof of Proposition 3.1 is provided in the appendix. It suggests that for all the sets
satisfyingF ⊇ A, tr(MF )will be the same as tr(MA). Hence, assuming thatXF is already
in the model, then for any Xj /∈ XF , we can use the differences between tr(MF∪j) and
tr(MF ) to test the contribution of the additional variable Xj to the regression of Y versus
(X,W).

Assuming a subset linearity condition for any Xj /∈ XF , which requires that
E(Xj |XF ,W = w) is a linear function of XF within each group w, the following theorem
provides a way to calculate the trace differences: tr(MF∪j) − tr(MF ).

Theorem 3.1: Assuming a subset linearity condition defined as above, then for anyF ⊂ I ,
and j ∈ F c, we have

• IfA ⊆ F , then tr(MF∪j) − tr(MF ) = 0.
• If A �⊆ F , then tr(MF∪j) − tr(MF ) = ∑K

w=1 pw(
∑Hw

h=1 phwγ 2
j |wF ,hw), where

γ j |wF ,hw = E(γ j |F |Y ∈ shw ,W = w)withXj |F = Xj − E(Xj |XF ),σ 2
j |F = Var(Xj |F)

and γ j |F = Xj |F/σj |F .

Let (Ywi,Xwi), i = 1, . . . , nw, be a simple random sample of size nw from thewth group
(Yw,Xw) for w = 1, . . . ,K. Let X̄w = (1/nw)

∑nw
i=1 Xwi and �̂w = (1/nw)

∑nw
i=1(Xwi −
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X̄w)(Xwi − X̄w)T. X̄wF and �̂wF can be defined similarly. Let nhw denote the total number
of data points in the hth slice within group w. Let p̂w = nw/n, where n = n1 + · · · + nK .
Let p̂hw = nhw/nw, the sample proportion of data points in the hth slice within group w.
Let ÛF ,hw = 1/nhw

∑
i:Ywi∈shw(Xwi,F − X̄wF ). We can construct M̂F , the sample version

ofMF , as
∑K

w=1 p̂w�̂
−1/2
wF (

∑Hw
h=1 p̂hwÛF ,hwÛT

F ,hw)�̂
−1/2
wF .

Let Tj |F = n(tr(M̂F∪j) − tr(M̂F )) be the test statistic for hypothesis (6). Theorem 3.1
can be used to calculate Tj|F , with pw, phw and γ j |F being estimated using their corre-
sponding sample versions. The asymptotic distribution of Tj |F is given in the following
theorem.

Theorem 3.2: Let (Ywi,Xwi), j = 1, . . . , nw, be a simple random sample with finite fourth
moments of size nw from the wth group (Yw,Xw) for w = 1, . . . ,K. Assuming the subset
linearity condition as in Theorem 3.1, and |F | is fixed when n goes to infinity, then under
Ho : Y Xj | (XF ,W), j ∈ F c, we have

Tj|F −→
H∑
i=1

ω2
j |F ,iχ

2
1 ,

where H = H1 + · · · + HK is the total number of slices, ωj |F ,1 ≥ · · · ≥ ωj |F ,H are the
eigenvalues of �j |F as defined in the Appendix.

3.2. The selection procedure

Following Yu et al. (2016), we use the forward trace pursuit (FTP) and stepwise trace pur-
suit (STP) procedures to select the active variables. Specifically, we use FTP to serve as a
screening tool and STP to refine the selection. Yu et al. (2016) call this selection method
the hybrid trace pursuit (HTP) procedure. Below are the algorithms for FTP and STP
procedures respectively.

Forward trace pursuit
(1) Let F0 = ∅.
(2) At the kth (k ≥ 1) iteration, find ak such that

ak = arg max
j∈F c

k−1

tr(M̂Fk−1∪j).

(3) Repeating (2) n times, to obtain a sequence of n nested index sets. Denote the
solution path as S = {Fk : 1 ≤ k ≤ n}, where Fk = {a1, . . . , ak}.

Stepwise trace pursuit
(1) Let F0 = ∅.
(2) Forward addition: Find aF such that

aF = argmax
j∈F c

tr(M̂F∪j).

If TaF |F is greater than a pre-specified cut-off value c1, then update F to be F ∪ aF .
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(3) Backward deletion: Find dF such that

dF = argmax
j∈F c

tr(M̂F\j).

