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Abstract

We propose a link-free procedure for testing whether two multi-index mod-

els share identical indices via the sufficient dimension reduction approach. Test

statistics are developed based upon three different sufficient dimension reduction

methods: (i) sliced inverse regression, (ii) sliced average variance estimation and

(iii) directional regression. The asymptotic null distributions of our test statistics

are derived. Monte Carlo studies are performed to investigate the efficacy of our

proposed methods. A real-world application is also considered.
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1 Introduction

For a regression problem with a univariate response Y and p-dimensional predictors

X = (X1, . . . , Xp)
T , we consider the following generalized multi-index model

Y = g(βT
1X, · · · ,βT

dX; ǫ), (1.1)

where g(·) is an unknown link function, β = (β1, . . . ,βd) is a p × d matrix, d ≤ p, and

the random error ǫ is independent with X. Model (1.1) is a very general semiparametric

model which includes the multi-index model (Härdle and Stoker, 1989; Xia, 2008) and
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the single-index model (Härdle, Hall and Ichimura, 1993; Xue and Zhu, 1996) with

Y = g(βTX) + ǫ as special cases. One is usually concerned with estimation of indices

β, the total number of indices d and the link function g(·) (Feng and Zhu, 2012). We,

however, focus on testing if two multi-index models share identical indices (subspaces).

Specifically, consider two d-dimensional multi-index models for two populations (groups):

Y = g1(β
T
1X, · · · ,βT

dX; ǫ1), for group 1;

Y = g2(ξ
T
1X, · · · , ξTdX; ǫ2), for group 2. (1.2)

Since the identifiable parameters here are the subspaces spanned by the columns of β and

ξ = (ξ1, · · · , ξd), rather than β and ξ themselves, we develop a test of null hypothesis

span(β) = span(ξ), (1.3)

where both β and ξ are p× d matrices. This hypothesis is similar in nature to the null

hypothesis of common principal component subspaces for Common PCA considered in

Schott (1991).

A hypothesis test of this type might be of special interest in many applications involving

two datasets, where the same variables are being measured on objects from two different

groups, and for which it is of interest to determine how similar the two groups are with

respect to the span of the indices of predictor vectors regardless of the unknown link

functions.

Consider the AIS dataset discussed by Weisberg (2005), which contains information on

the lean body mass L and other physical and hematological measurements (X), from 102

male and 100 female elite Australian athletes who trained at the Australian Institute of

Sport. We investigate how the relationship between the body fat and various predictors

varies with gender. Suppose that subject matter knowledge and prior modeling experi-

ence suggest that a d-dimensional multi-index model of the form (1.1) applies to both

female and male groups, naturally, we would like to know if the equivalent set of indices

of the hematological measurements serve for both genders. Informal comparisons such

as those based upon graphical methods can be carried out. However, such comparisons

2



might become unwieldy when d is greater than 2, and the resulting conclusions could be

overly subjective. Hence, a formal test seems necessary here. This is the motivation for

our development of a test statistic for the null hypothesis in (1.3).

We propose a link-free test for testing hypothesis of (1.3) via a sufficient dimension re-

duction approach (Li, 1991; Cook, 1998). For a regression problem, the scope of sufficient

dimension reduction is to seek a minimal set of indices ofX, say βTX = (βT
1X, · · · ,βT

dX),

for which the distribution of Y |βTX is the same as the original regression Y |X, with-

out assuming a parametric model. Numerous approaches are available in the literature

including sliced inverse regression (SIR; Li, 1991), sliced average variance estimation

(SAVE; Cook and Weisberg, 1991), minimum average variance estimation (MAVE; Xia,

Tong, Li and Zhu, 2002), directional regression (DR; Li and Wang, 2007), likelihood

acquired directions (LAD; Cook and Farzani, 2009), and dimension reduction via central

solution space (Li and Dong, 2009).

The rest of this article is organized as follows. In Section 2, we give a brief review of

sufficient dimension reduction methods. Specifically, we focus on those methods based

upon a spectral decomposition (Wen and Cook, 2007). In Section 3, we present our

link-free test statistic for null hypothesis (1.3). The asymptotic distribution of our test

statistic is also discussed. We illustrate the performance of our method with Monte Carlo

studies in Section 4. We then apply our method to the AIS dataset. Brief conclusions

and a discussion on the future research directions are given in Section 5. For ease of

exposition, we defer some technical details to the Appendix.

2 A Brief Review on Sufficient Dimension Reduc-

tion: the Spectral Decomposition Approach

In this section, we give a brief review on how to use sufficient dimension reduction to

make inference about span(β) in model (1.1). In particular, we consider three commonly
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used sufficient dimension reduction methods: SIR, SAVE and DR.

Let Σ = Var(X), µ = E(X), and Z be the standardized predictor Σ−1/2(X− µ). Many

moment based sufficient dimension reduction methods may be formulated as the solution

to the following eigen-decomposition problem:

Mzηi = λiηi, i = 1, · · · , p,

where Mz is the Z scale method-specific candidate matrix. Assuming the linearity con-

dition (Li, 1991) holds, which is a mild condition imposed on the marginal distribu-

tion of the predictors alone, the eigenvectors (η1, · · · ,ηd) corresponding to the non-

zero eigenvalues λ1 ≥ · · · ≥ λd form a basis of the Z scale central subspace SY |Z.

