
Full Terms & Conditions of access and use can be found at
https://www.tandfonline.com/action/journalInformation?journalCode=tstf20

Statistical Theory and Related Fields

ISSN: (Print) (Online) Journal homepage: https://www.tandfonline.com/loi/tstf20

A selective overview of sparse sufficient dimension
reduction

Lu Li , Xuerong Meggie Wen & Zhou Yu

To cite this article: Lu Li , Xuerong Meggie Wen & Zhou Yu (2020): A selective overview
of sparse sufficient dimension reduction, Statistical Theory and Related Fields, DOI:
10.1080/24754269.2020.1829389

To link to this article:  https://doi.org/10.1080/24754269.2020.1829389

Published online: 10 Nov 2020.

Submit your article to this journal 

View related articles 

View Crossmark data

https://www.tandfonline.com/action/journalInformation?journalCode=tstf20
https://www.tandfonline.com/loi/tstf20
https://www.tandfonline.com/action/showCitFormats?doi=10.1080/24754269.2020.1829389
https://doi.org/10.1080/24754269.2020.1829389
https://www.tandfonline.com/action/authorSubmission?journalCode=tstf20&show=instructions
https://www.tandfonline.com/action/authorSubmission?journalCode=tstf20&show=instructions
https://www.tandfonline.com/doi/mlt/10.1080/24754269.2020.1829389
https://www.tandfonline.com/doi/mlt/10.1080/24754269.2020.1829389
http://crossmark.crossref.org/dialog/?doi=10.1080/24754269.2020.1829389&domain=pdf&date_stamp=2020-11-10
http://crossmark.crossref.org/dialog/?doi=10.1080/24754269.2020.1829389&domain=pdf&date_stamp=2020-11-10


STATISTICAL THEORY AND RELATED FIELDS
https://doi.org/10.1080/24754269.2020.1829389

REVIEW

A selective overview of sparse sufficient dimension reduction

Lu Lia, Xuerong Meggie Wenb and Zhou Yua

aEast China Normal University, Shanghai, People’s Republic of China; bMissouri University of Science and Technology, Rolla, MO, USA

ABSTRACT
High-dimensional data analysis has been a challenging issue in statistics. Sufficient dimension
reduction aims to reduce the dimension of the predictors by replacing the original predictors
with a minimal set of their linear combinations without loss of information. However, the esti-
mated linear combinations generally consist of all of the variables, making it difficult to interpret.
To circumvent this difficulty, sparse sufficient dimension reduction methods were proposed to
conductmodel-free variable selection or screeningwithin the framework of sufficient dimension
reduction.We review the current literature of sparse sufficient dimension reduction anddo some
further investigation in this paper.
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1. Introduction

The rapid development of data collection technology
in areas, such as biology, financial econometrics and
signal processing, has posed a great challenge for tra-
ditional multivariate analysis. High-dimensional data
analysis becomes ubiquitous and increasingly impor-
tant. Dimension reduction, and in particular sufficient
dimension reduction for regression, offers an appealing
avenue to tackle high-dimensional problems. It is often
desirable to reduce the dimensionality of the prob-
lem by replacing the original high-dimensional data
with a low-dimensional space composed of a few lin-
ear combinations of predictors, which are usually much
smaller than the original dimension. Although suffi-
cient dimension reduction is an effective way to extract
relevant information from high-dimensional data sets,
while grasping the important features or patterns in the
data, the linear combinations usually consist of all orig-
inal predictors whichmakes the interpretation difficult.
This limitation can be overcome via variable selec-
tion, where a subset of relevant predictor variables is
selected. The removal of the excess variables not only
can reduce the noise to the precise estimation, alle-
viate the collinearity issue, but also help reduce the
computational cost caused by high-dimensional data.

As one of the most important dimension reduc-
tion approaches, many variable selection methods have
been developed. Some most popular variable selection
approaches are developed under the linearmodel or the
generalised linear model paradigm, such as nonnega-
tive garrotte (Breiman, 1995), the least absolute shrink-
age and selection operator (Lasso, hereafter) (Tibshi-
rani, 1996), the smoothly clipped absolute deviation
(SCAD, hereafter) (Fan & Li, 2001), adaptive Lasso

(Zou, 2006), group Lasso (Yuan & Lin, 2006), Dantzig
selector (Candes & Tao, 2007) and the minimax con-
cave plus penalty (MCP, hereafter) (Zhang, 2010).

These model-based variable selection methods
assume the underlying true model is known up to a
finite dimensional parameter or the imposed working
model is usefully similar to the true model. However,
the truemodelmight be in a complex form and it is usu-
ally unknown. If the underlying modelling assumption
is violated, these variable selection methods might fail.
Hence, model-free variable selection method, which
does not require the full knowledge of the underly-
ing true model, is called for. It has been shown that
the general framework of sufficient dimension reduc-
tion is useful for variable selection (Bondell & Li, 2009)
since no pre-specified underlying models between the
response and the predictors are required. So model-
free variable selection can be achieved through the
framework of SDR (Cook, 1998; Li, 1991, 2000).

LetX = (X1, . . . ,Xp)
� be the predictor andY be the

scalar response. The goal of variable selection is to seek
the smallest subset of the predictors XA, with partition
X = (X�

A,X
�
Ac)

�, such that

Y XAc |XA. (1)

Here A denotes a subset of indices of {1, . . . , p} corre-
sponding to the relevant predictor setXA, andAc is the
complement of A, i.e., XA = {xi : i ∈ A} and XAc =
{xi : i ∈ Ac}. Condition (1) implies that XA contains
all the active predictors in terms of predicting Y . The
existence and uniqueness ofAwere discussed in details
in Yin and Hilafu (2015). Ideally, we want to find the
smallest index set A satisfying (1), in which case no
inactive predictors are included in XAc .
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Model-free variable selection is closely related to suf-
ficient dimension reduction, which aims to find β ∈
R
p×d with d ≤ p, such that

Y X | β�X, (2)

that is,Y is independent ofX conditioning onβ�X. The
column space of such β , Span(β), is called a dimension
reduction space.Undermild assumptions, such as given
in Cook (1996) and Yin et al. (2008), the intersection
of all such spaces is itself a dimension reduction space.
In this case, we call the intersection the central subspace
for the regression ofY onX, and denote it bySY|X. And
its dimension, d = dim(SY |X), is usuallymuch smaller
than p, the dimension of the original predictor. Follow-
ing the partition of X, we can partition β accordingly
as

β =
(

βA
βAc

)
, βA ∈ R

|A|×d, βAc ∈ R
(p−|A|)×d,

where |A| is the cardinality ofA. Hence, (1) is equiva-
lent to βAc = 0.

