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S1. Regularity conditions

To prove the theoretical results of this paper, we need some regularity
conditions. They are not the weakest possible conditions, but they are

imposed to facilitate the proofs.

(C1). (The density of the index variable) We assume that W has a compact
support. Then, on the support, we further assume that the probabil-
ity density function of W, denoted by f(W), is bounded away from

0 and has continuous derivatives up to second order.

(C2). (The moment requirement) For any 1 < ji,js < p, there exists a

constant § € [0, 1], such that supy, E{|X;, (W)X, (w)|}*™ < cc.



(C3). (Smoothness of the conditional mean) Assume that the conditional

mean m;(-) has continuous derivatives up to second order.

(C4). (Smoothness of the conditional variance) We assume that E{Xfl1 ij Xf; Xf: W =

w } has continuous derivatives up to second order in w for kq, ko, k3, ky €

{0,1}, where ji, jo, j3, j4 are not necessarily different components in

the (X, W) vectors.

(C5). (Smoothness of the conditional indicator mean) Assume that the
conditional indicator mean E{X1(Y € J;)|W = w} has continuous

derivatives up to second order, where [ =1,..., H.

(C6). (Smoothness of the conditional indicator variance) We assume that
ke ko
EAXG X5 X,
Xff]l(? = 1)|W = w} has continuous derivatives up to second order
in w for ]{31, ]CQ, k?g, ]{?4 S {O, ]_}, = ]., e 7H, where jl,jg,j37j4 are not

necessarily different components in the (X, W) vectors.
(CT7). (The bandwidth) A — 0 and nh® — ¢ > 0 for some ¢ > 0.

(C8). (The kernel function) We assume that K(w) is a bounded proba-
bility density function symmetric about 0. Furthermore, for the 9 in

(C2), we assume that [ K*™(v)vidv < oo, for j = 0,1,2. Lastly, for



two arbitrary indices wy and ws, we must have |K(w;) — K(wg)| <

K |w; — wy| for some positive constant K..

(C9) The bootstrap estimator M* satisfies

(nh)"*{vech(M*) — Vech(i/l\) — vech(B")} 4 N(0, Varp[vech{H(X,Y)}]).

(S1.1)

(C10) For any sequence of nonnegative random variables {Z, : n =
1,2,...} involved hereafter, if Z, = O(c¢,) for some sequence {¢, :
n € N} with ¢, > 0, then E(c,'Z,) exists for each n and E(c,,'Z,,) =

o(1).

(C11) f (h/loglog n)E{S?I(|S| > a,)} < oo, where S represents response

n=3
variable in nonparametric regression function and a,, = o{(nh~'loglogn)/2/(logn)?}.
(C12) lim o limsup,,_, o SUper, . [(m)/h(n) — 1| = 0, where I';. = {m :

|m —n| <en}.

Both conditions (C1) and (C2) are standard technical assumptions [Yin
et al. (2010)], and conditions (C3), (C4), (C5) and (C6) are necessary

smoothness constraints [Fan (1993); Yao and Tong (1998)]. By condition

1/5

(C7) we know that the optimal convergence rate of n='/° can be used. Con-



dition (C8) is a standard requirement for the kernel function [Yao and Tong
(1996)] , which is trivially satisfied by both Gaussian kernel and Epanech-
nikov kernel.

Condition (C9) is quite mild: it is satisfied if the statistical functional
M is Fréchet differentiable [Luo and Li (2016)], where B* represents the bias
term of M*—M. Condition (C10) amounts to asserting that the asymptotic
behaviour of (nh)Y/?(M* — M — B*) mimics that of (nh)l/Q(/l\/\I - M - B),
where B represents the bias term of M — M. The validity of this self-
similarity has been discussed [Bickel and Freedman (1981), Luo and Li
(2016)], where vech(-) is the vectorization of the upper triangular part of
a matrix and varp|vech{H(X,Y")}] is positive definite. Condition (C11)
and condition (C12) are widely used in law of the iterated logarithm for
nonparametric regression Hardle (1984). These conditions should not be

too restrictive on the applicability of our estimator.

S2. The proofs of the main results

PROOF OF PROPOSITION 1. Following Li et al. (2003), for convenience,

we often use the abbreviation

E{f(X,Y)|g(X), W = w} £ E{f(Xw, Yo)|g(Xw)}-



In our case, we define

E(X|Y,W =w) = E(Xy|Yy), E{X]V,B"(W)X,W =w} = E{X,|Va, B"(W)Xy1}.

Since Xy, satisfies linear conditional mean (A1), given W = w, it’s easy for

us to get

T

B{Xy|B" (W)X} = [B(w){B"(W)SB(w)} ' B"(W)Zy]" Xy

Hence,

SHEXY,W = w) — m(w)}
= S H{EXw[Yy) — E(Xw)}
= 3, [B{E(Xw Yy, B (W)Xy) Yo} — E{E(Xw[B"(W)Xy)}]
= S E{E(X|B" (W) Xw)|Ye} — E{E(Xy|B" (W) Xy)}]
=3,/ [B(W){B"(W)2B(w)} B (W) Sy {E(Xw|Yw) — E(Xw)}

= B(w){B"(W)ZB(W)} 'B"(W)ZW E{E(X]Y, W = w) — m(w)}.



The second equality follows tower property about conditional expectation.