If TdF |F\dF is less than a pre-specified cut-off value c2, then update F to be F\dF .
(4) Repeat (2) and (3) until no predictors can be added or deleted.
We now discuss the theoretical properties of our procedures. Assume Var{E(Zw|Y ∈

shw)} has qw nonzero eigenvalues λw1 ≥ · · · ≥ λwqw with corresponding eigenvec-
tors ηw1, . . . , ηwqw , where w = 1, . . . ,K. Let βwi = �w

−1/2ηwi for i = 1, . . . , qw and
w = 1, . . . ,K. Let βwi,j be the jth elements of βwi, j = 1, . . . , p. Define βmin =
minw=1,...,K

j∈A
{
√∑qw

i=1 β2
wi,j}. Let λ0 = minw=1,...,K{λwqw}, λmax = maxw=1,...,K{λmax(�w)}

and λmin = minw=1,...,K{λmin(�w)}, where λmax(�w) and λmin(�w) are the largest and
smallest eigenvalues of �w.

Proposition 3.2: Assuming Span{βw1, . . . ,βwqw} = SYw |Xw and the subset linearity con-
dition as in Theorem 3.1, then for any index set F such that F c ∩ A �= ∅, we have

max
j∈F c∪A

{tr(MF∪j − tr(MF )} ≥ λ0λminλ
−1
maxβmin.

The above proposition suggests that when F does not contain A, the maximum value
of tr(MF∪j) − tr(MF ) is greater than 0. The proof is given in the Appendix.

We assume the following condition for the selection consistency for STP procedure:

Condition 3.1: Assuming that there exist α > 0 and 0 < θ < 1/2 such that

min
F :F c∩A �=∅

max
j∈F c∪A

{tr(MF∪j − tr(MF )} ≥ αn−θ (8)

Theorem 3.3: Let (Ywi,Xwi), i = 1, . . . , nw be a simple random sample with finite fourth
moments of size nw from the wth group (Yw,Xw) for w = 1, . . . ,K. Let c1 and c2 be two
constants such that 0 < c1 < 1/2αn1−θ and c2 > An1−θ for any A>0. Assuming the subset
linearity condition and Condition 3.1, then

lim
n→∞Pr

(
min

F :F c∩A �=∅

max
j∈F c∪A

Tj |F > c1
)

= 1

and

lim
n→∞Pr

(
max

F :F c∩A=∅

min
j∈F

Tj|{F/j} < c2
)

= 1

Theorem 3.3 provides the selection consistency result for the STP method. It suggests
that the addition step will not stop till all significant predictors are included, and the
deletion step will continue until all insignificant predictors are removed.

We need the following conditions for the consistency of the FTP procedure.

Condition 3.2: (a) Xw follows a multinormal distribution for w = 1, . . . ,K.
(b) There exist γ1 > 0 and γ2 > 0 such that γ1 < λmin < λmax < γ2.
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(c) There exist constants α1, θ1 and θ2 such that log p ≤ α1nθ1 , |A| ≤ α1nθ2 and 2θ +
θ1 + θ2 < 1, where θ is a constant from Condition 3.1.

Follow Chen and Chen (2008) and define the modified BIC criterion

BIC(F) = −log
{
tr(M̂F )

}
+ n−1|F |(logn + 2 logp).

Theorem 3.4: Assume Conditions 3.1 and 3.2 hold true, then we have

Pr(A ⊂ Fm̂) → 1,

as n → ∞ and p → ∞, where m̂ = argmin1≤k≤n BIC(Fk), and Fk is defined in the FTP
procedure.

Hence Theorem 3.4 guarantees the selection consistency for FTP procedure.

4. Numerical studies

In this section, we compare the performance of our method with Yu et al. (2016). We
summarise our results over 50 replications for each simulation study. We studied the
performance of our proposed tests via SIR, SAVE and DR with different choices of p.
Throughout our simulation studies, the number of slices is set as h=4, the sample size is
n=400. Following Yu et al. (2016), the under fitted count (UF), the correctly fitted count
(CF), the over fitted count (OF) and the average model size (MS) are used to evaluate the
performances of different methods.

Model IWe first consider the following model:

Y =
{

sign(X1 + Xp) exp(X2 + Xp−1) + ε1, W = 0;
sign(X1 − Xp) exp(X2 + Xp−1) + ε2, W = 1.