Many methods have been proposed for estimating
the basis of SY |X in the literature, including sliced
inverse regression (SIR, hereafter) (Li, 1991), sliced
average variance estimation (SAVE, hereafter) (Cook
&Weisberg, 1991), principal Hessian directions (PHD,
hereafter) (Li, 1992), minimum average variance esti-
mation (MAVE, hereafter) (Xia et al., 2002), directional
regression (DR, hereafter) (Li & Wang, 2007), princi-
pal fitted component (PFC, hereafter) (Cook&Forzani,
2008), semiparametric approach (Ma&Zhu, 2012), etc.
Several methods have been also suggested for simul-
taneously selecting the contributing predictors. These
include shrinkage SIR (Ni et al., 2005), sparse SIR
(Li, 2007; Li & Nachtsheim, 2006), sparse SAVE and
sparse PHD (Li, 2007), constrained canonical correla-
tion (Zhou & He, 2008), the general shrinkage strategy
for inverse regression estimation (Bondell & Li, 2009),
the regularised SIR estimator with SCAD penalty (Wu
& Li, 2011) and coordinate independent sparse estima-
tion (CISE, hereafter) (Chen et al., 2010), conditional
covariance minimisation (Chen et al., 2017), etc.

Although these aforementioned methods can select
the significant predictors without assuming an under-
lying parametric model, they are not designed for p �
n problems, in which the number of predictor vari-
ables is larger than the number of observations. The
so-called large p small n problems are increasingly
common with rapid technological advances in data
collection and have attracted a lot of research inter-
ests. We hereby give a very brief review of model-free
variable selections via sufficient dimension reduction
approach under the p � n setting. Li and Yin (2008)
proposed sparse ridge SIR, which combined SIR with
both �1- and �2-regularisation to achieve dimension
reduction and variable selection simultaneously, even

when p>n. Yu et al. (2013) suggested combining SIR
with the Dantzig selector (Candes & Tao, 2007) to
recover the central subspace in the general semipara-
metric models. A non-asymptotic error bound for the
resulting estimator is derived and the error bound is of
order Op((log p/n)1/2), which appears to be optimal.
Moreover, they proposed another regularised version
of SIR with the adaptive Dantzig selector. The resulting
estimators defined from variable selection are asymp-
totically normal even when the predictor dimension
diverges to infinity. It is worth mentioning that the |A|
is fixed in Yu et al. (2013). Yu, Dong, Zhu (2016) pro-
posed trace pursuit for model-free variable selection
under the sufficient dimension reduction paradigm.
Two distinct algorithms are proposed: stepwise trace
pursuit (STP, hereafter) and forward trace pursuit
(FTP, hereafter). Stepwise trace pursuit achieved selec-
tion consistency with fixed p and is applicable in the
setting with p>n. Furthermore, forward trace pur-
suit can serve as an initial screening step to speed
up the computation in the case of ultrahigh dimen-
sionality. Li and Dong (2020) extended trace pursuit
method tomatrix-valued predictors based onYu,Dong,
Zhu (2016). To test the importance of rows, columns
and submatrices of the predictor matrix in terms of
predicting the response, three types of hypotheses are
formulated under a unified framework. The asymptotic
properties of the test statistics under the null hypothe-
sis are established and a permutation testing algorithm
is also introduced to approximate the distribution of
the test statistics. Tan et al. (2018) developed a convex
formulation for fitting sparse SIR in high dimensions.
They solved the resulting convex optimisation prob-
lem via the linearised alternating direction methods of
multiple algorithms and established an upper bound on
the subspace distance between the estimated and the
true subspaces. Unlike Yu et al. (2013), Lin et al. (2019)
allowed |A| goes to infinity. By constructing artifi-
cial response variables made up from top eigenvec-
tors of the estimated conditional covariance matrix,
Lin et al. (2019) introduced a simple Lasso regres-
sion method to obtain an estimator of the sufficient
dimension reduction space. The resulting algorithm,
Lasso-SIR, is shown to be consistent and achieves the
optimal convergence rate under certain sparsity condi-
tions when p is of order o(n2c2), where c is the gener-
alised signal-to-noise ratio, which is only the first step
of Tan et al. (2020). Moreover, Tan et al. (2020) discov-
ered the possible trade-off between statistical guarantee
and computational performance for sparse SIR andpro-
posed an adaptive estimation scheme for sparse SIR
which is computationally tractable and rate optimal
under the condition that log p = o(n), which is weaker
than Lin et al. (2019).

There is considerable literature on applying suffi-
cient dimension reduction for model-free selection,
but the study of developing screening consistency for
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the ultra-high dimensional setting is still lacking. To
fulfil the aforementioned gaps, Zhu et al. (2011) pro-
posed a variable screening procedure under a unified
model framework, which contains a wide variety of
commonly used parametric and semiparametric mod-
els. The new method does not require imposing a
specific model structure on regression functions and
thus is particularly appealing to ultrahigh-dimensional
regressions. They also showed the proposed method
achieves screening consistency even with the num-
ber of predictors growing at an exponential rate of
the sample size. Yu, Dong, Shao (2016) proposed an
approach called marginal SIR for model-free variable
selection. Furthermore, marginal SIR with Dantzig
selector exploits the sparsity structure in the marginal
utility and achieves the desirable selection consistency
property. Lin et al. (2017) first introduced a large class
of models depending on the smallest non-zero eigen-
value of the kernel matrix of SIR, then the minimax
rate for estimating the central space is derived, which is
the first paper studied theminimax estimation of sparse
SIR. However, they only considered the projection loss
(Li & Wang, 2007). More importantly, their theoretical
study is based on the assumption that the covariance
matrix is diagonal. As far as we know, most of men-
tioned work mainly focus on SIR with consistency on
variable selection. Qian et al. (2019) provided simulta-
neous analysis for PFC and SAVE. Furthermore, their
approach allows many quantities such as the structural
dimension, the number of important predictors and the
number of slices to diverge with n. To deliver the most
essential messages, in the following section, we focus
our discussion on the papers mentioned above.

2. Review of sufficient dimension reduction

Sufficient dimension reduction aims to find the col-
umn space of β with the smallest dimension d. In other
words, sufficient dimension reduction is proposed as
a problem of estimating a space, instead of the classic
statistical problem of estimating parameters. As men-
tioned in the introduction, there are many approaches
in the literature of sufficient dimension reduction for
estimating the column space β : sliced inverse regres-
sion (SIR; Li, 1991), sliced average variance estimation
(SAVE; Cook & Weisberg, 1991), minimum average
variance estimation (MAVE; Xia et al., 2002), the kth
moment estimation (Yin & Cook, 2002, 2003), inverse
regression (Cook & Ni, 2005), directional regression
(DR; Li & Wang, 2007), sliced regression (SR; Wang
& Xia, 2008), likelihood acquired directions (LAD;
Cook & Forzani, 2009), semiparametric approaches
(Ma & Zhu, 2012, 2013a, 2013b, 2014), etc. We mainly
review three inverse regression-based methods (SIR;
SAVE and DR) for estimating SY |X for our subsequent
investigation.

Inverse regression methods constitute the oldest
class of dimension reduction methods and are still
under active development currently. The main idea of
the inverse regression is to reverse the relation between
the response and the predictors (Li, 1991). Instead
of considering distributions or expectations of func-
tions of Y conditional on X, which suffers the curse
of dimensionality when X is high dimensional, these
inverse regression-based methods consider expecta-
tions of functions of X conditional on Y, which is
suddenly a low dimensional problem because Y is uni-
variate. The inverse regression-based methods often
are based on some additional assumptions on the pre-
dictors to link the low dimensional problem and the
original high dimensional problem. These additional
assumptions are given as follows.