Then the third equality is based on the fact that
Yo L Xy |BY (W) Xy.
Denote Pp(w) = B(w){B*(w)X,,B(w)} 'B"(w)X,. Then we have,

S HEXY,W =w) —m(w)} = P2, {E(X]Y, W = w) — m(w)}.

PROOF OF PROPOSITION 2. At first, we need to prove the left side of the

equation (1.5),

BX|Y =1, w) = /fXY__liVV)V)dX

X WY = )P (Y—l)dX
fwlYy =)P(Y =1)
foXw|Y_l)dX
FwY =1)




Then we show the right side of the equation (1.5), since

) = L () 1)) (T )

f(w) f(w)
(52.2)

where f(w) is the density function of w. Hence

f(X,l? =1l,w)
f(w)

f; FX,w|Y = k)P = k)

(
- [rar =B “

XX, WY =)P(Y =1)
a f(w)

dXdY

BX1(Y = 0)w) = /X]I(EN/ _ )

(52.3)

Thus, we get

E{X1(Y = )|w} _ [XfX,w|Y = )P(Y = 1)dX/f(w)

E{1(Y = I)|w} f(W|3:/ =P =1)/f(w)
_JIX WY =0dX o5 W),
fw|Y =1)



PROOF OF THEOREM 1. Denote k;(w) = K(¥—), we get

= () <7

Then under condition (C1) and (C8), by Yin et al. (2010), we conclude that

n

]f(w) — f(w)]=0p { @ + hQ}. Next under condition (C1), we have

uniformly for w € G,

{%gkz(w)}_ :fl(w){l—i—OP( loi(}Ln)+h2>}'

Define for j =1, 2,

o= () ()

Then, by the same method as in Yin et al. (2010), we have

51(W) — hPywy = O, ( loigl”) + o(h)) = op(h), (S2.4)

where wy = [*° w?K(w)dw. Next, by Lemma 2 of Yao and Tong (1998)

we know that

sup [s5(w) — f(w)ws| = op(1). (S2.5)

weR



By Taylor’s expansion, we then have

Pl,w - Pl,w

- #(W){HOP (WH#)}?K (Wigw> {11(572- =1) —Pz,wz}

1 log(n) |, - WP 2
+W{1+Op< W"‘h)}{hpl,wﬁ(w)—i— QZ SQ(W)+0(h )}
(52.6)

Then it follows by (52.4) and (S2.5) that

f)l,w - Pl,w = CP,w + BP,W + OP{Rl (W)} (S27>

where
_ 1 - W N B h2ws f(w) . .
P.w nhf(W) s l( ) {]I(Y; = l) Pl,Wi} y BP,w = 9 (2f<W)Pl’w -+ Pl,w) ,
and
)= g [ (5 7) 00 —pue | o

lgl,w — P, follows by the similar argument. Then,

I/j-l,w —Uw=Cuw+Buw+ OP{RQ(W)}, (828>
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where

Uw = nhfl( )ikl(w) {xlll(YZ—l)—Ulw}, By, h22w2 <2§Ez;U,w+Ul,w>,
and
Ry(w) = nfiw) { if( (WZ;W> (%1 =) = Uy, ) }+o(h2),

Yin et al. (2010) has already shown us that

M(w) — m(wW) = Cw + Buw + Op{R3(w)}, Zw — Sy = Cxw + Bsw + Op{Ry(W)},

where
_ 1 - X h2ws mmw il
v = ) 2 B b =)} B = <2f(w) (w) + s >>
1 - o~
Co = 7wy 2 (W w) [ B(w)} o — (W)}~ B~ (s~ w)Sh]
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and

Ry(w) = s { S (T ) i mw) }+o<h2>,
=1
Ray(w) = nfiw) { X;K <Wi - hud [{xi ~(wi)} {xi — m(w;))T — S — (wi — w)zw} } +o(h?),

Thus

1
= Bgir(W) + Cgir(W) +0p | — |,
(W) + Com(w) + o ( m)
where
BU7WUTW + UlwaT W 1 T T T
BSIR(W) = { : P - P2 BvaUlval,w} - Bm7wm(w) - m(w)Bm,w>
l:1 l,W l7W

(52.9)
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and

H
CU,WUZTW + UZ,WB% w 1
Csr(w) = Z { : o — — Pzw CpwUwU,, ¢ — Cnwm(w)" —m(w)Cp, .

Following by the similar argument of Theorem 1 in Yin et al. (2010), we

have

Vi (veeh{ M (w)} — vech{Msir(w)} — vech{Bsin(w)} ) 5 N(0, f (w)uwoC¥(w)),
(S2.10)
where
wo = /Z K*(w)dw. (S2.11)
Hence
C*"™(w) = Cov [vech{Cgr(w)}|w] . (52.12)

This completes the proof of the part one of Theorem 1, then we prove the
part two. Observe that A\(w) and Bi(w) satisfy the following singular

value decomposition equation:

G(w)G"(W)Br(W) = Ni(W)Be(w), k=1,....p;
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where G(w) = X_'M(w). Hence,

X M(wW)M (W)X B (W) = \o(w)B(w), k=1,....p;

where 3/ (w)Br(w) = 1 and B (w)B,(w) = 0 for k # p. Similarly, in the

sample level, we have

A~ L~ —~ ~,

S M(W)M" (W) 2L Br(w) = M(w)Be(w), k=1,...,p;

and B\E(W),@k(w) =1 and B\E(W)Bp(w) = 0 for k # p. The singular value

decomposition form in the sample level implies that

MW {ELM(W)Y{Br(w) — Be(w)} + (£, — SLHM(W)M™ (w) S, By (w)
+IH{M(w) — M(w) M (w)E,1 8, (w) + S M(w)M" (w) (S, — 2,185 (w)
+SM(w) {M (W) — M(W)} S, 81(w) = Me(w) D (w) — A (W)} Bi(w)