Then by the invariance property SY |X = Σ−1/2SY |Z, as described by Cook (1998),

β = (Σ−1/2η1, · · · ,Σ−1/2ηd) forms a basis for SY |X. The linearity condition, which

basically requires that E(X|βTX) is a linear function of βTX, is a common assumption

in dimension reduction methods and holds for elliptically contoured predictors (Eaton,

1986). Additionally, Hall and Li (1993) showed that as the number of predictors p in-

creases, the linearity condition holds to a reasonable approximation in many problems.

For the three sufficient dimension reduction methods that target SY |Z, the corresponding

candidate matrices are summarized below:

Sliced Inverse Regression: Mz = Var{E(Z|Y )};

Sliced Average Variance Estimation: Mz = E{Ip − Var(Z|Y )}2;

Directional Regression: Mz = 2E{E2(ZZT )}+ 2E2{E(Z|Y )E(ZT |Y )};

+ 2E{E(ZT |Y )E(Z|Y )}E{E(Z|Y )E(ZT |Y )} − 2Ip.

Although in the literature, people tend to work with standardized predictors, for our

purpose, it is easier to describe the candidate matrices in terms of the original predictorX.

Since we will make use of the eigenprojection corresponding to the non-zero eigenvalues,

the βi = Σ−1/2ηi provided by the above approach are orthonormal under the inner-

product of < a,b >= aTΣb, but not the regular dot product, which induces unnecessary

difficulty to the development of our test statistic. In this paper, we work directly with
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the orginal predictor X, and, as such, use the following symmetric candidate matrices

M:

SIR: M = Σ−1Var{E(X|Y )}Σ−1;

SAVE: M = Σ−1E{Σ− Var(X|Y )}2Σ−1;

DR: M = Σ−1E{2Σ− E
(
(X̃−X)(X̃−X)T |Y, Ỹ

)
}2Σ−1,

where (Ỹ , X̃) is an independent copy of (Y,X). The eigenvectors β1, . . . ,βd correspond-

ing to the first d nonzero eigenvalues of M form a basis of SY |X, and are orthonormal

with respect to the regular inner-product. The corresponding sample version of M, M̂

can then be spectrally decomposed to obtain an estimate of span(β). Notice that these

symmetric candidate matrices are not exactly the same as those traditionally used in the

sufficient dimension reduction literature. Their symmetry facilitates the derivation of the

asymptotic distribution of our test statistic. Interested readers may refer to Li and Dong

(2009) and Li, Kim and Altman (2010) for further details.

3 A Link-free Test for Common Indices

Throughout this article, we assume that Model (1.2) holds for the two populations under

consideration. Let (Y g
j ,X

g
j ), j = 1, . . . , ng be a simple random sample of size ng from

the gth population (Y g,Xg), g = 1, 2. Also, let X̄g = 1
ng

ng∑
i=1

X
g
i , and Σ̂g = 1

ng

ng∑
i=1

(Xg
i −

X̄g)(X
g
i − X̄g)

T , g = 1, 2. Let Mg denote the method-specific candidate matrix for the

gth population, λg1 ≥ λg2 . . . ≥ λgd > λg,(d+1) = . . . = λgp = 0 be the eigenvalues of

Mg, and ηgi be the normalized eigenvector corresponding to λgi. Define eigenprojections

Pgd = ηg1η
T
g1+ · · ·+ηgdη

T
gd, Qgd = Ip−Pgd, and let η̂gi denote the corresponding sample

version of ηgi, then Pgd can be estimated by P̂gd = η̂g1η̂
T
g1+ · · ·+ η̂gdη̂

T
gd. Let A

+ denote

the generalized inverse of matrix A, from the perturbation theory (Kato, 1966) and Tyler

(1981), we then have

P̂gd = Pgd +
d∑

i=1

[ηgiη
T
giAg(λgiI−Mg)

+ + (λgiI−Mg)
+Agηgiη

T
gi] + op(n

− 1

2

g )
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where Ag = M̂g −Mg.

Note that the approach we take is similar to that in Yu, Zhu and Wen (2012) but is

motivated by a set of methodologies developed in Schott (1988, 1991, 1997) for making

inference about common principal component subspaces.

Let W = trace(P1dQ2dP1d), we have the following proposition:

Proposition 1 Assume that the data (Xg
j , Y

g
j ), for j = 1, . . . , ng, g = 1, 2, are a simple

random sample from (Xg, Y g) with finite fourth order moments, then the null hypothesis

(1.3) is true if and only if W = 0.

Proof:

W = 0 ⇐⇒ trace(P1dQ2dQ2dP1d) = 0

⇐⇒ trace((P1dQ2d)(P1dQ2d)
T ) = 0

⇐⇒ P1dQ2d = 0

P1dQ2d = 0 implies that span(P1d) ⊆ span(P2d). Because span(P1d) and span(P2d) have

common dimension d, P1d = P2d and hence (1.3) is true.

