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A minimum discrepancy approach to multivariate
dimension reduction via k-means inverse
regression∗
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We proposed a new method to estimate the intra-cluster
adjusted central subspace for regressions with multivariate
responses. Following Setodji and Cook (2004), we made use
of the k-means algorithm to cluster the observed response
vectors. Our method was designed to recover the intra-
cluster information and outperformed previous method with
respect to estimation accuracies on both the central sub-
space and its dimension. It also allowed us to test the pre-
dictor effects in a model-free approach. Simulation and a
real data example were given to illustrate our methodology.
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1. INTRODUCTION

Sufficient dimension reduction (SDR; Cook 1994, Cook
1998) focuses on reducing the dimension of the predictors
in a regression context without assuming any parametric
model. The basic idea is to replace the predictors X ∈ R

p

with a lower dimensional projection PSX onto a subspace
S ⊆ R

p without the loss of information on the original re-
gression Y|X, where P(.) stands for a projection operator
with respect to the standard inner product, and Y ∈ R

r,
r ≥ 1.

Regressions with multivariate responses are wildly used
in many areas such as chemometrics, econometrics, financial
engineering and psychometrics. But for most usage, model
assumptions such as a linear model are commonly made in
order to analyze the relationship between outcomes and pre-
dictors. Any possibility of reduction of the predictors greatly
reduces the burden of positing a model structure at the on-
set of an analysis, because with only one response and one
predictor for example, a plot of those two variables will in-
form about such structure. Over the past decades, methods
∗We thank the editor and an anonymous referee for their insightful
suggestions and comments which lead to great improvement of an ear-
lier draft.
†Corresponding author.

such as principal component analysis (Massy, 1965), partial
least squares (Helland, 1989, 1990) and canonical correlation
(Hotelling, 1935, 1936) have been used for variable reduc-
tion as well as the broader notion of sufficient dimension
reduction (Li and Duan, 1989; Cook, 1994). Following Se-
todji and Cook (2004), we propose a model-free dimension
reduction method for multivariate regressions under the no-
tion of multivariate central subspaces (Setodji and Cook,
2004).

The multivariate central subspace (CS), denoted by SY|X
(Cook 1994, Setodji and Cook 2004) is the smallest subspace
S of R

p such that, for the projection PSX of X on S,

(1.1) Y X | PSX,

which is uniquely defined and coincides with the intersec-
tion of all those subspaces satisfying (1.1) under some mild
conditions (Cook, 1998). It guarantees that the regression
of Y on X can be replaced by the regression of Y on the
smaller dimension random variable PSX without any loss
of information and any model assumption. We assume that
central subspace exists throughout this article and we will
define d = dim(SY|X).

In the past decade, many methods have been developed
to estimate SY|X when the response is univariate, but there
is relatively little methodology available when the response
is multivariate. In the univariate case where Y ∈ R

1, Li
(1991) proposed for estimation the method of sliced inverse
regression (SIR) that is based on the inverse mean E(X|Y )
which is easily estimable when Y is categorical, but when the
outcome is continuous, it is replaced by a dichotomized ver-
sion Ỹ with the range of Y partitioned into a fixed number
(h) of slices. Except for a few methods such as (constrained)
CANCOR (Fung, He, Liu and Shi, 2002; Zhou and He, 2008)
which used the B-spline basis functions generated for the re-
sponse variable, and kernel-based methods (Zhu and Fang,
1996; Zhu and Zhu, 2007); slicing a continuous response is a
common practice in the field of inverse-regression dimension
reduction. Similar dichotomization can be used for multi-
variate responses. However, when the dimensionality of the
response vector increases, the usual slicing methods may
not work well due to the curse of dimensionality. To deal
with such problem, Aragon (1997) proposed marginal slic-
ing, where the slices are obtained through a user-specified
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scalar function of Y, for example, the first principal compo-
nent of Y. Setodji and Cook (2004) introduced a new way
of performing the slicing to obtain Ỹ ∈ R

1. They adopted
the k-means algorithm (Hartigan 1975) to cluster the ob-
served response vectors, and assume the inverse distribution
function of X|Ỹ well approximates the true distribution of
X|Y when the number of clusters is sufficiently large. Their
method widens the SDR methodology to regressions with
multivariate responses without worrying about the number
of clusters (slices) increasing exponentially.