(W1) linearity conditionE(X | β�X)= �β(β��β)−1

β�X.
(W2) constant variance condition cov(X | β�X) =

� − �β(β��β)−1β��β(β��β)−1β��,

where � = cov(X). As is known to all, SIR only
requires the condition (W1) holds. However, SAVE and
DR need both conditions.

When the linearity condition and the constant vari-
ance condition are satisfied, the inverse regression
methods formulate the problem of estimating SY |X
into an eigen-decomposition problem. Let M be the
kernel matrix of a specific inverse regression based
dimension reductionmethod. For the sufficient dimen-
sion reduction methods that aim to estimate SY |X, the
kernel matrices corresponding to the three most well-
known inverse regression methods are summarised as
below:

SIR:MSIR = var{E(X |Y)};
SAVE:MSAVE = E{� − var(X |Y)}2;
DR:MDR

= 2E2{E(X |Y)E(X� |Y)}
+ 2E{E(X� |Y)E(X |Y)}E{E(X |Y)E(X� |Y)}
+ 2E{E2(XX�)} − 2�.

Assuming d = SY|X is known, the procedure for a gen-
eralised eigenvalue-decomposition of the kernel matrix
M, that is

Mβ i = λi�β i, with β�
i �β j = 1 if i = j,

β�
i �β j = 0 else i �= j,

where i = 1, . . . , p, and λ1 ≥ · · · ≥ λd > 0 = λd+1 =
· · · = λp are the eigenvalues. Then the eigenvec-
tors corresponding to the nonzero eigenvalues β =
(β1, . . . ,βd) form a basis of SY |X. Thus the suffi-
cient dimension reduction directions β can also be
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identified through the following optimisation problem
(Tan et al., 2020):

β̂ = argmax
B∈Rp×d

Tr(B�MB) s.t. B��B = Id. (3)

3. The current literature of variable selection
via sufficient dimension reduction

3.1. Oracle property under the setting p<n

In the general framework of condition (1), the shrink-
age SIR method is developed in Ni et al. (2005) by
applying the Lasso approach to SIR. When a subset of
predictors are irrelevant, then the corresponding row
estimates of β is equal to 0, and consequently to achieve
variable selection. Let α = (α1, . . . ,αp)

�, with αi ∈ R,
i = 1, . . . , p, be the shrinkage vector. Then based on
the expression (3), the estimation of the shrinkage vec-
tor can be rewritten to minimise the following function
over α (Ni et al., 2005):

α̂ = argmin
α

n(Vec(β̂)

− Vec{diag(α)β̂})�M̂(Vec(β̂) − Vec{diag(α)β̂}),

subject to
p∑

i=1
|αi| ≤ t, t ≥ 0, (4)

where M̂ is the estimator of kernel matrix M. To
investigate the asymptotic behaviour, we consider the
Lagrangian formulation of the constrained optimisa-
tion problem. Specially, the optimisation problem in
expression (4) can be reformulated as

α̂ = argmin
α

(||U − Wα||2 + τn

p∑
i=1

|αi|),

for some non-negative penalty constant τn. In which,

U = n1/2M̂1/2Vec(β̂), W = n1/2M̂1/2β̂ .

Then the central dimension reduction subspace SY |X
is estimated by Span{diag(̂α)β̂}. Li (2007) extended
shrinkage SIR method to SAVE and PHD methods,
where the central dimension subspace is estimated the
same as Ni et al. (2005), and β̂ corresponds to the esti-
mated central dimension reduction directions of SAVE
and PHD methods, respectively. Bondell and Li (2009)
proposed a general shrinkage estimation strategy for
the entire inverse regression estimation family that is
capable of simultaneous sufficient dimension reduction
and variable selection. They considered the adaptive
Lasso,

α̂ = argmin
α

(
||U − Wα||2 + τn

p∑
i=1

wi|αi|
)
,

where w = (w1, . . . ,wp)
� is a known weights vector.

They also demonstrated that the proposed class of
shrinkage estimators has the desirable oracle property

of consistency in variable selection while retaining root
n estimation consistency.

However, most existing sparse dimension reduc-
tion methods mentioned above are conducted step-
wise, estimating a sparse solution for a basis matrix of
the central subspace column by column. Instead, Chen
et al. (2010) proposed a unified one-step approach to
reduce the number of variables appearing in the esti-
mate of SY |X. Their approach, which depends oper-
ationally on Grassmann manifold optimisation, can
achieve dimension reduction and variable selection
simultaneously. Additionally, their proposed method
has the oracle property: under mild conditions, the
proposed estimator would perform asymptotically as
well as if the true irrelevant predictors were known.
More importantly, Chen et al. (2010) is an exten-
sion to Bondell and Li (2009), which combined SIR,
SAVE, DR with adaptive Lasso to variable selection.
Zhou and He (2008) proposed a constrained canoni-
cal correlation procedure (C3) based on imposing the
L1-norm constraint on the effective dimension reduc-
tion estimates in CANCOR, followed by a simple vari-
able selection method. Using the B-spline basis func-
tions generated for the response variable, the CANCOR
method (Fung et al., 2002) is asymptotically equiva-
lent to SIR. Suppose that the range of Y is a bounded
interval [a, b], given kn interval knots in [a, b] and the
spline orderm, we generatem + kn B-spline basis func-
tions. Under the linearity condition, CANCOR esti-
mates a set of effective dimension reduction directions
by estimating the canonical variates between the B-
spline basis functions and X. Since the generated m +
kn B-spline basis functions add to 1, we use in CAN-
COR the first m + kn − 1 basis function of Y , π(Y) =
(π1(Y), . . . ,πm+kn−1(Y))�. Let X = (X1, . . . ,Xn)

�
and �n×(m+kn−1) = (π(Y1), . . . ,π(Yn))

� be the data
matrices containing the predictor values and the B-
spline basis function values. Then the CANCOR
method is to estimate the canonical correlations
between the columns of X and the columns of �. The
dimensionality of the central dimension reduction sub-
space is selected by performing the following sequential
tests on the number of the non-zero canonical correla-
tions, H0 : γs > γs+1 = 0 versus H1 : γs+1 > 0 for s =
0, 1, . . . , p − 1, where γs are the asymptotic canonical
correlations between π(Y) and X in decreasing order.
The dimensionality estimate for d is the smallest s such
that H0 is not rejected. The CANCOR method actu-
ally solves an optimisation problem that sequentially
finds the directions β with the maximum correlation
between β�X and some functions of Y . Their proce-
dure is attractive because they demonstrated that it also
has the oracle property.