X = (X1, . . . ,Xp) ∼ N(0,�), where� = (σij) = ρ|i−j|, and εi ∼ N(0, 0.2), for i=1,2.We
considered uncorrelated predictors (ρ = 0), and correlated predictors with ρ = 0.5.W is
generated independently with X from Bernoulli( 12 ) distribution. Hence we have two pop-
ulations (W=2), and the active predictors are X1, X2, Xp−1 and Xp for both populations.
Yu et al. (2016) also considered this model with a single population. For uncorrelated pre-
dictors case, Table 1 showed the great improvement of correct selection rates when the
grouping information is considered. For example, when p=2000, our method via SIR and
DR both select the correct predictors all the time (CF rate 100%), while the single pop-
ulation method proposed by Yu et al. (2016) always underfits. SAVE-based methods are
expected to fail since for this model the predictors are linked to the response through
monotone functions. Table 2 tells the same story with correlated predictors.

Model II We then consider a variant of Model I with W being generated from Bernoulli
(0.7) distribution, and all the other model configurations are the same as Model I. Table 3
reported the simulation results with uncorrelated and correlated predictors for SIR-based
methods.We observed a similar trend as that of Model I. The utilisation of grouping infor-
mation has greatly improved the correct selection rates. Unreported simulation results
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Table 1. Selection performances (50 runs) for Model Iwith ρ = 0.

p Multi-SIR SIR Multi-SAVE SAVE Multi-DR DR

100 MS 4 3 6.6 2.24 4.04 9.08
UF 0 50 35 50 0 46
CF 50 0 0 0 48 0
OF 0 0 15 0 2 4

1000 MS 4.06 3 9 2.06 4.12 10.68
UF 0 50 48 50 0 50
CF 48 0 0 0 45 0
OF 2 0 2 0 5 0

2000 MS 4 3 8.6 2.1 4 10.5
UF 0 50 49 50 0 50
CF 50 0 0 0 50 0
OF 0 0 1 0 0 0

Table 2. Selection performances (50 runs) for Model Iwith ρ = 0.5.

p Multi-SIR SIR Multi-SAVE SAVE Multi-DR DR

100 MS 4.02 3 6.22 2.16 4.02 7.12
UF 0 50 24 50 0 44
CF 49 0 0 0 49 0
OF 1 0 26 0 1 6

1000 MS 4.08 3 8.8 2.06 4.14 9.22
UF 0 50 24 50 0 49
CF 47 0 0 0 45 0
OF 3 0 26 0 5 1

2000 MS 4 3 8.46 2.14 4 9.22
UF 0 50 49 50 0 48
CF 50 0 0 0 50 0
OF 0 0 1 0 0 2

Table 3. Selection performances (50 runs) for Model IIwithW ∼ Bin(0.7).

ρ = 0 ρ = 0.5

p Method MS UF CF OF MS UF CF OF

100 SIR 3.12 44 6 0 3.22 39 11 0
M-SIR 4 0 50 0 4 0 50 0

1000 SIR 3.04 48 2 0 3.08 46 4 0
M-SIR 4 0 50 0 4 0 50 0

2000 SIR 3.08 46 4 0 3 50 0 0
M-SIR 4 0 50 0 4 0 50 0

suggest that SAVE-based and DR-based methods provide similar performance as that of
Model I.

Model IIIWe now consider a model where Y depends on quadratic functionsX2
1,X

2
2,X

2
p−1

and X2
p . X and ε’s are generated the same way as in Model I. Due to the model structure,

SAVE-basedmethods are expected to performwell, while SIR-basedmethods are expected
to fail. Tables 4 and 5 report the performances of the multiple group and single group
selection methods for Model III. Again, the incorporation of grouping information greatly
improves the correct selection rates. Also, it seems that DR performs well for both models,
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Table 4. Selection performances (50 runs) for Model IIIwith ρ = 0.

p Multi-SIR SIR Multi-SAVE SAVE Multi-DR DR

100 MS 5.84 6.54 4.18 6.18 4.22 8.94
UF 50 50 6 28 13 19
CF 0 0 36 2 29 0
OF 0 0 8 20 8 31

1000 MS 4.38 6.82 3.84 4.82 4.1 10.1
UF 50 50 26 43 23 40
CF 0 0 22 1 20 0
OF 0 0 2 6 7 10

2000 MS 4.2 6.42 4.02 4.76 3.62 10.54
UF 50 50 32 48 33 39
CF 0 0 15 0 17 0
OF 0 0 3 2 0 11

Table 5. Selection performances (50 runs) for Model IIIwith ρ = 0.5.