However, whether using the standard slicing method or
the k-means clustering, all these methods ignored intra-
cluster (slice) information, which could be substantial un-
der some circumstances. For univariate response Y ∈ R

1,
Cook and Ni (2006) recently pointed out that intra-slice in-
formation was lost when converting a continuous response
to a categorical one, and they developed new methodology
for recovering intra-slice information in univariate regres-
sions. In this paper we extend the new dimension reduction
method to multivariate responses, which is designed to re-
cover intra-cluster information when at least one response
is continuous. Our method also allows us to test predictor
effects easily, a simple chi-squared distribution can be used
in inference methods for d and it has optimal properties to
be described later.

The rest of this paper is organized as follows. We first
give a brief review of the previous method (k-means inverse
regression estimation, KIR) proposed by Setodji and Cook
(2004) in Section 2. In Section 3 we propose our new method,
which we call generalized k-means inverse regression estima-
tion (GM.KIRE). Its asymptotics are also discussed. Sec-
tion 4 is dedicated to the discussion of testing predictor
effects under the context of GM.KIRE. The performances
of GM.KIRE and KIR are compared via simulation studies,
and a real data analysis is also discussed in Section 5. Brief
conclusions are given in Section 6.

2. K-MEANS INVERSE REGRESSION
ESTIMATION

Li’s 1991 SIR method is based on the notion that if
one can find a matrix M such that Span(M) � SY|X
then SY|X can be estimated as the span of the left sin-
gular vectors of the sample estimate M̂ of M whose sin-
gular values are inferred to be non-zero. He posited that if
the linearity condition, defined by E(X|ρT X) being a lin-
ear function of ρT X where the columns of ρ ∈ R

p×d is
a basis for SY|X, is satisfied, then the inverse mean space
SE(X|Y) = Span{E(X|Y) − E(X),Y ∈ Ωy} where Ωy is the
support of Y provides a good estimate of SY|X. Further
more, he showed that SE(X|Y) = Span[Var{E(X|Y)}] and
thus Var{E(X|Y)} could be used as the matrix M . The lin-
earity condition, an assumption only about the marginal
distribution of X is commonly used in dimension reduc-
tion methods and holds for elliptically contoured predictors

(Eaton 1986). Additionally, Hall and Li (1993) showed that
as the number of predictors p increases, the linearity condi-
tion holds to a reasonable approximation in many problems.
See Wen and Cook (2007) for more discussions on this topic.

When Y is categorical Var{E(X|Y)} can be estimated
directly, but for continuous responses, Y is categorized by
slicing. Let Σ = Cov(X) be the covariance matrix of X, and
let Js(Y) = I{Ỹ = s} be the dichotomized random variable
taking value 1 when the values of Y fall into the s slice and
0 if not, with s = 1, . . . , h, h is the total number of slices. We
will also define ξs = Σ−1Cov(X, Js) and fs = Pr(Js = 1)
the probability of an observation falling in slice s. Under
the linearity condition, ξs ∈ SY|X and the matrix M with
columns formed by ξs, s = 1, . . . , h will well approximate the
central subspace SY|X. K-means inverse regression (KIR)
is an extension of SIR where simple slices are replaced by
clusters obtained from the k-means algorithm.

Now starting with a random sample (Xi,Yi), i =
1, . . . , n, on (X,Y), the estimate ξ̂s of ξs can be estimated
as the X coefficients from the ordinary least squares fit of
Js(Yi) on Xi, including an intercept.

Besides the SIR/KIR algorithm described above, Cook
and Ni (2005) showed that, if one assumes d = dim(SY|X)
the dimension of the central subspace known, a basis of the
SY|X can be obtained by minimizing the minimum discrep-
ancy function.