Sparse sufficient dimension reduction methods
mentioned above focus on the cases when p is fixed. For
regressions with diverging p, estimation and variable
selection methods are also developed in the framework
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of sufficient dimension reduction: Zhu et al. (2006)
studied the asymptotic properties of SIR as p diverges,
but their result is for SIR only, and variable selec-
tion is not studied at all. Zhu and Zhu (2009a) inves-
tigated weighted partial least squares with a diverg-
ing p, but again variable selection is not derived. Zhu
and Zhu (2009b) investigated variable selection with a
diverging number of predictors through inverse regres-
sion, but focused on single-index models only. By con-
trast, Wu and Li (2011) established asymptotic prop-
erties for a family of inverse regression estimators that
includes SIR, studied simultaneous dimension reduc-
tion and variable selection with a particular emphasis
on the latter and encompassed more general forms,
while the number of predictors p is allowed to diverge as
the sample size n approaches infinity. Wu and Li (2011)
adopted the SCAD type penalty that was first intro-
duced by Fan and Li (2001), and combined it with
sufficient dimension reduction estimator, that is

α̂ = argmin
α

(
||U − Wα||2 +

p∑
i=1

pτn(|αi|)
)
.

The penalty pτn(·) are not necessarily the same for all
i. Wu and Li (2011) also showed that the penalised
estimator selects all truly contributing predictors and
excludes all irrelevant ones with probability approach-
ing one.

Based on the work in kernel dimension reduction,
Chen et al. (2017) proposed a method to perform fea-
ture selection via a constrained optimisation problem.
The corresponding SDR method can refer to Fuku-
mizu et al. (2009); Fukumizu Leng (2014). Many previ-
ous kernel approaches are filter methods based on the
Hilbert–Schmidt Independence Criterion (HSIC, Gret-
ton et al., 2005). Chen et al. (2017) proposed to use
the trace of the conditional covariance operator as a
criterion for feature selection. Let (H1, k1) denote an
RKHS supported on X ⊂ R

p. Then the trace of the
conditional covariance operator, trace(�YY |X) can be
interpreted as a dependence measure, as long as theH1
is large enough. Then the problem of supervised feature
selection reduces to minimising the trace of the condi-
tional covariance operator over subsets of features with
controlled cardinality:

min
T:|T|=d

Q(T) := Tr(�YY |XT ).

They also showed that empirical estimate of the crite-
rion is consistent as the sample size increases. It is worth
noting that kernel feature selection methods have the
advantage of capturing nonlinear relationships between
the features and the labels.

Theorem 3.1: Assume n1/2{Vec(β̂) − Vec(β)} → N
(0,	), for some	 > 0, and thatM1/2

n = M1/2 + o( 1√
n ).

Suppose that τn → ∞ and τn√
n → 0with p < n, then the

shrinkage estimator β̂ satisfies

(a) consistency in variable selection, Pr(Â = A) → 1,
and

(b) asymptotic normality, n1/2{Vec(β̂A) − Vec(βA)}
→ N (0,
), for some 
 > 0.

Remark 3.1: Theorem 3.1, part (a), indicates that the
sparse sufficient dimension reduction estimator can
select contributing predictors consistently, i.e., for all
i �∈ A we have Pr(̂αi �= 0) → 0, and for all i ∈ A we
have Pr(̂αi �= 0) → 1. Theorem 3.1, part (b), further
shows that the estimator for βA that corresponds to the
contributing predictors is root n consistent. The oracle
property as shown in Theorem 3.1 is given in Bondell
and Li (2009), Chen et al. (2010), Wu and Li (2011)
and Zhou and He (2008). Most of the methods men-
tioned above cannot achieve the desired property with
p>n, however,WuandLi (2011) showed that their pro-
posed method can obtain selection consistency when p
diverge as the sample size n goes to infinity. Then we
turn to investigate the oracle property with p>n.

3.2. Oracle property under the setting p � n

Large-p-small-n problems appear frequently in fields
such as biology, economics and finance. While those
variable selection methods have been successfully
applied in many high-dimensional analyses, modern
applications in areas such as genomics and high-
frequency finance further push the dimensionality of
data to an even larger scale, where pmay grow exponen-
tially with n. Such ultrahigh-dimensional data present
simultaneous challenges of computational expediency,
statistical accuracy and algorithm stability. It is dif-
ficult to directly apply the aforementioned variable
selection methods to those ultrahigh-dimensional sta-
tistical learning problems due to the computational
complexity inherent in those methods. To reduce the
predictor dimension in semiparametric regressions, Yu
et al. (2013) proposed a ρ1-minimisation of SIR with
the Dantzig selector (Candes & Tao, 2007), which is
defined as

min ||ηk||�1 , (l = 1, . . . , k − 1)

such that ||M̂ηk − νk�̂ηk||
≤ ζk, |η�

k �̂ηk − 1| ≤ ζk, |η�
k �̂ηl| ≤ ζk, (5)

where k = 1, . . . , d, νk = η�
k M̂ηk, |η|�1 = ∑p

i=1 |ηi|
and η0 is a p × 1 zero vector. Furthermore, they estab-
lished a non-asymptotic error bound for the result-
ing estimator when |A| is fixed. Yu et al. (2013) also
extended the regularisation concept to SIR with an
adaptive Dantzig selector, which is defined by

min ||Wkηk||�1 ,
such that ||W−1

k (M̂β̂
0
k − λ̂0k�̂ηk)|| ≤ ζk, (6)
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whereWk = diag(wk1, . . . ,wkp) is the a known weight
matrix and wkj is a specified positive value, which
should vary inversely with the magnitude of β̂

0
kj. Yu

et al. (2013) proposed a two-step estimation procedure
to select the contributing predictors. In the first step,
they screened out informative predictors based on (5).
This is called Dantzig selector based SIR. In the sec-
ond step, they enhance the sparsity and the estimation
efficiency with (6), based on the predictors selected in
the first step, called iterative adaptive Dantzig selector
based SIR. This ensures that all contributing predictors
are selected with high probability and that the result-
ing estimator is asymptotically normal even when the
predictor dimension diverges to infinity.

However, there is a gap between the optimisation
problem and the theoretical results: there is no guar-
antee that the estimator obtained from solving the
proposed biconvex optimisation problem is the global
minimum.Most existing work in the high-dimensional
sufficient dimension reduction literature involves non-
convex optimisation problems. Moreover, they seek to
estimate a set of reduced predictors that are not identifi-
able by definition, rather than the central subspace. Yin
and Hilafu (2015) proposed a sequential approach for
estimating high-dimensional SIR. Both proposals are
stepwise procedures that do not correspond to solving
a convex optimisation problem. Moreover, as discussed
inYin andHilafu (2015), theoretical properties for their
proposed estimators are hard to establish due to the
sequential procedure used to obtain the estimators. In
the high-dimensional setting, Lin et al. (2018) proposed
a screening approach to perform variable selection and
established an error bound for the estimators, which
allows |A| goes to infinity. The selected variables are
then used to fit classic SIR. Furthermore, the result-
ing algorithm is shown to be consistent and achieved
the optimal convergence rate under certain sparsity
conditions when p is of order o(n2c2), where c is the
generalised signal-to-noise ratio. Tan et al. (2018) pro-
posed a convex formulation for sparse SIR in the high-
dimensional setting by adapting techniques from the
sparse canonical correlation analysis. Their proposal
estimates the central subspace directly and performs
variable selection simultaneously. Moreover, the pro-
posed method can be adapted for sufficient dimension
reduction methods that can be formulated as gener-
alised eigenvalue problems.