W) = M (W) IA(W)Br(w) + X (W) {Br(W) — Br(w)} + 0,(——),

for k =1,...,d. Multiply both sides of (S2.13) by B{(w) from the left, we

get

L EUOMWIMT (W) + ELHM(w) — M(w) M (w) 5!

w
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+ 2 M(w)MT (W)(E! = 251 + 20 M(w){M(w) - M(w)} 'S0 Bi(w)

w

= (W) = (W) PA(W) + ML (w) — Me(W)} + 0, (—=),

1
vnh
which further suggests that

Bi(w)

Ne(W) =Ap(w) + (53— ZJHM(w)M" (w) 2!

+EHM(w) — M(w) M (w) S, + 2, IM(w) M (w) (8, - B,

I M(w) {M(w) — M(w)"S,1} ).

Br(w) + 0,(

2
>

(S2.14)

By lemma A.2 of Cook and Ni (2005) we know that

A~

Yo -3 = (B — Zw) B+ oy(

).

3
>

Hence, equation (S2.14) becomes

— BN Sy — S S M (W) M (w) 2!

w w w

Ne(W) =Ap(w) +

Bi (W) [
2\, (W)

FECUM(w) — M(w) MY (w)E5! — S2IM(w)ME (w) 25 (S — Sy) 52!

w

+EL M (W) {M(w) — M(w)} S}

w

@
-
2
+

)
=

‘ -

(S2.15)



15

where

Ci,(w) =f;k<<vv"v)) |~ 2 Cnn B M(W)MT (W), + 35! Crr o M (W) 2

—IIM(WIM (W) 5! O B, + 2 M(w)Cly 35| Be(w),

(S2.16)
and
_ By (w) 51 -1 T -1 -1 T -1
B, (w) = Yo BewX, M(w)M' (W)X + X, BuwM' (W)X,
2)\k(W) ’ ’
B MW)M (W) S, By B!+ 3, M(w) By, By Bel(w).
(52.17)
Now we turn to the expansion of B\k(w) Since (B1(W), ..., By(W)) is a basis

of RP, then there exists cj; for j = 1,...,p, such that B\k(w) — Br(w) =
L_1 Ch;Bi(w) and ¢f; = Op(\/Lnfh + h?%). We will derive the explicit form of

cy; in the next step. Note that (52.13) can be rewritten as

[EglM(W)MT(W)Egl _ )\i(w)} ijl i35 (w)
= (W) { R (w) = Au(w) | Bulw) + {Relw) = Aulw) | Ael(w)Bi(w)
[0 (B = D) M) M (W) B! - M (w) — M(w) M (w) 5!

w

+ I M(W)M" (W) 25 (B — 3u) 35! — 55 M(w) {M(w) — M(w)} 25! Bi(w).
(S2.18)
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Denote

A~

A(w) = 2 (Bw — ) 20 M(W)M (W) = S0H{M(w) — M(w) M (w) 2!

w w

A~

H(Ey — 2B, - ZIM(w) {M(w) — M(w)} S,

w

+ 3 M(w)M™ (w) X,

w

Multiply both sides of (52.18) by B} (w) (j # k) from the left, we have

in addition, B (w)B(w) = Bk (W),@k(w) = 1 indicates that

p

0= {Z ;B (W)} Br(w) + Br(w {Z criBi(w

Jj=1

which further implies that ¢}, = 0. Let

A(w) =3By o X' M(w)M"(w)Z,! — 2 'Bp oM (W)X}

w

+ X IM(W)MT (W), B w2t — ' M(W)By o 2o

M,w“~w

and

Ay(w) =3, Ce o S/ M(wW)M"(w)E ! — 2 'Cyp oM™ (W) 2!
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+ 2 M(w)M™ (W) 2, Cy o 2,1 — 2, ' M(w) M,WEV‘S-

Hence, we have

Bu(w) = Be(w) + By(w) + Ci(w) + oP(\/%). (82.19)
Denote
(W)Bj (w)A L (W)B (W)
; VW) = Rw) (52:20)
and
= Bi(w)B] (W) Az (w) By (W)
Ck(w)g N w) — \w) : (S2.21)

The asymptotic normality is then straightforward via the central limit the-

orem and

Yp(w) = Cov{Cy(w)|w}.

In partial variable dependent SIR, denote G(w) = X 'Mgg(w), then sub-
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stitute it into (52.20) and (52.21),

B ) = 3 SIR( ){BSIR( )}

DR (w)}2 — (TR (w) )2 [E‘;lBE,wEV_VlMSIR(W)MEIR(W)Ev_vl

J7#k
— B3 Bor(W)Mgp (W) S0 + 20 M (W) Mg (W) 2, Bs o 53
— 355 Mo (w) Bl (w) 55| B3 (w),

(S2.22)

IR B (w ){BSIR( )37
CS Z{)\SIR {)\SIR( )}2

|35 C T3 Mt (W) Mg (W) 25!
Jj#k

— 3, Car (W) Mgr (W) E.! + 2, Mgr (W) Mg g (W) 2, Ce W Xy,

— 355 M (W) Clin (W) 25 | B (w).