FSIR
d (B,C) =

h∑
s=1

(f̂sξ̂s − BCs)T f̂−1
s Σ̂(f̂sξ̂s − BCs),

where B ∈ R
p×d, Cs ∈ R

d, f̂s is the fraction of the sample
points in slice s, s = 1, . . . , h, and Σ̂ is the sample version of
Σ. The value of B that minimizes such function FSIR

d pro-
vides such an estimate. Here and in what follows we use F̂ to
denote the value of an objective function minimized over its
arguments. For instance, F̂SIR

d = FSIR
d (B̂, Ĉ) and Span(B̂)

provides a consistent estimate of SY|X where nF̂SIR
m can be

used to test hypothesis d = m vs d > m. In the next section,
we present a generalized version of KIR.

3. GENERALIZED K-MEANS INVERSE
REGRESSION ESTIMATION

3.1 GM.KIRE

In section 2, as we can see it, KIR used only the inverse
mean information E(X|Ỹ) within a slice but ignored the
valuable information between slices or clusters (intra-slice
or intra-cluster information). When Y is continuous, the
loss of information could be substantial. An extreme case
is when h = 1, ξs = 0, suggesting no information is left.
Cook and Ni (2006) developed a method to recover the intra-
slice information when the response Y is univariate. In this
section, we propose a new method which recovers this intra-
cluster information for multivariate Y.
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Letting Y (k) be the k-th coordinate of Y, k = 1, . . . , r,
and because of the subsequent cluster arguments, without
loss of generality, we assume that all these Y (k) are contin-
uous. Define

(3.2) βks = Σ−1Cov(X, Y (k)Js(Y)),

where s = 1, . . . , h and h is the total number of clusters.
Hence, within each cluster s, we have r vectors: β1s, . . . ,βrs.
Under the linearity condition, we have βks ∈ SY|X. We
will then assume that SY|X = Span(β11, . . . ,βr1, . . . ,β1h,
. . . ,βrh), a coverage condition commonly used. See Cook
and Ni (2005) and Wen and Cook (2007) for more discussion
on the coverage condition. For β = (β11, . . . ,βrh), we can
always find a matrix γ ∈ R

d×rh such that β = ργ, where
the columns of ρ ∈ R

p×d form a basis for the multivariate
central subspace SY|X.

Following Cook and Ni (2006), we decompose βks into
two parts:

(3.3)
βks = fsΣ−1Cov(X, Y (k)|Js = 1) + fsE(Y (k)|Js = 1)ξs.

Equation 3.3 shows us how the intra-cluster information
is being recovered for each continuous variable Y (k) with
GM.KIRE, by using the the intra-cluster covariance between
Y (k) and X. Let β̂ks be the X coefficients from the ordi-
nary least squares fits of Y

(k)
i Js(Y

(k)
i ) on Xi respectively,

including an intercept. Letting β̂ = (β̂11, . . . , β̂rh), we then
estimate (ρ,γ) by minimizing the following quadratic dis-
crepancy function:

(3.4) ( vec(β̂) − vec(BC))T Vn( vec(β̂) − vec(BC)),

where B ∈ R
p×d, C ∈ R

d×(rh), and Vn > 0. Differ-
ent choices of Vn will specify different estimation meth-
ods, while the inverse of the asymptotic covariance matrix
of

√
n( vec(β̂) − vec(β)) is the “optimal” choice (Ferguson

1958; Shapiro 1985).
Define ε = (ε11, . . . , εr1, . . . , εrh)T where the elements

εks, k = 1, . . . , r; s = 1, . . . , h, are the population residuals
from the ordinary least squares fit of Y (k)Js(Y) on X. The
asymptotic distribution necessary to select Vn optimally is
given in the following Lemma. The proof is similar to that
of Theorem 1 of Cook and Ni (2005) and hence is omitted.

Lemma 1. Assume that the data (Yi,Xi), i = 1, . . . , n,
are a simple random sample of (Y,X) with finite fourth
moments. Then

(3.5)
√

n( vec(β̂) − vec(ργ)) D−→ Normal(0,Γ)

where Γ = Cov( vec(Σ−1{X − E(X)}εT )) ∈ R
(prh)×(prh).