As mentioned in introduction, most literature
mainly focus on SIR with consistency on variable selec-
tion. Qian et al. (2019) proposed methods under a
unified minimum discrepancy framework with regu-
larisation. Consistency results in both central subspace
estimation and variable selection are established simul-
taneously for some famous SDR methods, including
SIR, PFC and SAVE. More importantly, their approach

allows many quantities such as the structural dimen-
sion, the number of important predictors and the num-
ber of slices to diverge with n. Unlike many high-
dimensional SDR methods, their method did not nec-
essarily require a sparsity condition on the predictor
covariance matrix or the maximum eigenvalue of the
predictor covariance matrix to be upper bounded. Fur-
thermore, they developed a new algorithm that can effi-
ciently solve a general class of high-dimensional sparse
minimum discrepancy problems.

Many SDRmethods can be rewritten as a minimisa-
tion problem using an objective function of the form

L1n(	,V) = tr
(
(γn − �n	V)��n(γn − �n	V)

)
,
(7)

where γn, �n and �n are sample estimates for the pop-
ulation matrices M̃, W and W−1. Here, M̃ is a p × l
kernel matrix associated with a particular SDRmethod,
where d ≤ l ≤ p, W is some p × p positive definite
matrix, 	 ∈ R

p×d and V ∈ R
d×l represent parameters

to be estimated by minimisation of L1n. The general
form of (7) is an adaptation of the minimum discrep-
ancy approach proposed by Cook and Ni (2005). To
identify the correct sparsity structure of SY |X under
p � n scenarios, Qian et al. (2019) proposed to adopt
coordinate-independent regularisation approach and
imposed the penalty PV(	) with tuning parameter λn
on (7) under the alternative constraintVV� = Id, given
the objective function

L2n(	,V) = 1
2 tr
(
(γn − �n	V)��n(γn − �n	V)

)
+ λnPV(	), subject to VV� = Id.

Given its minimiser (	̂, V̂) = argmin	,V L2n(	,V),
they simultaneously estimated SY |X by Span(	) and
estimatedA0 by Â0 = {1 ≤ j ≤ p : e�j 	̂	̂�ej > 0}.

Tan et al. (2020) considered four loss functions

(i) General loss. LG(β̂ ,β) = ||̂ββ̂
� − ββ�||;

(ii) Projection loss. LP(β̂ ,β) = ||̂β(β̂
�
β̂)−1β̂

� − β

(β�β)−1β�||2F ;
(iii) Prediction loss. LX(β̂ ,β) = infW∈Rp×p ||�1/2(β̂

− βW)||2F ;
(iv) Correlation loss. LC(β̂ ,β) = 1 − 1

dTr[(β̂
�
�β̂)−1

(β̂
�
�β)(β��β)−1(β��β̂)],

where || · ||F denotes the Frobenius norm of a matrix.
Further, Tan et al. (2020) established theminimax lower
bound for sparse SIR under general loss, projection
loss and prediction loss. They proposed natural sparse
SIR estimator and proved that the upper error bound
associated with all four loss functions can match the
minimax lower bound obtained, which implies that it is
a rate-optimal estimator for sparse SIR. However, this
optimal estimation is computational intractable. Then
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they developed the computational feasible counterpart
for this natural sparse SIR estimator through convex
relaxation. But their theoretical investigation suggested
that such computational realisation for natural sparse
SIR estimator cannot maintain the optimal estimation
rate.

To further address this issue, they proposed a refined
sparse SIR estimator. The refined sparse SIR estima-
tor is also rate-optimal yet computational intractable.
However, its computational feasible counterpart based
on the adaptive estimation procedure is proven to be
nearly rate-optimal. Compared to the Lasso-SIR (Lin
et al., 2019), which was shown to be rate optimal only
when p = o(n2), their sparse SIR approach is rate opti-
mal even when log p = o(n). Therefore, their proposed
sparse SIR estimator certainly enjoys a much wider
range of applications. The reason why Lasso-SIR fails
to work when log p = o(n) is that it requires the esti-
mation of the eigenvalues and eigenvectors of the p × p
non-sparse SIR kernel matrix. It is well known that the
sample eigenvalues and eigenvectors are not even con-
sistent when p/n has a nonzero limit as n → ∞. In
summary, the minimax lower bound obtained, the two
rate-optimal yet computational infeasible estimators,
the two corresponding computational tractable coun-
terparts, and the theoretical upper bound of the four
estimators under four-loss functions together provide a
thorough understanding of sparse SIR. It is also worth
noting that Lin et al. (2019) is just the first step of Tan
et al. (2020). Bondell and Li (2009) demonstrated that
Supp(β) = A, then the sparse representation of SIR
relies on |A|, the number of truly relevant predictors,
where Supp(β) denotes the support of β . Assuming
|A| ≤ s, sparse SIR is further defined through seeking
β such that

β = argmax
B∈Rp×d

Tr(B�MB) s.t. B��B

= Id and |Supp(B)| ≤ s. (8)

The above formulation of sparse SIR enjoys a simi-
lar fashion as that of sparse CCA (Gao et al., 2015).
To get theoretical results, the following conditions are
required.

(A1) the conditional mean E{(X − E(X)|β�X)} is lin-
ear in X;

(A2) |Ak| is bounded for k = 1, . . . , d;
(A3) the nonzero eigenvalues λ1, . . . , λd are distinct;
(A4) there exists a positive constant a0 such that 0 <

a0 < 1/4, log p/n≤ a0 and E(exp[t{Xi −E(Xi)}2])
≤ K < ∞, for i = 1, . . . , p, and all |t| ≤ a0;

(A5) D0 = max1≤i≤p
∑p

j=1 |σij| is bounded constant
as p → ∞;

(A6) the restricted isometry and restricted orthog-
onality constants δA

k

2Sk and θA
K

Sk,2Sk satisfy δA
k

2Sk +
θA

K

Sk,2Sk < 1, where Ak = M − λk�.

See Yu et al. (2013) for more details.

Theorem 3.2: Suppose that Conditions A1–A6 are sat-
isfied, and ζk = C0(log p/n)1/2. Then

||̂βk − βk||2 ≤ 4C2SK
(1 − δA

k
2Sk − θA

K
S,2S)

2

log p
n

,

with a probability greater than 1 − 58p−τ for some τ

greater than (log p)−1 log 58,where Ak, δA
k

2Sk and θA
K

S,2S are
defined in Condition A6.

Remark 3.2: Theorem 3.2 suggests that a small price
can obtain a sparse solution, as the squared estima-
tion error of the regularised estimation is optimal up
to a factor of log p. The consistency property of Lin
et al. (2018), Tan et al. (2018) and Tan et al. (2020)
are similar with Theorem 3.2, but the threshold for
||̂βk − βk||2 can be different.

4. The current literature of variable screening

Although there is a vast literature of applying suffi-
cient dimension reduction for model-free selection,
the result of developing screening consistency for the
ultra-high dimensional setting is scant. Thereforemany
scholars are concentrated on investigating methods to
achieve screening consistency.