Hence,

S (w) = Cov{C™(w)|w} (52.23)

Theorem 2 is closely related to the following two assertions:

(a) if Ag(w) > Aepi(w), then f2(k) = Op(s) almost surely Pg given

W =w;

. . 0 . Jr .
k = : = n
(b) if Ae(w) = Agy1(w), then f(k) = O}(c,) almost surely Pg given
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W =w,

where ¢, = [log{log(n)}]~* and O}, symbols has been shown in Luo and Li
(2016). We will prove these assertions, and then prove Theorem 2 based on
them.

The nonparametric ladle estimator can pinpoint the rank of a matrix
more precisely than the other order-determination methods when they are
used for the nonparametric model. We established the consistency of the
nonparametric ladle estimator. The next Lemma regulates the order be-
tween the eigenvalues and the variability of eigenvectors. In particular, it
shows that distant eigenvalues are related to the small variability of eigen-
vectors. Ladle estimator allows asymmetric matrices, therefore we apply
it to G(w)G™(w), which amounts to replacing the eigenvalues and eigen-
vectors of é(W) by its squared singular values and singular vectors, since

G(w) is not a symmetric and semi-positive definite matrix.

Lemma 1. Let ¢, = {log(logn)}~'. If conditions (C9), (C10), (C11) and
(C12) hold, and G(w)G(w)" € RP*P s a positive semi-definite matriz of

rank d(w) € {0,...,p—1}, then for any k = 1,...,p—1, the following rela-
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tion holds for almost every sequence S = {(Y1, X1, W1), (Y2, Xo, Wy), ...} :

Op Lh ;o Ak(w Akt1(W);
iy = OFGR A > ()
O;(Cn)a Me(W) = Apgr (W);

where OF, is defined in Luo and Li (2016).

Lemma 2. Let ¢, = {log(logn)}~! and r = |p/log(p)]. For any positive
semi-definite candidate matric G(w)G(w)" € RP*P of rank d(w), and for

each k € {0,1,...,7}, we have

O5(1), if k<d(w);
On(W, k) = d almost surely Ps.
Op(gm), if k> d(w);

The asymptotic behavior of f,,(w,-) is presented in Lemma 1 and Lemma
2 gives the asymptotic property of ¢,(w,-). The proof of Lemma 1 and 2
are similar to that of Theorem 1 and Lemma F in Luo and Li (2016), thus

omitted here.

Lemma 3. For anyi,7 =1,...,p with 1 # j,

B (w)B,(W)|[Xi(w) = X;(w) = {By, (W) + B(w)}] = O,

2l
=
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where the closed form of By, (w) and B(w) are provided in (S2.17) and
(52.26) in the Appendiz, respectively.

PROOF OF LEMMA 3. Luo and Li (2016) has shown that

p p

G(w)B;(w) = G(w) {Z Tijﬁi(w)} = rhi(w)Bi(w),  (S2.24)

i=1 =1
and

G(w)B;(w) = G(W)B;(w) + {G(w) — G(W)}B;(w) = X;(w)B;(w) + {G(w) — G(w)}B;(w),
(S2.25)

where ry; = BF(W)B;(w), B;(w) = Y1, ryyBi(w) and Y27, 17 = 1. G(w)—

G(w) — G(w) = S H{M(w) - M(w)} + (=

w

Hence

B(w) = 2,'Byw + Z,'BswZ, M(w). (S2.26)



Combing (52.24) and (52.25), we have

).

2 0)8) = )8, 06)+ B, ()3 + Bl )+ O,
_ Z A (WB () + (B () + B(w)}B,(w) + Oy =)
_ Z rh (W) + Z 1By, () + B} w) + Oy~
Hence
) = () = (B () + BB () = O,
Since B1(w), ..., B,(w) are orthogonal, we have, for each i # j,

BF(W)B,(W)|[Xi(w) = X;(w) = {By, (W) + B(w)}] = 0,(——)

5

Since the order of bias term is A%, then under condition (C7),

vnh x h?

— 0, as n — o0,
log(log n)
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the bias term {B,,(w) + B(w)} will vanish, such that a direct application

of this Lemma leads to the next lemma.

Lemma 4. Under condition (C9) and (C13), for any positive semi-definite
candidate matriv G(w) € RP*P and any i,j € {1,...,p}, if N(w) >
A;(w),then

-~

Bi(w)"Bj(w) = Op(

2
>

almost surely Ps.

PROOF OF LEMMA 4. Let A; € F be the event that {(nh)l/z{xi(w) -

Ai(w)}/+/log(logn) : n € N} is a bounded sequence for each i = 1,...,p.

From Assumption (C12) it follows Hardle (1984) that the bias term of
Xl(w) — Ai(w) vanishes. By the law of the iterated logarithm and Lemma
3.2 of Zhao et al. (1986), pr(A;) = 1. For any s € Ay and 4,5 = 1,...,p,

we have

(W) = X5 (w)| = [Xi(w) — Aj(w)| + o(1). (52.27)

Let As € F be the event in Assumption (C10). Then pr(Ay) = 1. Hence

pr(A; N Ay) = 1. For any fixed s € A; N Ay, by Lemma 3,
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By (52.27), we have G (w)3;(w) = Op(ﬁ). O
PROOF OF ASSERTION (a). By the law of iterated logarithm, similar to
the proof of Assertion (a) of Luo and Li (2016), we can show that, when

)‘k(w> > )‘kJrl (W)a
1
1 — |det{Gq1(W)}| = OP(E) almost surely Pg,

where Gyy(w) = TIT;. Thus fO(w,k) = Op(-) almost surely Pg, as

nh

desired. 0

Proof of Assertion (b) is omitted here since it’s similar in Luo and Li
(2016). We now prove Theorem 2 by combining lemma 1, lemma 2, lemma
3, lemma 4 and Assertion (a) and (b).