Letting Γ̂ be a consistent estimate of Γ, our new method
is obtained by minimizing

(3.6)
F gm

d (B,C) = ( vec(β̂)− vec(BC))T Γ̂
−1

( vec(β̂)− vec(BC)),

which is an application of (3.4) with Vn = Γ̂
−1

. The esti-
mate of SY|X constructed by minimizing (3.6) is called the
generalized multivariate k-means inverse regression estima-
tion (GM.KIRE) estimator.

Since X and ε are uncorrelated, we can rewrite Γ as
E[εεT ⊗Σ−1{X−E(X)}{X−E(X)}T Σ−1]. One choice of Γ̂
can be constructed straightforwardly by substituting sample
versions for the population moments in Γ:

Γ̂ =
n∑

i=1

1
n
{ε̂iε̂

T
i ⊗ Σ̂

−1
(Xi − X̄•)(Xi − X̄•)T Σ̂

−1}.

Let Δgm ≡ (νT ⊗ Ip, Irh ⊗ ρ), which is the Jacobian
matrix

Δ =
(

∂ vec(BC)
∂ vec(B)

,
∂ vec(BC)
∂ vec(C)

)

evaluated at (B = ρ,C = ν). The associated asymptotic
properties of GM.KIRE are given in the following theorem.
The proof is structurally similar to that of Theorem 2 in
Cook and Ni (2005) and is given in the appendix.

Theorem 1. Assume that the data (Yi,Xi), i = 1, . . . , n,
are a simple random sample of (Y,X) with finite fourth
moments. Let F̂ gm

d be the minimum value of (3.6), and let

(ρ̂, ν̂) = argB,C minF gm
d (B,C).

Then,

1. The estimate vec(ρ̂ν̂) is asymptotically efficient, and
√

n( vec(ρ̂ν̂) − vec(ρν))
D−→ Normal(0,Δgm(ΔT

gmΓ−1
gmΔgm)−ΔT

gm).

2. nF̂ gm
d has an asymptotic chi-squared distribution with

degrees of freedom (p − d)(rh − d).

Theorem 1 provides a basis for inference about SY|X.
In particular, the second conclusion can be used to test
the hypothesis d = m vs. d > m, rejecting if nF̂ gm

m ex-
ceeds a selected quantile of the chi-squared distribution
with (p − m)(rh − m) degrees of freedom. A useful prop-
erty of GM.KIRE is that nF̂ gm

d follows an asymptotic chi-
squared distribution, while the corresponding statistics for
KIR is distributed as a linear combination of independent
chi-squared random variables. Asymptotic efficiency means
that the estimator has minimum asymptotic variance among
all choices of the possible Vn’s in (3.4).

3.2 Clustering

Since clustering the multivariate responses plays the same
role as slicing a univariate response, previous research and
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comments on the impact of slicing on the SDR methods
applies to clustering too. How to select h optimally is an
open question in SDR research.

Zhu and Ng (1995) and Li and Zhu (2007) studied the
asymptotic behavior of SIR and SAVE (sliced average vari-
ance estimation; another well-known method in SDR) re-
spectively. They showed that SIR is relatively insensitive to
the choice of the total number of slices (clusters) h, under
some regularity conditions, the asymptotic normality of SIR
holds with h ranging from

√
n to n

2 ; while SAVE is much
more sensitive to h. Li and Zhu (2007) proved that when
the response Y is continuous, SAVE cannot be

√
n consis-

tent even when each slice contains a fixed number of data
points that do not depend on the sample size n.

Empirical studies suggested that the number of slices
(clusters) h is a tuning parameter much like the tuning pa-
rameter encountered in the smoothing literature (Li 1987;
Härdle et al., 1988). As Cook and Forzani (2009) concluded:
“h doesn’t matter much, provided that it is large enough to
allow estimation of d and that there are sufficient observa-
tions per slice to estimate the intraslice parameters ...”. Our
experience indicates that good results are often obtained by
choosing h to be somewhat larger than d+1, trying a few dif-
ferent values of h as necessary. Choosing h very much larger
than d should generally be avoided since small sample per-
formance of the data may not agree with the asymptotic
findings with few observations within each slice. Wang and
Xia (2008) gave the same advice.