4.1. Marginal utility

Yu, Dong, Shao (2016) proposed an approach called
marginal SIR for model-free variable selection. SinceM
contains all the regression information between Y and
X, Yu, Dong, Shao (2016) considered the diagonal ele-
ment ofM as the marginal utility for the corresponding
predictor. Specially, let ek be the standard unit vector in
R
p with 1 being the kth element and 0 otherwise. They

considered the following utility for Xk:

mk = e�k �−1M�−1ek. (9)

Yu, Dong, Shao (2016) refer to mk as the popula-
tion level marginal SIR utility. To apply Dantzig selec-
tor for the estimation of the marginal SIR utility
mk, they defined p� = E{1(Y ∈ J�)}, � = 1, . . . ,H. Let
μ� = E{X1(Y ∈ J�)}. ThenMSIR = ∑H

�=1 p�E(X |Y ∈
J�)E(X� |Y ∈ J�) can be written as MSIR = ∑H

�=1 μ�

μ�
� /p�. Therefore

mSIR
k = e�k

( H∑
�=1

ν�ν
�
� /p�

)
ek, ν� = �−1μ�.

The marginal utilitymk is estimated by

m̂SIR
k = e�k

( H∑
�=1

ν̂�̂ν
�
� /̂p�

)
ek,

where �̂ = ∑n
i=1 XiX�

i /n and μ̂� = ∑n
i=1 Xi1(Yi ∈

J�)/n. For a given threshold bn, the active set A
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is estimated by including the predictors such that
m̂SIR

k exceeds bn or Â = {k : m̂SIR
k ≥ bn}. Yu, Dong,

Shao (2016) take an example thatX = (X1, . . . ,Xp)
� ∼

N (0,�). Let var(Xi) = 1, cov(Xi,Xj) = 0.6 for |i −
j| = 1, and cov(Xi,Xj) = 0 for |i − j| > 1, 1 ≤ i, j ≤ p.
Let Y = β�X + ε, where ε ∼ N (0, 1) is independent
of X and β = (1.2,−2, 0. . . . , 0)�. Then the active set
for the linear regressionmodels isA = {1, 2}. Consider
five utilities for X1: the marginal absolute Pearson cor-
relation from Fan and Lv (2008), the marginal squared
distance correlation utility from Li et al. (2012), the
marginal fused Kolmogorov filter utility as defined in
(5.3) of Yu, Dong, Shao (2016), the marginal inde-
pendence SIR utility as defined in (5.1) of Yu, Dong,
Shao (2016) and the marginal SIR utility as defined
in (9). Unfortunately, the first four independence
screeningmethods will fail to recover the active predic-
tor X1, only marginal SIR achieves desired result.

4.2. Trace pursuit

Yu, Dong, Zhu (2016) proposed trace pursuit as a
novel approach for model-free variable selection. They
first extended the classical stepwise regression in linear
models and proposed an STP algorithm for model-
free variable selection. Furthermore, they proposed
the FTP algorithm. After finding a solution path by
adding one predictor into the model at a time, a
modified Bayesian information criterion (BIC, here-
after) provides a chosen model that is guaranteed to
include all important predictors. Finally, the two-stage
trace pursuit algorithm uses FTP for initial variable
screening.

Forworking index setF and index j ∈ F c, if wewant
to test

H0 : Y Xj |XF vs. Ha :

Y is not independent of Xj given XF . (10)

For any index set F , denote XF = {Xi : i ∈ F},
var(XF ) = �F . Taking SIR as an example, denote
MSIR = �

−1/2
F MSIR�

−1/2
F . Recall that A denotes the

active index set satisfying Y XAc |XA, and I =
{1, . . . , p} denotes the full index set. It is worth not-
ing that, if the assumption (W1) holds true, then for
any index set F such that A ⊆ F ⊆ I , tr(MSIR

A ) =
tr(MSIR

F ) = tr(MSIR). It suggests that tr(MSIR
F ) can be

used to capture the strength of relationship between Y
and XF . Denote F ∪ j as the index set of j together
with all the indices in F . Given that XF is already in
the model, then trace difference tr(MSIR

F∪j) − tr(MSIR
F )

can be used to test the contribution of the additional
variable Xj to Y . The idea of using trace difference
is similar to the extra sums of squares test in the
classical multiple linear regression setting. The follow-
ing subset LCM assumption is required in Yu, Dong,
Zhu (2016),

E(Xj |XF ) is a linear function of XF for any F
⊂ I and j ∈ F c. (11)

Furthermore, they also provided the STP algorithm,
that is

(a) Initialisation. Set the initial working set to be F =
∅.

(b) Forward addition. Find index aF such that

aF = argmax
j∈F c

tr(M̂SIR
F∪j).

If TSIR
aF |F = n{tr(M̂SIR

F∪aF ) − tr(M̂SIR
F )} > cSIR,

update F to be F ∪ aF .
(c) Backward deletion. Find index dF such that

dF = argmax
j∈F

tr(M̂SIR
F\j).

If TSIR
dF |F\dF = n{tr(M̂SIR

F ) − tr(M̂SIR
F\dF )} < cSIR,

update F to be F\dF .
(d) Repeat steps (b) and (c) until no predictors can be

added or deleted.

The test for SAVE andDR can be defined in a parallel
fashion if the following CCV assumption together with
the subset LCM (11) assumption holds true

var(Xj |XF ) is nonrandom for any F ⊆ I and j ∈ F c.

Li and Dong (2020) had a recent extension of trace pur-
suit to matrix-valued predictors. Suppose the response
variable Y ∈ R and the predictor X ∈ R

p×q have the
following general relationship:

Y = g(X) + ε, (12)

where g:Rp×q → R is an unknown function, ε is inde-
pendent of X, and E(ε) = 0. Assume that X follows
the matrix normal distribution, which is denoted as
X ∼ Np,q(μ,U,V) with μ ∈ R

p×q, U ∈ R
p×p and V ∈

R
q×q. Then, the row covariance matrix is U = E{(X −

μ)(X − μ)�}/tr(V), and the columncovariancematrix
is V = E{(X − μ)�(X − μ)}/tr(U).