PROOF OF THEOREM 2. It’s easy to see that

Op(—) = op(cs),  Of(1) = Ofler), Op(—~—

cnnh) = or(en)

Let r = p—1if p < 10 and r = [p/log(p)| otherwise. By assertion (a),
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assertion (b) and Lemma 1 and 2, for any &k € {0,1,...,7},

;

fo(w, k) >0, (W, k) = OF(cy), if k<d(w);

fo(W, k) =o0p(cn), on(W,k)=o0p(c,), if k=d(w);

fo(w, k) = OF(cy), On(w, k) >0, it k> d(w);

\
almost surely Ps. Since g,(w) = f,(W) + ¢n(W), lemma D (i) of Luo and
Li (2016) implies that

Op(cn), if k#d(w);
In(W, k) = i almost surely Pg.

op(cy), if k=d(w);
By Lemma D (ii) of Luo and Li (2016), g, is minimized at d(w) in proba-

bility almost surely Pg. 0

S3. Variable Dependent Partial SAVE

Though SIR has received much attention, it cannot recover any vector in
the central subspace Sy|x if the regression function is symmetric about the
origin because SIR is based on the estimation of the conditional mean. To

address this, SAVE (Cook and Weisberg, 1991) was proposed to estimate
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the central space by utilizing the conditional variance function of the co-
variates when the response is given. For partial dimension reduction, Shao
et al. (2009) also developed partial SAVE and showed that partial SAVE is
more comprehensive than partial SIR. As an extension of partial SAVE, we
now develop the variable dependent partial SAVE, which is based on the
proposition S3.1. Parallel to SAVE, we define the following kernel matrix

for variable dependent partial SAVE.

Msave(w) 2 Eg{Cov(X,,) — Cov(X|Y =1, w)}?

H
= Zl:l Pl,w (EW - Rl,w + \/l,w\/z‘w)2 )

where Ry, = E(XXTD7 = [,w) and V,,, P, are defined as previously.

Eg represents expectation with respect to Y.

Proposition S3.1. Conditional on W = w, suppose that linear conditional
mean condition (A1) and constant conditional variance condition (A2) hold,

then
E‘;I{ZW — Cov(X|Y, W =w)} = PB(W){Ip — Z;VlCOV(X]Y, W = W)}PB(W).

PROOF OF PROPOSITION S3.1. The proof of Proposition S3.1 is based on



27

the Theorem 1 of Cook and Lee (1999). Use the similar abbreviation in

Proposition 1,

Cov(X]Y,W =w) = Cov(Xy|Yw).

Assume that Xy, satisfies linear conditional mean (A1) and constant condi-
tional variance (A2), furthermore, constant conditional variance (A2) im-
plies Cov{Xy B"(W)Xw} = Zw{I, — Ppw)}. Conditional on W = w, it’s easy

for us to get

S Cov(X[Y, W =w) = B.'Cov(Xy|Yw)
= X 'E[Cov{Xy|B" (W) Xy, Yo} Yw] + 2, ' Cov[E{ X |B" (W) Xy, Yo} Y]
= 3 E[Cov{Pp ) Xw + Qi w)Xw|B" (W) Xy }[Y] + 25, Cov[E{ X [B" (W) X }[ Y]
= 2v_vlQTB(W)E[COV{XW|BT(W>XW}|Yw]QB(w) + 2V_leTB(w)COV(XW|Yw)PB(w)
= QB(w) Xy E[Cov{Xy|B" (W)X} [Yw]QBw) + Prw)Zy Cov(Xuw|Yw)Prw)

= QB(W) + PB(W)E‘;lCOV(XW‘Yw)PB(W)a

where Qp(w) = I, — Pp(w). Such that we can derive that

I, — 2. 'Cov(X|Y,W = w) = Py {I, — ' Cov(X|Y,W = W)} Pg(y).
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The proof is completed. OJ

Proposition S3.1 implies that X'Mgsave(w) C Sy, |x,, almost surely.
Similar to Proposition 2, the proposition S3.2 shows that the term R,y =
E(XXT|Y = I, w) can be expressed as a fraction, whose numerator and

denominator are easy to be estimated.

Proposition S3.2. Conditional on W = w, for each | = 1,2,..., H, we

have
E(XX"|Y =1, w) = E{XXT}(? = Dlw} (S3.28)
E{1(Y = )|w}

The proof of Proposition S3.2 is similar to that of Proposition 2, and
is omitted.
Thus, the kernel matrix of partial variable dependent SAVE can be

rewritten as

" N; [JZWIJEF ?
M _ P w Ew _ 7W ’ 7w 83.29
save(W) 2121 L { P w * P wPiw/) ' ( |

where N; i, = E{XX"1(Y =1)|w}.
Recall that the goal of variable dependent partial SAVE is to estimate

the Sy, x,, by the estimates of 3 Mgayg(w). Similar to variable depen-



29

dent partial SIR, we have the following NW kernel estimator of N y,:

N - S xxI (Y = D) Ky (wi — w)
e S Kn(w, — w) '