3.3 Computing and generalized inverse

The alternating least squares algorithm for inverse re-
gression estimation (Cook and Ni, 2005; Ruhe and Wedin,
1980) can be adapted for the minimization of F̂ gm

d . Since
the form of the inner-product matrix in (3.6) depends on
SY|X, we could adapt the iterative algorithm to reduce the
variability of this inner-product matrix. Here is a sketch of
this idea. First, obtain Span(ρ̂), an estimate of SY|X, via
the alternating least squares method. Second, update the
inner-product matrix using Span(ρ̂). Then, re-run the alter-
nating least squares algorithm to update Span(ρ̂) applying
this new inner-product matrix. Carroll and Ruppert (1988)
recommended at least two cycles but we suggest the use of
at least a three-cycle iterative computation algorithm for
GM.KIRE.

The inverse of the inner-product matrix Γ̂ ∈ R
prh×prh

became very unstable when the total number of clusters
(slices) and the dimensions of the responses (predictors) are
too big, and the consequent computation results could be
time-consuming and misleading. Instead, we use a Moore-
Penrose generalized inverse of Γ̂ to replace the regular in-
verse matrix in our algorithm. Both simulation studies and
real-data analysis presented in Section 5 suggest that this
approach works well and deserves further studies for all suffi-
cent dimension reduction methods taking the minimum dis-
crepancy approaches.

4. TESTING PREDICTOR EFFECTS

GM.KIRE is a new dimension reduction method to deal
with multivariate responses. It follows the minimum dis-
crepancy approach introduced by Cook and Ni (2005). In
addition to provide more accurate estimates for both the
central subspace and its dimension, the quadratic objective
functions used in the minimum discrepancy approach we
adopted for GM.KIRE, enables us to test conditional in-
dependence hypotheses. We consider testing hypotheses of
the forms: Y PHX | (QHX), where H is an l-dimensional
user-selected subspace of the predictor space, QH = Ip−PH.
This is equivalent to testing hypotheses PHSY|X = Op un-
der the usual linearity and coverage conditions (Cook and
Ni, 2005).

Since the marginal predictor hypothesis PHSY|X = Op

does not require specification of d, equivalently, we test the
hypothesis HT β = 0, where H ∈ R

p×l is an orthonormal
basis for H. It follows from Theorem 1 that a Wald test
statistic of the form

(4.7)

T bm(H) = n vec(HT β̂)T {(Irh ⊗ HT )Γ̂gm(Irh ⊗ H)}−1

× vec(HT β̂)

can be used to test a marginal predictor hypothesis. Follow-
ing Theorem 1 and Slutsky’s theorem, it can be shown that,
under the hypothesis, (4.7) is distributed asymptotically as
a chi-squared random variable with degrees of freedom of
l(rh).

Let H0 ∈ R
p×(p−l) be an orthonormal basis for

Span(QH), then the joint dimension-predictor hypothesis
PHSβ = Op and d = m, is equivalent to β = QHβ =
QHρν = H0ρ0ν, where ρ0 contains the coordinates of ρ
represented in terms of the basis H0. We then can fit under
the joint hypothesis by minimizing the following constrained
optimal discrepancy function

F gm
m,H(B,C) = ( vec(β̂) − vec(H0BC))T(4.8)

× Γ̂
−1

gm( vec(β̂) − vec(H0BC))

over B ∈ R
(p−l)×m and C ∈ R

m×(rh). Values of B and C
that minimize (4.8) provide estimates of ρ0 and ν. Following
the result of Theorem 1, we know that, under the null hy-
pothesis, the statistic nF̂ gm

d,H has an asymptotic chi-squared
distribution with degrees of freedom (p − d)(rh − d) + dl.