On the other hand, span(β) = span(η) if and only if P1d = P2d, which (1.3) implies that

P1dQ2d = 0, and hence W = 0. �

We consider P̂1dQ̂2d, where Q̂2d = Ip − P̂2d =
p∑

l=d+1

η̂glη̂
T
gl, and let T = nŴ , where

Ŵ = trace(P̂1dQ̂2dP̂1d). Let n = n1 + n2, a1 = n
n1

, a2 = n
n2

. As Yu et al. (2012)

pointed out, Ag = M̂g −Mg can be expressed via influence function approach as: Ag =

M̂g − Mg = Eng
[M∗

g(X
g, Y g)] + op(n

−1/2
g ), where En{.} = 1

n

n∑
i=1

{.}. This approach is

key for the further development of our test statistic. The explicit formulas for M∗
g in

the modified SIR, SAVE and DR are given in the Appendix. Let vec(A) denotes the

operator which stacks the columns of matrix A to form a vector, the following lemma

gives the the asymptotic distribution of
√
n vec(P̂1dQ̂2d).
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Lemma 1 Assume that the data (Xg
i , Y

g
i ), for i = 1, . . . , ng, are a simple random sample

from (Xg, Y g) with finite fourth order moments, then under null hypothesis (1.3), we have

√
n vec(P̂1dQ̂2d)

D−→ N(0,Ψ),

where Ψ = a1Ψ1+a2Ψ2, Ψg = UgΦgU
T
g , Φg = E{ vec(M∗

g(X
g, Y g)) vec(M∗

g(X
g, Y g))T}

is the asymptotic covariance matrix of
√
ng vec(Ag), and Ug =

d∑
i=1

p∑
k=d+1

λ−1
gi (ηgkηgk

T )⊗

(ηgiηgi
T ).

Proof:

Let Rg =
d∑

i=1

[ηgiη
T
giAg(λgiI−Mg)

+ + (λgiI−Mg)
+Agηgiη

T
gi] for g = 1, 2.

Therefore

P̂1d = P1d +R1 + op(n
− 1

2 )

P̂2d = P2d +R2 + op(n
− 1

2 )

and

vec(P̂1dQ̂2d) = vec((P1d +R1)(Q2d −R2)) + op(n
− 1

2 )

= vec(P1dQ2d −P1dR2 +R1Q2d) + op(n
− 1

2 ).

According to the null hypothesis (1.3), P1d = P2d, hence P1dQ2d = 0. Then

vec(P̂1dQ̂2d) = vec(−P1dR2 +R1Q2d) + op(n
− 1

2 ).

Since (λgiI−Mg)
+ =

p∑
k=1,λgk 6=λgi

(λgi−λgk)
−1ηgkη

T
gk and λgk = 0 when k ≥ d+1, we have

Rg =
d∑

i=1

p∑

k=d+1

ηgiη
T
giAgλ

−1
gi ηgkη

T
gk +

d∑

i=1

p∑

k=d+1

ηgkη
T
gkAgλ

−1
gi ηgiη

T
gi.
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Hence,

vec
(
P̂1dQ̂2d

)
= vec

(
−

d∑

i=1

p∑

k=d+1

η2iη2i
TA2λ

−1
2i η2kη2k

T +
d∑

i=1

p∑

k=d+1

η1iη1i
TA1λ

−1
1i η1kη1k

T
)

=
d∑

i=1

p∑

k=d+1

λ−1
1i (η1kη1k

T ⊗ η1iη1i
T ) vec(A1)

−
d∑

i=1

p∑

k=d+1

λ−1
2i (η2kη2k

T ⊗ η2iη2i
T ) vec(A2).

By the Central Limit Theorem, we can conclude

√
ng

( d∑

i=1

p∑

k=d+1

λ−1
gi (ηgkηgk

T ⊗ ηgiηgi
T ) vec(Ag)

)
D−→ N(0,Ψg),

so

√
ag
√
ng

( d∑

i=1

p∑

k=d+1

λ−1
gi (ηgkηgk

T ⊗ ηgiηgi
T ) vec(Ag)

)
D−→ N(0, agΨg)

that is
√
n
( d∑

i=1

p∑

k=d+1

λ−1
gi (ηgkηgk

T ⊗ ηgiηgi
T ) vec(Ag)

)
D−→ N(0, agΨg).

Since group 1 and group 2 are independent, we then have:

√
n vec(P̂1dQ̂2d)

D−→ N(0,Ψ).

�

Theorem 1 provides the asymptotic result concerning our test statistic T = nŴ .

Theorem 1 Assume the conditions of Proposition 1 hold, then under null hypothesis

(1.3), we have

T −→
d(p−d)∑

i=1

ωiχ
2
i (1),

where ω1 ≥ · · · ≥ ωd(p−d) are the eigenvalues of Ψ.

Proof:

T = ntrace((P̂1dQ̂2d)(P̂1dQ̂2d)
T ) = n vec(P̂1dQ̂2d)

T vec(P̂1dQ̂2d)

= (
√
n vec(P̂1dQ̂2d)

T )(
√
n vec(P̂1dQ̂2d))
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By Lemma 1, under null hypothesis (1.3), the conclusion is obvious. �

A consistent estimate of Ψ, Ψ̂ can be obtained by substituting sample estimates for the

unknown quantities. The weights ωi’s can be consistently estimated using the eigenvalues

of Ψ̂. In the simulation studies which follow we compare the observed value of the test

statistic T to the percentage points of
d(p−d)∑
i=1

ω̂iχ
2
i (1) to approximate the p-value of our

test. We may also use the modified test statistics proposed by Bentler and Xie (2000) to

approximate the tail probabilities.