p Multi-SIR SIR Multi-SAVE SAVE Multi-DR DR

100 MS 5.9 5.68 4.02 5.02 4.08 10.92
UF 50 50 12 29 6 23
CF 0 0 31 4 39 0
OF 0 0 7 17 5 27

1000 MS 4.64 6.62 4.2 4.54 4.22 9.78
UF 50 50 15 44 20 46
CF 0 0 25 2 21 0
OF 0 0 10 4 9 4

2000 MS 4.06 6.5 3.86 4.22 4 9.42
UF 50 50 35 49 34 47
CF 0 0 14 0 6 0
OF 0 0 1 1 10 3

as suggested by the literature.

Y =
{

2X2
1X

2
p − 2X2

2X
2
p−1 + ε1, W = 0;

2X2
1X

2
p + 2X2

2X
2
p−1 + ε2, W = 1.

Model IVModel IV is generated in a similar way as that of Yu et al. (2016). Again,X,W and
ε’s are generated the sameway as inModel I. As suggested byYu et al., thismodel is specially
constructed to favour DR-based methods. As shown in Tables 6 and 7, the multiple popu-
lation selection methods again dominate over the single population selection method. For
example, with p=1000 and ρ = 0.5, the average model size for DR-based multiple popu-
lation selection method is 4.06, which is slightly greater than the true model size 4; while
the average model size yielded by DR-based single population selection method is 9.14.

Y =
{

X4
1 − X4

p + exp(0.8X2 + 0.6Xp−1) + ε1, W = 0;
X4
1 + X4

p + exp(0.8X2 − 0.6Xp−1) + ε2, W = 1.

Model VModel V is generated as follows:

Y =
{

sign(X1 + Xp) exp(X2 + Xp−1) + ε1, W = 0;
exp(X2 + Xp−1) + ε2, W = 1.
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Table 6. Selection performances (50 runs) for Model IVwith ρ = 0.

p Multi-SIR SIR Multi-SAVE SAVE Multi-DR DR

100 MS 3.44 2.84 4.34 4.72 4.08 10.72
UF 50 50 44 45 4 32
CF 0 0 5 4 37 0
OF 0 0 1 1 9 18

1000 MS 2.34 2.38 4.94 4.26 4.12 10.24
UF 50 50 50 50 12 45
CF 0 0 0 0 25 0
OF 0 0 0 0 13 5

2000 MS 2.12 2.14 5.06 4.2 3.6 9.8
UF 50 50 49 50 27 47
CF 0 0 1 0 20 0
OF 0 0 0 0 3 3

Table 7. Selection performances (50 runs) for Model IVwith ρ = 0.5.

p Multi-SIR SIR Multi-SAVE SAVE Multi-DR DR

100 MS 3.64 3.62 3.88 4.8 4.14 9.16
UF 47 50 34 42 4 37
CF 2 0 12 5 38 0
OF 1 0 4 3 8 13

1000 MS 2.32 3.04 5 4.56 4.06 9.14
UF 50 50 46 49 11 47
CF 0 0 2 1 29 0
OF 0 0 2 0 10 3

2000 MS 2.18 3.2 4.58 4.34 3.74 8.82
UF 50 50 50 50 23 49
CF 0 0 0 0 23 0
OF 0 0 0 0 4 21

Table 8. Selection performances (50 runs) for Model V.

ρ = 0 ρ = 0.5

p Method MS UF CF OF MS UF CF OF

100 SIR 3.48 44 5 1 3.3 44 5 1
M-SIR 5.02 0 39 11 4.2 0 41 9

1000 SIR 3.28 49 0 1 3.22 49 1 0
M-SIR 4.04 1 46 3 4 1 48 1

2000 SIR 3.22 50 0 0 3.08 50 0 0
M-SIR 4 1 48 1 4 3 45 2

The X, W and εi, i = 1, 2, are all generated the same as in Model I. Notice that popula-
tion one and two now have different active sets: X1,X2,Xp−1,Xp for population one and
X2,Xp−1 for population two, though the active set in population one consists of that of
population two. Table 8 showed that our multiple population selection method greatly
improves the correct fit rate. For example, with p=2000 and ρ = 0, the correct fit rate
is 48/50 for selections via multi-SIR, and 0/50 for SIR-based method.