Finally, when d is specified, or when inference on d using
marginal dimension tests results in a firm estimate, we might
consider the conditional hypothesis PHSβ = Op given d. The
difference in minimum discrepancies

(4.9) T bc(H|d) = nF̂ gm
d,H − nF̂ gm

d

is used to test a conditional predictor hypothesis. Under
the null hypothesis, T bc(H|d) has an asymptotic chi-squared
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distribution with degrees of freedom ld. It can be shown that
the conditional predictor test statistic and the marginal di-
mension statistic are asymptotically independent (interested
readers could refer to Wen and Cook (2007) for a more de-
tailed discussion).

5. SIMULATION RESULTS AND DATA
ANALYSIS

In this section, we report simulation results to support
our theoretical conclusions regarding GM.KIRE. The per-
formance of GM.KIRE and KIR were compared regarding
estimation accuracies and actual testing levels.

5.0.0.1. Inverse model

5.1 Estimation accuracy

We now consider an inverse regression model:

Y1 = λ(Z1 + Z2) + (Z1 − Z2)
Y2 = λ(Z1 + Z2) − (Z1 − Z2),

Y3 =
1
Y1

+ Y2 + 0.1 ∗ Z3,

Y4 =
1
Y2

+ Y1 + 0.1 ∗ Z4

X ∈ R
10 and X = α(Y1 − Y2) + ε, where Zi, i = 1, . . . , 4

are independent standard normal random variates, α =
(0, . . . , 0, 1)T ∈ R

10, ε (Z1, . . . , Z4)T is a 10-dimensional
standard normal vector, λ ∈ R

1 is a constant. Letting
Y = (Y1, Y2, Y3, Y4), we now have SY|X = Sα. In this model,
the responses are strongly correlated to each other, and the
noises become bigger with the increment of λ. A similar
model was discussed by Wen and Cook (2008).

We used h = 6 clusters for all simulation runs. The esti-
mation accuracy of the central subspace is measured by the
R2 values from the regression of X10 on the first estimated
sufficient predictor. As shown in Figure 1a, GM.KIRE def-
initely won over KIR with λ = 30. For example, when
n = 600, the average of R2 from 1, 000 replications was
0.997 from GM.KIRE, and 0.097 from KIR. Also, the R2

from GM.KIRE exceeded the R2 from KIR 99.9% of the
time. Shown in Figure 1b are the results from 1, 000 sim-
ulation runs at various values of λ with fixed sample size
n = 400. As we can see, the changes in λ did not affect the
performances of GM.KIRE much. It always shows strong
advantages over KIR: the average R2’s are always greater
than 0.939 for GM.KIRE; while they are about 0.1 for KIR.

We then compared the performances of GM.KIRE and
KIR concerning the estimation of d, which is the dimension
of the central subspace. The standard approach in SDR is to
test a sequence of hypotheses H0 : d = m versus Ha : d > m,
with m incremented by 1 until the hypothesis is not rejected.
At which point d̂ is the last value of m tested.

The percentages of correct estimates d̂ = 1 from 1, 000
replications versus varying sample sizes and λ at testing

Figure 1. Estimation accuracy: average R2 versus n and λ.

Figure 2. Percentage of runs in which d̂ = 2 versus n and λ.

level α = 0.05 are also studied. With λ = 30, Figure 2a
shows clear advantages of GM.KIRE over KIR. Regardless
the sample size, GM.KIRE always made over 95% correct
decisions, while the performance of KIR was much worse.
As shown in Figure 2b, GM.KIRE also performed much bet-
ter than KIR at various values of λ with fixed sample size
n = 400. It responded much faster to the increment of λ.

Figures 3 and 4 showed the performances of GM.KIRE
and KIR with different clusters. As we can see, both
GM.KIRE and KIR are quite robust to the change of clus-
ters when h lies in our recommended range (say from 4
to 10), though KIR does perform a little bit better with
more clusters when a sample size is small. Overall, our sim-
ulation results suggest that there can be substantial differ-
ences between the GM.KIRE and KIR estimators of d, and
GM.KIRE outperformed KIR all the time. There are clear
advantages due to the incorporation of the intra-cluster in-
formation.