4 Numerical Studies

4.1 Simulation Studies

Throughout our simulation studies, the random error ǫ is assumed standard normal and

is independent of X. The dimension of the predictor vector p is taken to be 4 and 8,

the number of slices h = 4. We summarize the results over 1000 replications for each

simulation study. We compare the performance of our proposed tests among the three

sufficient dimension reduction methods with different choices of n and p.

4.1.1 Estimated Test Levels

In this subsection, we evaluate the performance of our test statistic under three different

models when the null hypothesis (1.3) holds.

Model I: We first consider the following model with one dimensional structure for both

groups. The predictor vector X = (X1, · · · , Xp) is generated from standard multivariate

normal.

Y =





exp(X1 +X2 +X3) + ǫ1, for group 1;

10 sin(X1 +X2 +X3) + ǫ2, for group 2.
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Table 4.1 shows the estimated test levels via our test statistics. As the group sizes n1 and

n2 increase, the estimated levels are getting closer to the nominal levels. For example,

when p = 4 and the nominal level is 1%, the estimated levels for modified SIR are 1.5%,

0.8% and 1.1% respectively for sample sizes 200, 400 and 600. Also it is not a surprise

that the performance of our tests slightly deteriorates as p increases. All three dimension

reduction methods perform reasonably well for all combinations of p and n.

Table 4.1: Estimated Test Levels (in percentages) for Model I with d = 1

Model I with p = 4 Model I with p = 8

Nominal Level (%) Nominal Level (%)

Sample Size Test 1 5 10 Test 1 5 10

SIR 1.50 5.50 9.30 SIR 1.20 4.50 9.10

n1 = n2 = 200 SAVE 0.90 4.60 10.6 SAVE 1.40 5.30 9.60

DR 1.40 5.30 10.8 DR 1.60 4.60 9.50

SIR 0.80 4.60 9.40 SIR 1.30 4.50 10.5

n1 = n2 = 400 SAVE 0.80 4.70 10.4 SAVE 1.40 5.50 9.50

DR 0.80 5.20 9.70 DR 0.70 4.70 10.3

SIR 1.10 4.90 10.3 SIR 0.90 5.20 9.80

n1 = n2 = 600 SAVE 0.90 5.20 9.90 SAVE 1.10 4.90 10.1

DR 1.10 5.00 9.80 DR 1.20 5.10 10.1

Model II: In this model, the predictor vector X = (X1, · · · , Xp) follows a multivariate

normal distribution with mean 0, and the correlation between Xi and Xj is 0.5|i−j|,

i = 1, · · · p; j = 1, · · · p. The two groups share common indices and d = 1.

Y =





exp(2X1 +X2) + ǫ1, for group 1;

X1 + 0.5X2 + ǫ2, for group 2.

Table 4.2 presents the estimated significance levels for Model II. Even though the compo-

nents of independent variables are correlated, significance levels are still close to nominal

levels which means our methods work well for models with correlated predictors. When

n1 = n2 = 600, the test method based on modified DR performs the best.
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Table 4.2: Estimated Test Levels (in percentages) for Model II

Model II with p = 4 Model II with p = 8

Nominal Level (%) Nominal Level (%)

Sample Size Test 1 5 10 Test 1 5 10

SIR 1.20 4.70 10.4 SIR 0.80 5.40 9.60

n1 = n2 = 200 SAVE 0.80 4.50 9.50 SAVE 1.30 5.50 10.9

DR 0.90 5.40 9.50 DR 0.80 4.70 10.3

SIR 1.20 4.60 10.3 SIR 1.40 4.50 9.70

n1 = n2 = 400 SAVE 1.30 5.20 9.70 SAVE 0.80 4.70 9.70

DR 0.80 4.70 10.3 DR 1.30 4.60 9.70

SIR 1.10 5.20 9.90 SIR 0.90 4.90 10.1

n1 = n2 = 600 SAVE 1.00 4.90 9.80 SAVE 1.20 4.80 9.80

DR 1.00 5.00 9.80 DR 0.90 5.10 10.1

Model III: We now consider a two-dimensional model as follows:

Y =





1.5(5 +X1)(2 +X2) + 0.5ǫ1, for group 1;

2(1 +X1)(3 +X2) + 0.5ǫ2, for group 2.