LetIrow = {1, . . . , p} be the full index set of rows and
Xj,· be the jth row ofX for j = 1, . . . , p. Define the active
row setA as

A = {j ∈ Irow : Y depends on Xj,· in model (12)}.
Similarly, let Icol = {1, . . . , q} be the full index set of
columns and X·,k be the kth column of X for k =
1, . . . , q. Define the active column set B as

B = {k ∈ Icol : Y depends on X·,k in model (12)}.
Based on the active row and column predictors,
model (12) can be expressed as

Y = g∗(XA,B) + ε,

where g∗ : R|A|×|B| → R with | · | denoting the car-
dinality of a set, and XA,B denotes the submatrix of
X that contains the active rows indexed by A and the
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active columns indexed by B. Note that Y depends on
X only through XA,B . Li and Dong (2020) introduced
procedures to recover the active row set A in detail.
Let Xj,·, j = 1, . . . , p, be the jth row of X and X−j,· ∈
R

(p−1)×q be the matrix that includes all but the jth row
ofX. To test the importance ofXj,·, they considered the
following row hypotheses:

Hrow
0,{j} : Y X |X−j,· vs. Hrow

a,{j} :

Y is not independent of X given X−j,·. (13)

Under the null hypothesis, Hrow
0,{j}, the response Y

depends on X only through X−j,·. In the special case of
q = 1, X becomes a p-dimensional vector, and (13) is
equivalent to testing the importance of one component
of X given the other p−1 predictors. This special case
is known as the marginal coordinate test (Cook, 2004).
Let U−j,−j ∈ R

(p−1)×(p−1) be the submatrix of U that
excludes the jth row and the jth column of U. Define
the following quantity:

δrowj = tr(M) − tr(M−j,·),

whereM=U−1E(XY)V−1E�(XY) andM−j,· =U−1
−j,−j

E(X−j,·Y)V−1E�(X−j,·Y). This trace difference δrowj is
the key quantity to test the importance of the jth row
of X, which is same as Yu, Dong, Zhu (2016). Note that
δrowj = 0 under Hrow

0,{j}.
To develop the screening consistency for ultrahigh

dimensional setting, Zhu et al. (2011) proposed a
novel variable screening procedure under a unified
model framework, which covers a wide variety of com-
monly used parametric and semiparametric models.
They assumed that E(Xi) = 0 and var(xi) = 1 for i =
1, . . . , p and�(Y) = E{XF(Y |X)} for ease of explana-
tion. It then follows by the law of iterated expectations
that �(Y) = cov{X,1(Y < y)}. Let �i(Y) be the ith
element of �(Y), and defined as

ωi = E{�2
i (Y)}, . . . , i = 1, . . . , p.

Then ωi is to serve as the population quantity of
our proposed marginal utility measure for predictor
ranking. Intuitively, one can see that, if xi and Y
are independent, then xi and the indicator function
1(Y ≤ y) change independently. Consequently, ωi =
0. On the other hand, if xi and Y are related, then
ωi must be positive. For ease of presentation, they
assumed that the sample predictors are all standard-
ised; that is, n−1∑n

j=1 Xji = 0 and n−1∑n
j=1 X

2
ji = 1

for i = 1, . . . , p. A natural estimator of ωi is

ω̃i = 1
n

n∑
j=1

{
1
n

n∑
k=1

Xki1(Yk < Yj)

}2

, i = 1, . . . , p,

where Xki denotes the kth element of xi. The new
method does not require imposing a specific model
structure on regression functions, and thus is

particularly appealing to ultrahigh-dimensional regres-
sions. They showed that, with the number of predictors
growing at an exponential rate of the sample size, the
proposed procedure possesses consistency in ranking,
which is both useful in its own right and can lead to
consistency in selection. Lin et al. (2017) first intro-
duced a large class of models depending on the smallest
non-zero eigenvalue λ of the kernel matrix of SIR, then
the determination of the minimax rate for estimating
the central space over two classes is derived, which is
the first paper that studied the minimax estimation of
sparse SIR. Furthermore, they showed that the esti-
mator based on the SIR procedure converges at rate
d ∧ ((sd + s log(ep/s))/(nλ)), which is the optimal rate
for the single index models and multiple index mod-
els with fixed structural dimension d, fixed s = |A| and
λ. However, Lin et al. (2017) only considered the pro-
jection loss (Li &Wang, 2007). More importantly, their
theoretical study is actually based on the assumption
that covariance matrix is diagonal.

Before discussing the consistency property, we need
some conditions. Taking Yu, Dong, Shao (2016) as an
example,

(C1) The coverage condition: Span{�E(X |Y ∈ J�)�
= 1, . . . ,H} = SY |X.

(C2) There exist 0 < c < 1/4 and 0 < q < ∞ such
that E{exp(tXk)}≤ q for all |t| ≤ c, k = 1, . . . , p. In
addition, there exist positive constants λmin and
λmax such that 0 ≤ λmin ≤ λmin(�) ≤ λmax(�) ≤
λmax < ∞, whereλmin(�) andwhereλmax(�) are
the smallest and largest eigenvalue of �, respec-
tively.

(C3) There exists 0 < f < ∞ such that ||�−1||1 ≤ f .
(C4) There exists 0 < g < 1 − 2 × r such that f 2s2 log

p = Op(ng), where s is the cardinality of A and r
is specified in condition (C5).

(C5) There exists 0 < a2 < ∞ and r ≤ 1/2 such that
mink∈Amk > 2a2n−r.

More details please refer to Yu, Dong, Shao (2016).

Theorem 4.1: Assume above conditions hold, then the
shrinkage estimator β̂ satisfies consistency in variable
selection,

Pr(Â ⊇ A) → 1.

Theorem 4.1 is given in Yu, Dong, Shao (2016),
Yu, Dong, Zhu (2016), Lin et al. (2017), and Zhu
et al. (2011).

5. Minimax rate

Recently, an impressive range of penalised SIR meth-
ods has been proposed to estimate the central subspace
in a sparse fashion. However, few of them consid-
ered the sparse sufficient dimension reduction from a
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decision-theoretical point of view. To address this issue,
Tan et al. (2020) established the minimax rates of con-
vergence for estimating the sparse SIR directions under
various commonly used loss functions in the litera-
ture of sufficient dimension reduction. Lin et al. (2019)
introduced a simple Lasso regression method to obtain
an estimator of the sufficient dimension reduction
space, which is only the first step of Tan et al. (2020).
Moreover, Tan et al. (2020) discovered the possible
trade-off between statistical guarantee and computa-
tional performance for sparse SIR and proposed an
adaptive estimation scheme for sparse SIR which is
computationally tractable and rate optimal under the
condition that log p = o(n), which is weaker than Lin
et al. (2019).

As we can see that, the kernel matrix MSIR can be
estimated as

M̂SIR =
H∑

�=1

μ̂�μ̂
�
� /̂p�.

Then it is natural to estimate β via replacing M and �

in (8) by their sample estimators, which yields

β̂SIR = argmax
B∈Rp×d

Tr(B�M̂SIRB) s.t. B��̂B

= Id and |Supp(B)| ≤ s, (14)

The solution β̂SIR in (14) is called the natural sparse SIR
estimator. The following theorem establishes the lower
bound and upper bound of the four loss functions for
the natural sparse SIR estimator.

Theorem 5.1: Assume nλ2 ≥ C0 log
ep
s for some suffi-

ciently large constant C0. Then there exist positive con-
stants C and c0 such that

inf
β̂

sup
P∈P

EPLG(β̂ ,β) ≥ C
s log(ep/s)

nλ2
∧ c0,

inf
β̂

sup
P∈P

P

{
LP(β̂ ,β) ≥ C

s log(ep/s)
nλ2

∧ c0
}

≥ 0.8,

inf
β̂

sup
P∈P

P

{
LX(β̂ ,β) ≥ C

s log(ep/s)
nλ2

∧ c0
}

≥ 0.8,

where P = P(n,H, s, p, d, λ;K,m).