Then it is easy for us to get the sample estimator of Mgayg(Ww):

~ ~ ~ 2
= H ~ A~ N w Ul,W Tw
Msave(w) =)~ Py {Ew - 131’ = 13” } . (83.30)
l,w lwi lw

Now we can use iv_vl/l\is Aave(W) to estimate Sy, x,,. Proposition 53.1 also

leads us to consider the singular value decomposition. Let

¥ MSAVE Z )\SAVE SAVE(W)’I’]EAVE(W),
)\?AVE(W> >0 > )\SAVE( ) =0=...= )\IEAVE(W),
SAVE 2SAVE ~SAVE
S Msave(w Z A (W) B (W) (w),

X?AVE(W) > > )\SAVE(W) Z L. 2 /X]S)AVE(W)7

be the singular value decomposition of X 'Mgayg(w) and f];vlﬁSAVE(w),

respectively. Note that Span{B$AVE(w),..., S(AVE( w)} = Sy, x,, hatu-
rally, we propose to use Span{BSAVE(w), ..., ,BS@/E( w)} to estimate Sy, |x,,-

PrROOF OF THEOREM 3. Following by similar argument in Theorem 1, we
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have
Nl,w —Niw =Cnw + Bxw + Op{Rs5(W)},
where
Ny = zn:k (w) {x.xin(? —)-N
w nhf(w) - 7 R 7 L,w;
and
1 - W, — W ~
R = K(— xT =) — .
5(W) TLf(W) { Zzl ( h ) (szz ]l(}/l l) Nl,wi)
Denote

Nl,W UlawUl’I;W
El w — 2w - 5
Pl,w Pl,wPl,w
then the sample estimator of E; , is
. . N U, U?
El,w _ Ew . Al,w + Al,w/\l,w7
Pl,w PZ,WPZ,W




31

thus

H

Msave(W) — Mgave(w) = ) (f’z,wﬁzw - Pl,wEiw>

=1

H
= {(i:\)lw le) Elw—i_PlW(EiW_El%W)}

-y (ﬁ P )E2 +Y e (E _E )x(ﬁ +E )+o L

- =1 l,w l,w I,w =1 l,iw l,w l,w l,w l,w P m
H ~

= =1 (Pl, - Pl w> Z 2le{ ( w 2w) Ew

Nl,w <f’l,w - Pl w) (Nl w Nl w) Pl,w

Yw
+ Pz,
—~ ~ T ~
(Ui = Ut) Ui, P + Uiy (Gi = Upy) Prw = 201U, (P = Pi)
b b Ew
+ Py,
N (1“3 _P ) _ (N N )P
~ N l,w lL,w l,w l,w lL,w Lw N
B (zw B Zw> l,w B l,w
Pl,w P127w Pl,w
(Uiw = Ut) Uiy P + U (Ui = Ut) Praw = 201U, (P = Piw) N,
B P;, Piw
~ Ul WU;FW Nl,w (ﬁl,w - Pl,w) - (ﬁl,w - Nl,w) Pl,w Ul WUZTW
(E —_— EW) ’ 2 2 + 2 ? 2 b
P7, P? P}
<ﬁl,w - Ul,w) UEWPZ,W + Ul,w <Gl,w - Ul,w) Pl w 2Ul wU (Pl w Pl w) Ul WUlTw
+ P, Py

+or (5 ) = Bowve + Conve +or (=)
Pm—SAVE SAVE Pm,
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where

H H N, wBpw — BnwPiw
Bsave = qu BP,wElQ,w +2 qu PLW{BE,WEW 4 bW P, B Nw> Lw s
- - l,w
BuwU Piw+ UwBg o Prw —2U U Bpyw Niw
+ 7 37 : ZDw - BZ,W 7
Pl,w Pl,w
Nl,wBP,w - BN,WPZ,W Nl,w BU,WUEWPLW + Ul,WB%‘J,WPLW - 2Ul7WUszP7W Nl,w
PZQ’W Pl,w Piw Pl,w
+ BZ,W UZ,W:JEW + Nl,wBP,w ; BN,WPZ,W UZ7W2U11ZW
Pl,w Pl,w Pl,w
BU,WUl’I:WPLW + Ul,wB{I,wPl,w - 2[Jl,w-[er,WBP7w Ul,wU?’w
* P, Py }
(S3.31)

and

H H leCPw_CNwle
Coave =Y CowBl, +23 Pru{Csu By + =t Ny
= = l,w
Pl,w Pl,w
Nl,wCP,w _ CN,wPl,w vaw CU,WUEWPI,W + Ul7wc%7wPl7w — 2UZ,WUZT;WCP7W Nl,w
PlQ,w Pl,w Piw Pl,w
UwUl, N.wCpw—CnxwPiw UiwUly
+ Cg,w i:'ﬂ L + L = P2 = - P2 -
I,w Lw lLiw
1 CwUiuPin + UinCiso P = 20 Uy Con Ui Ui
P}, Pi.