X1 = W , X2 = V + 0.5W where W and V are independent with V drawn from a t(5)

distribution and W from a standard exponential distribution. The rest of predictors are

iid standard normals. Different versions of this model were also studied by Li (1991),

Wen and Cook (2009) and others. This is a difficult test case for dimension reduction

since some predictors are skewed or heavy tailed, and are prone to outliers. As shown in

Table 4.3, the performance of our test statistics for all of the three dimension reduction

approaches is acceptable.
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Table 4.3: Estimated Test Levels (in percentages) for Model III

Model III with p = 4 Model III with p = 8

Nominal Level (%) Nominal Level (%)

Sample Size Test 1 5 10 Test 1 5 10

SIR 1.20 5.40 10.3 SIR 0.80 4.60 10.5

n1 = n2 = 200 SAVE 0.80 4.50 9.80 SAVE 0.80 5.30 9.60

DR 0.70 4.70 10.5 DR 1.30 4.60 10.8

SIR 1.20 5.20 10.2 SIR 0.80 5.40 10.2

n1 = n2 = 400 SAVE 0.80 5.40 10.3 SAVE 1.40 4.70 9.60

DR 0.70 4.90 9.70 DR 1.20 4.70 9.50

SIR 1.10 4.90 9.90 SIR 0.90 4.90 10.3

n1 = n2 = 600 SAVE 0.90 5.10 10.0 SAVE 1.10 4.80 9.70

DR 1.10 4.90 9.80 DR 1.00 5.20 9.70

Table 4.4: Estimated Test Levels (in percentages) for Model IV

Model IV with p = 4 Model IV with p = 8

Nominal Level (%) Nominal Level (%)

Sample Size Test 1 5 10 Test 1 5 10

SIR 0.90 7.50 17.2 SIR 0.80 6.80 18.2

n1 = n2 = 200 SAVE 1.40 4.50 9.50 SAVE 0.60 4.20 9.40

DR 0.70 5.60 9.60 DR 1.60 5.60 11.2

SIR 1.30 6.00 15.4 SIR 0.70 7.80 16.0

n1 = n2 = 400 SAVE 0.90 5.30 9.60 SAVE 1.30 5.60 9.60

DR 0.90 5.30 10.2 DR 0.80 4.70 9.70

SIR 0.90 7.80 14.4 SIR 0.80 8.20 15.8

n1 = n2 = 600 SAVE 1.10 4.90 9.80 SAVE 0.90 5.10 10.2

DR 1.00 4.90 9.90 DR 1.00 5.20 10.1
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Model IV: This model considers a one-dimensional model with symmetric structure

in X which is drawn from standard multivariate normal distribution. Table 4.4 presents

the estimated significance levels for Model IV. Because SIR is known to fail when the

response surface is symmetric about the origin, the estimated test levels for this model

using SIR are relatively far from nominal levels, while test methods with SAVE and DR

candidate matrices both perform well.

Y =





X1
2 + 1 + 0.5ǫ1, for group 1;

2X1
2 + ǫ2, for group 2.

4.1.2 Estimated Power

We examine the power of our test under the alternative hypothesis in this subsection.

Two models are considered. The predictors X for both models follow the standard

multivariate normal.

Model V:

Y =





exp(X1 +Xp)sign(X2 +Xp−1) + 0.5ǫ1, for group 1;

(2X1 − 3Xp)/(0.5 + (1 + 3X2 −Xp−1)
2) + 0.5ǫ2, for group 2.

The two populations in this model have the same structural dimension d = 2, however,

they don’t share the same set of indices. We can see from Table 4.5 that when d is

correctly specified as 2, the power of different settings of n and p for our test statis-

tic using the three dimension reduction methods, are all reasonably good. When d is

underspecified, unreported simulation studies show that the power of our test is also

good.
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Table 4.5: Estimated Power at 5% Nominal Levels for Model V at d = 2

SIR SAVE DR

Sample Size p = 4 p = 8 p = 4 p = 8 p = 4 p = 8

n1 = n2 = 200 0.887 0.901 0.910 0.920 0.935 0.960

n1 = n2 = 400 0.965 0.935 0.980 0.956 0.980 0.996

n1 = n2 = 600 0.998 0.995 0.993 0.978 0.994 0.998

Model VI:

Y =





exp(X1 +Xp)sign(X2 +Xp−1) + 0.5ǫ1, for group 1;

(X1 +Xp)/(0.5 + (1 +X3 −Xp−1)
2) + 0.5ǫ2, for group 2.

Model VI is also two-dimensional. However, in this model, the two populations share one

set of common index X1 + Xp, and only differ with respect to the second set of index.

Table 4.6 showed the power of our test with d = 2. As we can see, the power of our test

increases as the sample size n increases. Again, our tests perform reasonably well and

are able to detect the different indices between the two populations for most of the time.

Table 4.6: Estimated Power at 5% Nominal Levels for Model VI at d = 2.

SIR SAVE DR

Sample Size p = 4 p = 8 p = 4 p = 8 p = 4 p = 8

n1 = n2 = 200 0.889 0.915 0.932 0.935 0.905 0.925

n1 = n2 = 400 0.905 0.940 0.935 0.960 0.920 0.950

n1 = n2 = 600 0.925 0.956 0.968 0.965 0.954 0.940

4.2 AIS Data Revisited

We return to the AIS dataset discussed in Section 1. This data set was originally intro-

duced by Nevill and Holder (1995), and studied by Cook and Weisberg (1994, 1999b),

Chiaromonte, Cook and Li (2002) and others. We are interested in investigating how
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the relationship between the lean body mass L and various predictors including the log-

arithms of height, weight, red cell count, white cell count and hemoglobin vary across

gender. Studies in Chiaromonte, Cook and Li (2002) show that there is only one relevant

linear combination of predictors for both male and female groups, so a one-dimensional

single-index model of the form (1.1) can be applied to both groups. We then conduct our

link-free tests via SIR, SAVE and DR to AIS data. All three methods suggest that we

cannot reject the null hypothesis (1.3) at significance level 0.05 (p-values are 0.76, 0.54

and 0.65 for SIR, SAVE and DR, respectively).

v̂
T
1fX

v̂
T 1
m
X

-4 -2 0 2 4

-4
-2

0
2

4

Figure 4.1: AIS Data: v̂T
1mX vs. v̂T

1fX, × for females, ◦ for males.