ModelVIModel VI is considered to investigate the performance of our method when each
population consists of its unique active variables. Model VI is generated similarly asModel
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Table 9. Selection performances (50 runs) for Model VI.

ρ = 0 ρ = 0.5

p Method MS UF CF OF MS UF CF OF

100 SIR 5.48 24 25 1 4.36 50 0 0
M-SIR 5.86 7 43 0 5.7 14 36 0

1000 SIR 3.86 49 1 0 4.02 50 0 0
M-SIR 5.44 27 23 0 5.34 29 21 0

2000 SIR 3.42 50 0 0 4 50 0 0
M-SIR 5.38 30 20 0 4.98 37 13 0

I except for Y , which is generated as

Y =
{

sign(X1 + Xp) exp(X3 + Xp−2) + ε1, W = 0;
sign(X2 + Xp−1) exp(X3 + Xp−2) + ε2, W = 1.

Hence the active sets for population one and two are X1,X3,Xp−2,Xp and X2,X3,Xp−1,Xp,
respectively. The current model size is 6. Table 9 showedour multiple population selection
method still outperforms single population selectionmethod. For example, when p=2000
and ρ = 0, the average model size for our method is 5.38, which is much closer to the true
model size (6) comparing to 3.42 from the single population method.

5. Conclusion and discussion

Sufficient dimension reduction provides a general framework for model-free variable
selections. However, few of the current variable selection methods consider the grouping
information when dealing with data from multi-populations. In this paper, we propose a
model-free variable selection method for n<pmulti-population data, which fully utilises
the grouping information. Simulation studies show that our method provides superior
performance comparing to those ignoring the grouping information.
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Appendix

Proof of Proposition 3.1.: Assume Var{E(Zw |Y ∈ shw)} has qw nonzero eigenvalues λw1 ≥ · · · ≥
λwqw with corresponding eigenvectors ηw1, . . . , ηwqw , where w = 1, . . . ,K. Let βwi = �w

−1/2ηwi
for i = 1, . . . , qw and w = 1, . . . ,K.

Note that M = ∑K
w=1

∑qw
i=1 pwλwiηwiη

�
wi = ∑K

w=1
∑qw

i=1 pwλwi�w
1/2βwiβ

�
wi�w

1/2, we have
tr(M) = tr(

∑K
w=1 pw�w

∑qw
i=1 λwiβwiβ

�
wi).

Under the linearity condition for X within each group, we know βwi ∈ SYw |Xw . Define βwi,A =
{βwi,j : j ∈ A} and βwi,Ac = {βwi,j : j ∈ Ac}, where w = 1, . . . ,K. Since Y XAc | (XA,W),
βwi,Ac = 0 for all w ∈ {1, . . . ,K}. Therefore, tr(M) can be rewritten as tr(

∑K
w=1 pw�w,A

∑qw
i=1 λwi

βwi,Aβ�
wi,A).

Recall thatA = {1, . . . , q}, so

Var(E(X |Y) |W = w) = �w

( qw∑
i=1

λwiβwiβ
�
wi

)
�w

=
(

�w,A �w,AAc

�w,AcA �w,Ac

)⎛⎜⎝
qw∑
i=1

λwiβwi,Aβ�
wi,A 0

0 0

⎞
⎟⎠( �w,A �w,AAc

�w,AcA �w,Ac

)
, (A1)

where �w,A = Var(XA |W = w), �w,Ac = Var(XAc |W = w) and �w,AAc = Cov(XA,XAc |
W = w). Hence,

Var(E(XA |Y) |W = w) = �w,A
qw∑
i=1

λwiβwi,Aβ�
wi,A�w,A

and

MA =
K∑

w=1
pw�

−1/2
w,A Cov(E(XA |Y) |w)�

−1/2
w,A =

K∑
w=1

pw�
1/2
w,A

qw∑
i=1

λwiβwi,Aβ�
wi,A�

1/2
w,A.

Based on these results, we have tr(MA) = tr(MI). Similarly, we can prove tr(MF ) = tr(MA) for
any F such thatA ⊂ F . �

Proof of Theorem 3.1.: (i) Since A ⊆ F , A ⊆ F ∪ j. From Proposition 3.1, it is easy to show that
tr(MF∪j) − tr(MF ) = tr(MA) − tr(MA) = 0.