(S3.32)
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Similar to the proof of Theorem 1, we have

Vnh (vech{ﬁsm(w)} — vech{Msys(w)} — Vech{BgAVE(w)}> N0, F~H (w)woCSAVE (w)),
(93.33)

where wy is defined as follows. Hence

CSVE(w) = Cov[vech{Cgave(w)}|w]. (53.34)

Then for singular value decomposition, in partial variable dependent SAVE,

denote G(w) = X' Mgayr(W), then substitute it into (52.20) and (S2.21),

SAVE SAVE
BiAVE Z {)\SAVE ( ){IB {)\SA(\;};)(} )}2 [MgAVE( )E;leE,wE;vlszleSAVE(W)

J#k
— Biave(W) 2, 3B, Maave(w) + {25 Msave(w) } 2, By w2y, Mgave(w)

— {35 Miavi(w) )25 Bsavi(w) | B3 E(w),
(S3.35)

) = 3 6SAVE< ){BSAVE( Ng

DFAVE(w)}2 = (ASVE(w)}2 [MgAVE(W)Ev_VlCE,WE;Vlz]v_VlMSAVE(W)

J#k

— Csave(W) "2 S Mgave (W) + {25 Msave (W)} 34 Cs w3, Msave(w)

— {53 Msave(w)) "By Coavn(w) | BFVF (w).



34

Hence,

SEAVE(w) = Cov{ GPVE(w) |w) (83.36)

S4. Variable Dependent Partial DR

Another popular method of sufficient dimension reduction is Directional
Regression (DR) (Li and Wang, 2007), which implicitly synthesizes sliced
inverse regression and sliced average variance estimation. DR enjoys the
advantage of high accuracy and convenient computation, and has received
substantial attention in the literature of sufficient dimension reduction (Yu,
2014; Yu and Dong, 2016). Parallel to variable dependent partial SIR and
variable dependent partial SAVE, we now propose variable dependent par-
tial DR approach to perform variable dependent partial dimension reduc-
tion.

Now we can define the kernel matrix for variable dependent partial DR,

Mpr (W) £ Ey {28, — B{(X - X)(X - X)"|\, YV, W = w}}?,

Where E, y represents expectation with respect to ¥ and Y.
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Proposition S4.3. Conditional on W = w, assume that linear conditional
mean condition (A1) and constant conditional variance condition (A2) hold,

then

Y28, — B{(X - X)(X - X))V, Y, W = w}]

:PB(W) [2Ip - Egle{(X - X) (X - X)T|Y7 }\}7 W = W}]PB(W)a

where (X, Y/) is an independent copy of (X,Y).

PROOF OF PROPOSITION S4.3. Assume that X, satisfies linear condi-
tional mean (A1) and constant conditional variance (A2), conditional on

W = w, it’s easy for us to get

S B{(X - X)(X - X))V, V. W = w)
= S E{(Xw — Xw)(Xw — Xw)"|Yaw, Yi}
= S {B(Xw X3 Vo) — B V) BXE[Far) — B [V B(X Vo) + B(Xu X [V}
= 33 (B [B{Xw X3 BT (W)X, Yar} Yu] = BIE{Xu|B" (w)Xu, Yoo} Yo EIE(XY BT ()Xo, Yau} ¥ad
~ BIE{Xw[B" (w)Xuw, Ya T BIE{XY BT ()Xo, Yar} V] + B [B{Xu X BT (W)Xas, Yo} Vo] )
= 33 (B [Cov{Xu B (w)Xu }[Yu] + BIE{Xuw B (W)X JE{X} B (W)X} Vi
— E[E{Xu|B" (w) Xy } [V E[E{XY BT ()X} Y] — BIE{Xu /BT (w)Xu } [V EIE{X B (w) X} Yad

+E [cov{waBT(w)Xw}\?w} +E [E{XW\BT(W)XW}E{X@\BT(W)XW}WW} )
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= Qp(w) + Pw) Zw EXwX3 Yo )PB(w) — Paiw) Ze E(Xw|Yaw)E(XE | Yo ) PB(w)

— Pyw) 2 EXw |V ) E(XY Vi) PB(w) + QB(w) + PB(w)Zw EXwX g [ Var ) PR (w)-
Recall that Qpw) = I, — P(w). Then we can derive that

5028 - B{(X - X)X - X)"|Y,Y, W = w}]

= Pp(w)[2L, — S,/ E{(X — X)(X ~ X)"|V,Y, W = w}|Ppw).
The proof is completed. ([l

Proposition S4.3 implies that X 'Mpg(w) C Sy, x,, almost surely. Ac-
cording to Proposition 1 of Li and Wang (2007), the kernel matrix Mpg(w)

can be rewritten as

H H 2
Mpr(w) =23 Py (Riw — Bw)” +2 (Z PLWVZ,WVf’W)
=1

=1

H H
+2 (Z Pl,wvzwvl,w) <Z Pl,le,WVZW> )

=1 =1

where P; w, R;w and V,, are defined as previously. And the sample esti-
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mator of Mpr(w) can be easily found by

Then we use f);vlﬁDR(w) to estimate Sy,,|x,,. Proposition 54.3 also leads

us to consider the singular value decomposition. Let

p

S Mpr(w) = > AP W)BPR (W) (w), AP (w) = - 2 A (W) =0 =

k=1

S Mpg(w ZADR (WA W), APH(w) > - > AP (w) > -

be the singular value decomposition of 35! Mpg(w) and S ' Mpg(w), re-

spectively. Then Span{BP%(w),..., Cl?(ljv) (W)} = Svyx., and the final

sample estimator of Sy, x,, is Span{BPR(w), ... ,Bg(ljv) (w)}.