Our result is consistent with that of Chiaromonte, Cook and Li (2002) where the same

conclusion was drawn via an informal analysis. Chiaromonte, Cook and Li (2002) applied

SIR to the conditional regression of L on X for males and females separately, identify-

ing only one relevant predictor in each group, v̂T
1mX and v̂T

1fX. The sample correlation

between the two estimated SIR predictors is 0.96, suggesting that relevant linear combi-

nations for males and females are the same. Figure 4.1 shows the summary plot of the

estimated SIR predictors for males and females.
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5 Summary

In this article, we consider a test for common indices in multi-index models with unknown

link functions via sufficient dimension reduction approach. Specifically, we focus on

testing if two different multi-index models share identical indices. This hypothesis is of

particular interest in practice where data from both populations share a common set of

explanatory variables. Although Common PCA and partial dimension reduction methods

can be adopted to make inference in multi-population dimension reduction problems,

they both have drawbacks. Common PCA does not take into account the information

of dependent variables, and partial dimension reduction methods focus on obtaining the

direct sum of all the conditional central subspaces which could not deal with testing for

a set of common indices across the populations.

We propose a link free test via SIR, SAVE and DR. The asymptotic distribution of our

test statistic is also derived. Numerical studies indicate that our method works well in

practice, both in terms of test level and power, and in particular works best when applied

with the DR candidate matrix. Furthermore, we applied our method to the AIS data

and found that men and female populations share the same set of common index which

is consistent with the work in Chiaromonte, Cook and Li (2002). Research on developing

methods for testing problems similar to (1.3) but for more than two groups are under

way.
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Appendix

The explicit formulas of candidate matrices for SIR, SAVE and DR are given in this

section. It suffices to derive the expansion of M̂g for the gth population. For ease of

exposition, we drop the subscript g in the discussion which follows. Also notice that our

kernel matrices are different from those used in Yu, Zhu and Wen (2012).

Divide the range of Y into h slices {J1, · · · , Jh}. Let pk = E{I(Y ∈ Jk)}, µ = E(X),

Uk = E{(X − µ)I(Y ∈ Jk)} and Vk = E{(X − µ)(X − µ)T I(Y ∈ Jk)}. Denote

p̂k = En{I(Y ∈ Jk)}, µ̂ = En(X), Ûk = En{(X − µ̂)I(Y ∈ Jk)} and V̂k = En{(X −
µ̂)(X− µ̂)T I(Y ∈ Jk)} be the corresponding sample estimators.

The following lemma is useful for deriving the asymptotic expansion of M̂.

Lemma 2 Let Σ∗ = (X − µ)(X − µ)T − Σ, Σ̂
∗−1

= −Σ̂
−1
Σ∗Σ̂

−1
, µ∗ = X − µ,

p∗k = I(Y ∈ Jk)− pk, U
∗
k = XI(Y ∈ Jk)−Uk −Xpk − I(Y ∈ Jk)+ pk, V

∗
k = XXT I(Y ∈

Jk)− E
[
XXT I(Y ∈ Jk)

]
− E [XI(Y ∈ Jk)]X

T − (XI(Y ∈ Jk)− 2E [XI(Y ∈ Jk)])µ
T −

XE
[
XT I(Y ∈ Jk)

]
−µ

(
XT I(Y ∈ Jk)− 2E

[
XT I(Y ∈ Jk)

])
+(X− µ)µTE [I(Y ∈ Jk)]+

µ (X− µ)T E [I(Y ∈ Jk)] + µµT (I(Y ∈ Jk)− E [I(Y ∈ Jk)])

Then we have the following expansions:

Σ̂ = Σ+ En{Σ∗}+ op(n
− 1

2 );

Σ̂
−1

= Σ−1 + En{Σ∗−1}+ op(n
− 1

2 );

µ̂ = µ+ En(µ
∗) + op(n

−1/2); p̂k = pk + En(p
∗
k) + op(n

−1/2);

Ûk = Uk + En(U
∗
k) + op(n

−1/2); V̂k = Vk + En(V
∗
k) + op(n

−1/2);

p̂−1
k = p−1

k − En(p
2
kp

∗
k) + op(n

−1/2); p̂−2
k = p−2

k − En(2p
3
kp

∗
k) + op(n

−1/2);

p̂−3
k = p−3

k − En(3p
4
kp

∗
k) + op(n

−1/2).
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Proof:

Most of these asymptotic expansions can be derived by the Von Mises expansion in

combination with Theorem 6.6.30 in Horn and Johnson (1991), and Li and Wang (2007).