Theorem 5.2: Assume that s log(ep/s)
nλ2 ≤ c for some small

constant c ∈ (0, 1). Then for any C′ > 0, there exists a
positive constant C such that

LG(β̂ ,β) ∨ LP(β̂ ,β) ∨ LX(β̂ ,β) ∨ LC(β̂ ,β)

≤ C
s log(ep/s)

nλ2

with probability greater than 1 − 2 exp(−C′(s + log
(ep/s))) uniformly over P ∈ P(n,H, s, p, d, λ;K,m).

Since SIR can be rewritten as a least-square for-
mulation, they finally proposed an adaptive estima-

tion scheme for sparse SIR which is computationally
tractable and rate optimal. More details about the adap-
tive sparse SIR estimator can refer to Tan et al. (2020).

6. Further investigation

6.1. Marginal utility

Motivated by Yu, Dong, Shao (2016), we can extend
their method to SAVE and DR. Let ϕ� = E{XX�1(Y ∈
J�)}. Then MSAVE = ∑H

�=1 p�{� − var(X |Y ∈ J�)}2
can be written as MSAVE = ∑H

�=1 p�{� − ϕ�/p� +
μ�μ

�
� /p2�}2. Therefore

mSAVE
k = e�k �−1

( H∑
�=1

p�{� − ϕ�/p� + μ�μ
�
� /p2�}2

)
× �−1ek.

The marginal utilitymk is estimated by

m̂SAVE
k = e�k �̂

−1
( H∑

�=1

p̂�{�̂ − ϕ̂�/̂p� + μ̂�μ̂
�
� /̂p2�}2

)

× �̂
−1ek,

where ϕ̂� = ∑n
i=1 XiX�

i 1(Yi ∈ J�)/n. For a given
threshold bn, the active setA is estimated by including
the predictors such that m̂SAVE

k exceeds bn or Â = {k :
m̂SAVE

k ≥ bn}.
Next, we consider marginal DR with the Dantzig

selector. Then

MDR =
H∑

�=1

2p�[E{E2(XX�)}

+ E2{E(X |Y ∈ J�)E(X� |Y ∈ J�)}
+ E{E(X� |Y ∈ J�)E(X |Y ∈ J�)}
× E{E(X |Y ∈ J�)E(X� |Y ∈ J�)}] − 2�

can be written as

MDR = 2
H∑

�=1

p� (ϕ� − �)2 + 2

( H∑
�=1

μ�μ
�
� /p2�

)2

+ 2

( H∑
�=1

μ�
� μ�/p2�

)( H∑
�=1

μ�μ
�
� /p2�

)
.

Therefore

mDR
k = 2e�k �−1

⎧⎨⎩
H∑

�=1

p� (ϕ� − �)2

+
( H∑

�=1

μ�μ
�
� /p2�

)2

+
( H∑

�=1

μ�
� μ�/p2�

)( H∑
�=1

μ�μ
�
� /p2�

)⎫⎬⎭�−1ek.
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The marginal utilitymk is estimated by

m̂DR
k = 2e�k �̂

−1

⎧⎨⎩
H∑

�=1

p̂�

(
ϕ̂� − �̂

)2

+
( H∑

�=1

μ̂�μ̂
�
� /̂p2�

)2

+
( H∑

�=1

μ̂�
� μ̂�/̂p2�

)( H∑
�=1

μ̂�μ̂
�
� /̂p2�

)⎫⎬⎭ �̂
−1ek.

For a given threshold bn, the active setA is estimated by
including the predictors such that m̂DR

k exceeds bn, or
Â = {k : m̂DR

k ≥ bn}. Following the proof of Yu, Dong,
Shao (2016), we can expect the marginal SAVE and DR
with the Dantzig selector to achieve selection consis-
tency.

6.2. Minimax rate

Motivated by Tan et al. (2020), we can further
investigate the natural sparse SAVE estimator and
upper error bound. Let EnX = 1

n
∑n

i=1 Xi and �̂ =
1

n−1
∑n

i=1(Xi − EnX)(Xi − EnX)� be the samplemean
and sample covariance of X, then the SAVE kernel
matrixM is estimated as

M̂SAVE =
H∑

�=1

p̂�{�̂ − ϕ̂�/̂p� + μ̂�μ̂
�
� /̂p2�}2.

Similarly, the DR kernel matrix is estimated as

M̂DR = 2
H∑

�=1

p̂�

(
ϕ̂� − �̂

)2 + 2

( H∑
�=1

μ̂�μ̂
�
� /̂p2�

)2

+ 2

( H∑
�=1

μ̂�
� μ̂�/̂p2�

)( H∑
�=1

μ̂�μ̂
�
� /̂p2�

)
.

Then it is natural to estimate β via replacing M and �

in (8) by their sample estimators, which yields

β̂SAVE = argmax
B∈Rp×d

Tr(B�M̂SAVEB) s.t. B��̂B

= Id and |Supp(B)| ≤ s,

β̂DR = argmax
B∈Rp×d

Tr(B�M̂DRB) s.t. B��̂B

= Id and |Supp(B)| ≤ s

(15)

The solution β̂SAVE and β̂DR in (15) are called the
natural sparse SAVE and DR estimator. The following
theorem establishes the lower bound and upper bound
of the four loss functions for the natural sparse SAVE
and DR estimator.

Theorem 6.1: Assume nλ2 ≥ C0 log
ep
s for some suffi-

ciently large constant C0. Then there exist positive con-

stants C and c0 such that

inf
β̂

sup
P∈P

EPLG(β̂ ,β) ≥ C
s log(ep/s)

nλ2
∧ c0,

inf
β̂

sup
P∈P

P

{
LP(β̂ ,β) ≥ C

s log(ep/s)
nλ2

∧ c0
}

≥ 0.8,

inf
β̂

sup
P∈P

P

{
LX(β̂ ,β) ≥ C

s log(ep/s)
nλ2

∧ c0
}

≥ 0.8,

where P = P(n,H, s, p, d, λ;K,m).

Theorem 6.2: Assume that s log(ep/s)
nλ2 ≤ c for some small

constant c ∈ (0, 1). Then for any C′ > 0, there exists a
positive constant C such that

LG(β̂ ,β) ∨ LP(β̂ ,β) ∨ LX(β̂ ,β) ∨ LC(β̂ ,β)

≤ C
s log(ep/s)

nλ2

with probability greater than 1 − 2 exp(−C′(s + log
(ep/s))) uniformly over P ∈ P(n,H, s, p, d, λ;K,m). In
which β̂ is constructed in (15).

Following by Tan et al. (2020), β̂ in (15) is rate
optimal under general loss, projection loss and predic-
tion loss. Moreover, the natural sparse SAVE estimator
β̂SAVE and DR estimator β̂DR can also be regarded
as one optimal estimator for the SAVE directions and
DR directions. However, the estimation procedure (15)
depends on the unknown sparsity parameter s and
is computationally infeasible as it involves exhaus-
tive search over all B ∈ R

p×d subject to the sparsity
constraint. Tan et al. (2020) defined a refined sparse
SIR estimator based on that SIR can be viewed as
transformation-based projection pursuit. Since SAVE
and DR cannot be rewritten as a least-square formu-
lation, we do not define refined sparse SAVE and DR
estimator.
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