PrROOF OF THEOREM 4. Firstly, we have

H < 2 H
. N ~ N U
=2Y {Py | = - Sy —Pz,w(l’w +2 Ui\
1= Pl,w Ple l 1 le —

1
= Piw =1 Piw =1 Pl W =1

l

D

1

U, wU;

)

Pl7w



)

H
—2}" { (PLW Piv) (B
=1 W
~ " e -
N BN N U U U;wU
(R en (G )
l,w Lw =1 Iw Lw
H ﬁl,wUEW Ulval w H ﬁ?wﬁhw UZwUl,W UlvaEW
D et +2) [
=1 Pl,w Pl,W =1 Pl Pl}w = Pl,w
Plw 131 le vnh
’ ll 7w b
Nigw N”W) 2N, (i 2)
- W w T w

2
lw — Pl,w) <lew - EW> + 2l\Il,w =
Pl,w Pl,w Pl,w

3 (e
=1
N N _
P By [ Y - S ) op, 3, <2w - 2w>
P, W P W
U, Uf,  UUJ, . Qi U,W U, Uw i U, U?
Pl,w =1 Pl,w

=1

caf Ve
Lw le Pl,

UwUf,  UWUR, o ( 1 >
F vnh

H T
U Ul W
r2y Ul 5 ( Ul _
=1 Pl’w =1 Pw Plw
9 A (f’ P <le n >2 N N\- w Nl,w) Pl W Nl,w (f)l,w - Pl,w)
= lw — lw) = — 2w + l,w
=1 Plw P12w
(Nl w Nl w) Pl,w - Nl,w (f)l,w - Pl,w) ~
— 9N (zw - Ew) _93, 5, + 2P Sy (zw . 2w>
Ul wUl W UlTwUl,w
2 Z ( Pl w * Pl w )
1=1 ) ;
~ o~ T
5~ (Otw = Ui) UE P + Ut (Ui = Usw ) Prow = Ui U, (Prw = Piu)
X
2
=1 Pl,w
i{: (ﬁl w Ul w) Ul,wPl,w + U?W (ﬁl,w - Ul,w) Pl,w - U?WUZ,W (Pl w Pl w)
+2 ’ 5 ’
=1 Pl,w
H T
Ul wUl 1
i W - — B C
X (Z PLw +op ( nh) DR + CUpRr + 0Op (ﬁnh) )
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where

H 2

N, BxwPiw — NiwBpaw

Bpr =2 ) :{BRW (# -% > 42N e b - LW P 9ONwBsw
=1 w l,W

BN wPl w Nl WBP w Ul WUl W UEFWULW
— 22w : : : : 2P wXwBs w 2 :
Pl,W + b > * lz; Pl,w * Pl,w

L BuwUl Piw + UwBy  Piw — Uiw Ul Be w

X : 27 .
Pl w
=1 )
" B% wUl,wPl,w + UEWBU,WPZ,W - UZwUl,WBP,W Ul w

+ 2 Z Pl2w Z Pl W

(84 38)

and

H 2

N W C wP w N wC w

Cpr =2 Z {CRW (Pll — Ew) + 2N w Now= 1, o bw ZPw 2N wCs w
=1 W l,W

CN wPl w Nl wCP W Ul WUZ w U;FWULW
— 22w J J . : 2P WE C w 2 .
Pl,w * : > * ; Pl,w * Pl,w
" CywUlWPiw + UiwCi W Prw — U UL, Cp
>< Y P2 Y
l,w

=1

7 CWUiwPiw + Ul CuwPiw — U, Ui Cr ( H g, WUZTW>

+2Z Uw Zow> ’Pﬁ;v Z 7Pl,w7
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Similar to the proof of Theorem 1 and 3, we have

Vnh (vech{ﬁDR(w)} — vech{Mpg(w)} — vech{BDR(w)}> 4 N0, 1 (w)woCPR(w)),
(54.39)

where wy is defined as previously. Hence

CPR(w) = Cov[vech{Cpr(w)}|w]. (54.40)

Then for singular value decomposition, in partial variable dependent DR,

denote G(w) = X !Mpg(w), then substitute it into (S2.20) and (S2.21),

DRy ( ){ﬁDR( )} T 1 gt
B! ; { ADR DT M (W) S5 By 23 55 Mipr(w)

— Bir(w) 3, 2, Mpr(w) + {3, Mpr (W)} "3, Br,w X, Mpr(w)

— {33 Mon(w)} S5 Bor(w) | 8P (w),
(S4.41)

< >{@DR< 3V
=2

CRM) = 3 D) — W L

Mpg(w)2,'Cx w2y 2, Mpg(w)
J#k

— Cpr(W)" S, 2 ' Mpr(W) + {Z,'Mpr(w)} "2, 'Cs w2, Mpr(W)

~ {25 Mor(w)} "S5 Con(w) | B2 (w).
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Hence,

SPR(w) = Cov{CP¥(w)|w} (54.42)

S5. The Bandwidth Selection for Variable Dependent Partial

SAVE and DR

For variable dependent partial SAVE, since Cook and Yin (2001) has shown
that SAVE is closely related to quadratic discriminant analysis, the band-

width selection can be conducted by first minimizing (S5.43), assuming that

X|(Y =1, W = w) ~ N(my(w), Zi), where Sy, is different in every slice,

ny

=1

(S5.43)
The optimal bandwidth h,, for variable dependent partial SAVE is then
selected by choosing the value of h; which maximizes (1.11). For variable
dependent partial DR, we use the same bandwidth selection procedure as
variable dependent partial SAVE since DR synthesizes the dimension re-

duction methods based on the first two conditional moments.

Vb = -3 [ = 8 W) TS () (e~ ()} o+ Do S ()]
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