Following Li and Wang (2007), we use S∗(F ) to indicate the Frechet derivative; for

example, E∗g(X,F ) denotes the Frechet derivative of
∫
g(X,F )dF . Here we just validate

expressions for U∗
k and V∗

k . Let Rk = I (Y ∈ Jk), we have:

U∗
k = E∗ [(X− µ)Rk]

= XRk − E [XRk]−Xpk − E [X] (Rk − 2pk)

= XRk − E [(X− µ+ µ)Rk]−Xpk − E [X] (Rk − 2pk)

= XRk − E [(X− µ)Rk]− µpk −Xpk − µRk + 2µpk

= XRk −Uk −Xpk − µRk + µpk

Also,

V∗
k = E∗

[
(X− µ) (X− µ)T Rk

]
= E∗

[
XXTRk

]
−E∗

[
XµTRk

]
−E∗

[
µXTRk

]
+E∗

[
µµTRk

]
.

Note that

E∗
[
XXTRk

]
= XXTRk − E

[
XXTRk

]
,

and E∗
[
XµTRk

]
is the Frechet derivative of

E
[
XµTRk

]
= E [XRk]µ

T .

So,

E∗
[
XµTRk

]
= E [XRk] (X− µ)T + (XRk − E [XRk])µ

T

= E [XRk]X
T + (XRk − 2E [XRk])µ

T .

E∗
[
µXTRk

]
is the Frechet derivative of

E
[
µXTRk

]
= µE

[
XTRk

]
.

So it follows that

E∗
[
µXTRk

]
= (X− µ) E

[
XTRk

]
+ µ

(
XTRk − E

[
XTRk

])

= XE
[
XTRk

]
+ µ

(
XTRk − 2E

[
XTRk

])
.
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E∗
[
µµTRk

]
is the Frechet derivative of

E
[
µµTRk

]
= µµTE [Rk] ,

so that

E∗
[
µµTRk

]
= (X− µ)µTE [Rk] + µ (X− µ)T E [Rk] + µµT (Rk − E [Rk])

All of this yields

E∗
[
(X− µ) (X− µ)T Rk

]
= XXTRk − E

[
XXTRk

]

− E [XRk]X
T − (XRk − 2E [XRk])µ

T

−XE
[
XTRk

]
− µ

(
XTRk − 2E

[
XTRk

])

+ (X− µ)µTE [Rk] + µ (X− µ)T E [Rk] + µµT (Rk − E [Rk])

�

Asymptotic Expansion of M̂SIR

Define ΛSIR =
∑h

l=1 plE(X − µ|Y ∈ Jl){E(X − µ|Y ∈ Jl)}T =
∑h

l=1 p
−1
l UlU

T
l . Then

MSIR = Σ−1ΛSIRΣ
−1. The corresponding sample estimators are Λ̂SIR =

∑h
l=1 p̂

−1
l ÛlÛ

T
l

and M̂SIR = Σ̂
−1
Λ̂SIRΣ̂

−1
. The explicit expansion forms of Λ̂SIR and M̂SIR are given in

the following.

Lemma 3 Let Λ∗
SIR =

∑h
l=1

(
− p∗

l
UlU

T
l

p2
l

+
U

∗

l
U

T
l

pl
+

UlU
∗T
l

pl

)
, then we have the expansion

Λ̂SIR = ΛSIR + En(Λ
∗
SIR) + op(n

−1/2).

Theorem 2 M̂SIR can be expanded asymptotically as M̂SIR = MSIR + En(M
∗
SIR) +

op(n
−1/2), where M∗

SIR = Σ∗−1ΛSIRΣ
−1 +Σ−1Λ∗

SIRΣ
−1 +Σ−1ΛSIRΣ

∗−1
.

Proof of Theorem 2.
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With the expansion given in Lemma 2, the conclusion can be easily derived by invoking

Lemma 3. �

Asymptotic Expansion of M̂SAV E

Let ΛSAV E = E{Σ − Var(X|δ(Y ))}2, where δ(Y ) =
∑h

l=1 lI(Y ∈ Jl). Then MSAV E =

Σ−1ΛSAV EΣ
−1.

Lemma 4 ΛSAV E = ΣΛSIR + ΛSIRΣ − Σ2 + Γ, where Γ =
∑h

l=1(Γ
1
l − Γ2

l − Γ3
l + Γ4

l )

with Γ1
l =

Vl
2

pl
, Γ2

l =
VlUlU

T
l

p2
l

, Γ3
l =

UlU
T
l
Vl

p2
l

and Γ4
l =

UlU
T
l
UlU

T
l

p3
l

.

Proof of Lemma 4.

ΛSAV E = Σ2 −ΣE[Var(X|Y )]− E[Var(X|Y )]Σ+ E[Var(X|Y )2]

= Σ2 −Σ(Σ− ΛSIR)− (Σ− ΛSIR)Σ+
h∑

l=1

pl

(
Vl

pl
− UlU

T
l

pl2

)2

.