(ii) If the subset linearity condition holds in each group, then Xwj |F = Xwj − E(Xwj |XwF ) =
Xwj − �T

w,jF�−1
wFXwF for anyw ∈ {1, . . . ,K}, where�w,jF = Cov(Xj,XF |W = w). We construct
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two matrices Pw and Vw as

Pw =
(

I|F | 0
−�T

w,jF�−1
wF 1

)
and Vw =

(
�wF 0
0 σ 2

w,j |F

)

where |F | is the cardinality of F and σ 2
w,j |F is σ 2

j |F in group w. Note that Cov(XwF ,Xwj |F ) = 0,
then we have Var(PwXw,F∪j) = Pw�w,F∪jP�

w = Vw and �w,F∪j = P�
wV−1

w Pw.
We can rewriteMF∪j as

MF∪j = E[Cov(E(ZF∪j |Y) |W)]

= E[�−1/2
w,F∪jCov(E(XF∪j |Y) |W)�

−1/2
w,F∪j]

= E[P�
wV

−1/2
w PwCov(E(X,F∪j |Y) |W)P�

wV
−1/2
w Pw]

=
K∑

w=1
pwP�

wV
−1/2
w

( Hw∑
h=1

phwPwUhw,F∪jU�
hw,F∪jP

�
w

)
V−1/2
w Pw

Because PwUhw,F∪j = (U�
hw,F , E(Xj |F |Yw ∈ shw,W = w))�, then we have

tr(MF∪j) = tr

( K∑
w=1

pwP�
wV

−1/2
w

( Hw∑
h=1

phwPwUhw,F∪jU�
hw,F∪jP

�
w

)
V−1/2
w Pw

)

= tr

( K∑
w=1

pwV−1
w

( Hw∑
h=1

phwPwUhw,F∪jU�
hw,F∪jP

�
w

))

= tr

( K∑
w=1

pw�−1
wF

( Hw∑
h=1

phwUFw,hUT
Fw,h

))

+
K∑

w=1

Hw∑
h=1

pwphwE2(Xj |F/σj |F |Yw ∈ shw,W = w)

Hence, tr(MF∪j) − tr(MF ) = ∑K
w=1 pw(

∑Hw
h=1 phwγ 2

j |wF ,hw) �

Proof of Theorem 3.2.: For any w ∈ 1, . . . ,K, we define Fw as the joint distribution of (Xw,Yw)

and Fnw as the empirical distribution for random sample (Ywj,Xwj), j = 1, . . . , nw . Let G be a
real or matrix valued functional. Based on Frechet derivative and the regularity conditions in
Fernholz (1983), we know that G(Fnw) satisfies

G(Fnw) = G(Fw) + En[G�(Fw)] + Op(n−1
w ), (A2)

where G(Fw) is fixed for each group, and En[G�(Fw)] = Op(n
−1/2
w ) as E[G�(Fw)] = 0. Let Rhw =

I(Yw ∈ shw),μj,hw = E(Xj |Yw ∈ shw,W = w) and νwj |F = �−1
w,F��

w,jF . To prove Theorem 3.2, we
need the results in Lemma A.1 in the following.

Lemma A.1: If the conditions in 3.2 holds and Ho is true, then �̂w,F , �̂
−1
w,F , ÛFw,h, ν̂wj |F , μj,hw

and γ̂ j |Fw,hw have expansions in the form (A.2) with �w,F , �−1
w,F , UFw,h, νwj |F , μ̂j,hw or γ j |Fw,hw

as substitutes for G(Fw), and ��
w,F = Xw,FX�

w,F , (�−1
w,F )� = −�−1

w,F��
w,F�−1

w,F ,U�
Fw,h = (Xw,F −

UFw,h)Rhw/phw − Xw,F , ν�
wj |F = �−1

w,F (Xwj |XwF − E(Xwj |XwF )) + (�−1
w,F )�E(Xwj |XwF ),

μ�
j,hw = (Xw,j − Ujw,h)Rhw/phw − Xw,j or γ �

j |Fw,hw = (μ�
j,hw − (ν�

wj |F )�UFw,h − ν�
wj |FU�

Fw,h)/

σw,j |F as substitutes for G�(Fw).