With more algebraic calculations, one can easily derive the stated result. �

Let Γ̂
1

l , Γ̂
1

l , Γ̂
1

l , Γ̂
4

l and Λ̂SAV E be the sample estimators of Γ1
l ,

2
l , Γ

3
l , Γ

4
l and ΛSAV E,

respectively. The associated Frechet derivatives are

(
Γ1

l

)∗
= −p∗lV

2
l

p2l
+

V∗
lVl

pl
+

VlV
∗
l

pl
,

(
Γ2

l

)∗
= −2

p∗lVlUlU
T
l

p3l
+

V∗
lUlU

T
l

p2l
+

VlU
∗
lU

T
l

p2l
+

VlUlU
∗T
l

p2l
,

(
Γ3

l

)∗
= −2

p∗lUlU
T
l Vl

p3l
+

U∗
lU

T
l Vl

p2l
+

UlU
∗T
l Vl

p2l
+

UlU
T
l V

∗
l

p2l
,

(
Γ4

l

)∗
= −3

p∗lUlU
T
l UlU

T
l

p4l
+

U∗
lU

T
l UlU

T
l

p3l
+

UlU
∗T
l UlU

T
l

p3l
+

UlU
T
l U

∗
lU

T
l

p3l
+

UlU
T
l UlU

∗T
l

p3l
.
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Lemma 5 Let Γ∗ =
∑h

l=1{(Γ1
l )

∗ − (Γ2
l )

∗ − (Γ3
l )

∗ + (Γ4
l )

∗} and

Λ∗
SAV E = ΣΛ∗

SIR + Σ∗ΛSIR + ΛSIRΣ
∗ + Λ∗

SIRΣ − ΣΣ∗ − Σ∗Σ + Γ∗. Then we have

Λ̂SAV E = ΛSAV E + En(Λ
∗
SAV E) + op(n

−1/2).

Proof of Lemma 5.

The conclusion can be derived by Lemmas 2, 3 and 4. Details are omitted. �

Theorem 3 M̂SAV E can be expanded asymptotically as

M̂SAV E = MSAV E + En(M
∗
SAV E) + op(n

−1/2),

where M∗
SAV E = Σ∗−1ΛSAV EΣ

−1 +Σ−1Λ∗
SAV EΣ

−1 +Σ−1ΛSAV EΣ
∗−1

.

Proof of Theorem 3.

With the expansion in Lemma 2, the conclusion can be easily derived by invoking Lemma

5. �

Asymptotic Expansion of M̂DR

The candidate matrix of directional regression is

MDR = Σ−1

{
2

h∑

l=1

pl

(
Vl

pl
−Σ

)2

+ 2

(
h∑

l=1

UlU
T
l

pl

)2

+ 2

(
h∑

l=1

UT
l Ul

pl

)(
h∑

l=1

UlU
T
l

pl

)}
Σ−1

We first rewrite MDR as given in the following lemma.

Lemma 6 MDR can be reformulated as MDR = Σ−1ΛDRΣ
−1, where

ΛDR = 2
h∑

l=1

Γ1
l − 2Σ2 + 2

(
h∑

l=1

UlU
T
l

pl

)2

+ 2

(
h∑

l=1

UT
l Ul

pl

)(
h∑

l=1

UlU
T
l

pl

)
.
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Proof of Lemma 6. The conclusion can be derived by further algebraic calculations.

We omit the details here. �

Let Λ̂DR and M̂DR be the sample estimators of ΛDR and MDR respectively.

Lemma 7 Define

Λ∗
DR = 2

h∑

l=1

Γ1
l

∗ − 2ΣΣ∗ − 2Σ∗Σ− 2
h∑

l=1

h∑

k=1

p∗lUlU
T
l UkU

T
k

p2l pk
− 2

h∑

l=1

h∑

k=1

p∗kUlU
T
l UkU

T
k

plp2k

+2
h∑

l=1

h∑

k=1

U∗
lU

T
l UkU

T
k

plpk
+ 2

h∑

l=1

h∑

k=1

UlU
∗T
l UkU

T
k

plpk
+ 2

h∑

l=1

h∑

k=1

UlU
T
l U

∗
kU

T
k

plpk

+2
h∑

l=1

h∑

k=1

UlU
T
l UkU

∗T
k

plpk
− 2

h∑

l=1

h∑

k=1

p∗lU
T
l UlUkU

T
k

p2l pk
− 2

h∑

l=1

h∑

k=1

p∗kU
T
l UlUkU

T
k

plp2k

+2
h∑

l=1

h∑

k=1

U∗T
l UlUkU

T
k

plpk
+ 2

h∑

l=1

h∑

k=1

UT
l U

∗
lUkU

T
k

plpk
+ 2

h∑

l=1

h∑

k=1

UT
l UlU

∗
kU

T
k

plpk

+2
h∑

l=1

h∑

k=1

UT
l UlUkU

∗T
k

plpk
.

Then we have the expansion Λ̂DR = ΛDR + En(Λ
∗
DR) + op(n

−1/2).

Proof of Lemma 7. The conclusion can be derived by Lemmas 2, 3 and 6. Details

are omitted. �

Theorem 4 M̂DR can be expanded asymptotically as

M̂DR = MDR + En(M
∗
DR) + op(n

−1/2),

where M∗
DR = Σ∗−1ΛDRΣ

−1 +Σ−1Λ∗
DRΣ

−1 +Σ−1ΛDRΣ
∗−1

.

Proof of Theorem 4. With the expansion given in Lemma 2, the conclusion can be

easily derived by invoking Lemma 7. �
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