Since the proof is similar to Yu et al. (2016), we omit the proof for Lemma A.1.
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Let L̂j |F ,w = (p̂1/2w p̂1/2{hw=1}γ̂ j |Fw,1, . . . , p̂
1/2
w p̂1/2{hw=Hw}γ̂ j |Fw,Hw)� and L̂j |F = (L̂�

j |F ,1, . . . ,

L̂�
j |F ,K)�. Based on Lemma A.1, we define (Lj |F ,w)� = (p1/2w p1/2{hw=1}γ

�
j |Fw,1, . . . , p

1/2
w p1/2{hw=Hw}

γ̂
�
j |Fw,Hw)� , (Lj |F )� = (L�

j |F ,1)
�, . . . , (L�

j |F ,K)�)� and �j |F = E(L�
j |F ,1(L

�
j |F ,1)

�). Then we
have Tj |F = n(L̂j |F )�L̂j |F . Under H0, we have

L̂j |F = Lj |F + En
(
(Lj |F )�

)+ op(n−1/2).

Then the result in Theorem 3.2 follows directly. �

Proof of Proposition 3.2.: Without loss of generality, we assume that (X�
F ,Xj) are the first |F | +

1 elements of XT in the proof. Recall that Var(E(X |Y) |W = w) = �w(
∑qw

i=1 λwiβwiβ
�
wi)�w and

tr(MF∪j) − tr(MF ) = ∑K
w=1 pw(

∑Hw
h=1 phwγ 2

j |Fw,hw), then we have

σ 2
w,j |F

( Hw∑
h=1

phwγ 2
j |Fw,hw

)
= Var(E(Xj |F |Y) |W = w)

= (−�w,jF�−1
wF , 1

)
AVar(E(X |Y) |W = w)A� (−�w,jF�−1

wF , 1
)�

= (−�w,jF�−1
wF , 1

)
A�w(

qw∑
i=1

λwiβwiβ
�
wi)�wA� (−�w,jF�−1

wF , 1
)� (A3)

where A = (I|F |+1, 0(|F |+1)(p−|F |−1)). Note that (�w,jF − �w,jF�−1
wF�wF ) = 0, then we obtain(−�w,jF�−1

wF , 1
)
A�wβwi = (

�w,jF c − �w,jF�−1
wF�wFF c , 1

)
βwi,F c

Recall that βwi,Ac = 0 for all w ∈ {1, . . . ,K}. Let F̃ = F c ∩ A, then it follows(−�w,jF�−1
wF , 1

)
A�wβwi =

(
�wjF̃ − �w,jF�−1

wF�wFF̃ , 1
)

βwi,F̃

From this equation and A3, we can obtain that

σw,j |F

( Hw∑
h=1

phwγ 2
j |Fw,hw

)
=

qw∑
i=1

λwi{
(
�wjF̃ − �w,jF�−1

wF�wFF̃ , 1
)

βwi,F̃ }2 (A4)

Note that
∑

j∈F̃ {(�wjF̃ − �w,jF�−1
wF�wFF̃ , 1)βwi,F̃ }2 = βwi,F̃

�(�w,F̃ − �w,F̃F�−1
wF�wFF̃ , 1)

βwi,F̃ and λmin(�w,F̃ − �w,F̃F�−1
wF�wFF̃ , 1) = λ−1

max{(�w,F̃ − �w,F̃F�−1
wF�wFF̃ , 1)−1} ≥

λ−1
max(�w) = λmin(�w) for any w ∈ {1, . . . ,K}, then it follows

max
j∈F c∩A

σw,j |F

( Hw∑
h=1

phwγ 2
j|Fw,hw

)

≥ |F c ∩ A|−1
∑
j∈F̃

{
(
�wjF̃ − �w,jF�−1

wF�wFF̃ , 1
)

βwi,F̃ }2

= |F c ∩ A|−1
qw∑
i=1

λwiβwi,F̃
�
(
�w,F̃ − �w,F̃F�−1

wF�wFF̃ , 1
)

βwi,F̃

≥ |F c ∩ A|−1
qw∑
i=1

λwiλmin

(
�w,F̃ − �w,F̃F�−1

wF�wFF̃ , 1
)

βwi,F̃
�βwi,F̃

≥ λw,qwλmin(�w)2βmin (A5)
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Because σw,j |F ≤ σj |F ≤ Var(Xj) ≤ λmax, then

max
j∈F c∩A

(
tr(MF∪j) − tr(MF )

)

= max
j∈F c∩A

K∑
w=1

pw

( Hw∑
h=1

phwγ 2
j |Fw,hw

)

≥
K∑

w=1
pwσ−2

w,j |F max
j∈F c∩A

σw,j |F

( Hw∑
h=1

phwγ 2
j |Fw,hw

)

≥
K∑

w=1
pwσ−2

w,j |Fλw,qwλmin(�w)2βmin ≥ λqλminλ
−1
maxβmin �

Proof of Theorem 3.3.: (i) Let � = αn−θ − n−1c1 > 0. Since t 0 < c1 < (1/2)αn1−θ , we have
� = Op(n−θ ). Because (tr(M̂F∪j) − tr(M̂F )) − (tr(MF∪j) − tr(MF )) = Op(n−1/2) as F c ∩ A �=
∅ and 0 < c1 < 1/2,

max
F :F c∩A�=∅

max
j∈F c∩A

[(
tr(M̂F∪j) − tr(M̂F )

)
− (

tr(MF∪j) − tr(MF )
)]

< �

with probability 1, as n goes to infinity. Hence,

min
F :F c∩A�=∅

max
j∈F c∩A

(
tr(M̂F∪j) − tr(M̂F )

)
> min

F :F c∩A�=∅

max
j∈F c∩A

[
(
tr(MF∪j) − tr(MF )

)
− max

F :F c∩A�=∅

max
j∈F c∩A

[(
tr(M̂F∪j) − tr(M̂F )

)
− (

tr(MF∪j) − tr(MF )
)]

> αn−θ − � = n−1c1

It is easy to obtain that limn→∞ Pr(minF :F c∩A�=∅ maxj∈F c∩A Tj|F > c1) = 1.
(ii) It is obvious that A ⊂ F as F c ∩ A = ∅. There are two different situations for j.

One is j ∈ A, the other one is j ∈ F \ A. If j ∈ A, we can have Tj | {F\j} > (1/2)αn1−θ

with probability 1 based on the proof before. If j ∈ F \ A, we know Tj | {F\j} follows a
weighted χ2

1 distribution from Theorem 3.2. Then Tj | {F\j}is Op and asymptotically smaller than
(1/2)αn1−θ . Hence, minj∈F Tj | {F\j} < c2 = Op < An1−θ for θ < 1 and A> 0. It follows that
limn→∞ Pr(maxF :F c∩A=∅ minj∈F Tj | {F\j} < c2) = 1 �

Proof of Theorem 3.4.: Let Rw,j |F = Var(E(Xj |F |Y) |W = w) and R̂w,j |F be the estimate for
Rw,j |F . We can derive that tr(MF∪j) − tr(MF ) = ∑w=k

w=1 pwσ 2
w,j |FRw,j |F and tr(M̂F∪j) −

tr(M̂F ) = ∑w=K
w=1 p̂wσ̂−2

w,j |F R̂w,j |F . Suppose that |F | = O(nθ+θ2). FromLemma 7 inYu et al. (2016),
we know that|R̂w,j |F − Rw,j |F | ≤ D0|F |√log p/n with probability tending to 1, where D0 is some
constant. Since p̂w − p̂w = OP(n−1/2) and

|p̂wR̂w,j |F − pwRw,j |F | ≤ |p̂w(R̂w,j |F − Rw,j |F )| + |(p̂w − pw)Rw,j |F |,
there exists some constant D1 such that

|p̂wR̂w,j |F − pwRw,j |F | ≤ D1|F |
√
log p/n,
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with probability tending to 1. Based on the proof of Lemma 3 in Jiang and Liu (2014) and Lemma 6 in
Yu et al. (2016), we have that |σ̂ 2

w,j |F − σ 2
w,j |F | = Op(|F |√log p/n). It follows that σ̂−2

w,j |F ≥ σ−2
w,j |F

based on the proof of Theorem5.1 in Yu et al. (2016), we can know that Pr(A ⊂ F2Hα−1Anθ+θ2) → 1,
as n → ∞ and p → ∞. Define k0 = min1≤k≤n{k : A ∈ Fk}, then k0 ≤ 2Hα−1Anθ+θ2. The con-
clusion is easy to be proved based on the proof of Theorem 2 in Wang (2009), and we omit the
details. �
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