To show the advantage of analyzing the multivariate re-
sponse simultaneously over pooling marginal dimension re-
duction estimates, we also considered four univariate dimen-
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Figure 3. Estimation accuracy: average R2 versus n with 4
and 8 clusters.

Figure 4. Percentage of runs in which d̂ = 2 versus n with 4
and 8 clusters.

sion reduction for regressions Y1|X, Y2|X, Y3|X and Y4|X.
The method of the covariance inverse regression estimator
(CIRE, Cook and Ni, 2007) was used to obtain the marginal
central subspaces. Figure 5 (a) showed the scatterplot of the
R2 values from the regression of X10 on the first estimated
sufficient predictor from our method versus those from the
regression of X10 on the first estimated sufficient predictors
from the four marginal dimension reduction models. With
n = 600 and λ = 30, our method won over the pooled CIRE
method about 90.3% of the times, which is reasonable since
the method pooling marginal estimates ignored the infor-
mation contained in the relation between Yi|X and Yj |X
when i �= j. Figure 5 (b) compared our method with the
marginal univariate dimension reduction estimate when Y1

was the single response, where our method gave a better re-
sult about 96% of the times. Similar results were obtained
with the other three marginal univariate dimension reduc-
tion estimates.

Figure 5. Estimation accuracy: R2 from 1,000 simulation
runs with n = 600, λ = 30 and 6 clusters.

Table 1. P-values of dimension tests for Minneapolis School
Data.

d = 0 d = 1 d = 2

GM.KIRE 0 .791 1.00
KIR 0 .038 .628

5.2 Data analysis

Following Cook and Setodji (2003) and Yin and Bura
(2006), we use data on the performance of students in
n = 63 Minneapolis Schools to illustrate our methodology.
Our response consists of r = 4 percentages of students in a
school scoring above (A) and below (B) average on standard-
ized fourth and sixth grade reading comprehension tests,
Y = (PA4, PB4, PA6, PB6)T ). Eight predictors were used to
characterize a school: (1) the pupil teacher ratio (PT), (2)
the percentage of children receiving Aid to Families with
Dependent Children (AFDC), (3) the percentage of chil-
dren not living with both biological parents (BP), (4) the
percentage of adults in the school area who completed high
school (HS), (5) the percentage of persons in the area below
the federal poverty level (PL), (6) the percentage of minor-
ity students (MIN), (7) the percentage of mobility (MOB),
and (8) the percentage of students attending school regu-
larly (ATT).

As suggested by Yin and Bura (2006), the square root
of all percentages predictors were used to remove the ef-
fects of possible outlying points or heteroskedasticity. We
then applied our method (GM.KIRE) and KIR to the mul-
tivariate regression of Y versus the 8-dimensional predictor
X. We used four clusters. Table 1 provides the p-values of
the asymptotic tests for d = 0, 1 and 2 using our method
and KIR(Setodji and Cook, 2004). GM.KIRE inferred that
the multivariate central subspace is 1-dimensional com-
paring to the 2-dimensional subspace that KIR inferred.
Figure 6 suggests that the relationship between the sec-
ond estimated direction from KIR and the four responses
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Figure 6. Scatterplot matrix of Y versus the second KIR
predictor.

are relatively weak. So we expect that a second direc-
tion might be spurious. Instead, Figure 7 showed that
both first estimated directions from the two methods had
a strong relationship with the four responses. We then
concluded that the multivariate central subspace is one-
dimensional.

An important advantage of our proposed method is that
it allows us to test the predictor effects without assum-
ing a model or specifying the structural dimension. For
this example, we used marginal predictor tests as the ba-
sis of a model-free backward elimination procedure (Li et
al., 2005). As shown in Table 2, pupil teacher ratio and
poverty level were screened out using 5% tests, leaving 6
predictors for further analysis. We next re-estimated the
dimension of the regression based on these six predictors.
Using GM.KIRE, we again inferred that only one direction
is required.

6. DISCUSSION

We proposed a new dimension reduction method for re-
gressions with multivariate responses. Our method is de-
signed to recover the intra-cluster information when the re-
sponses are continuous. Simulations showed that our pro-
posed method is superior to those based on SIR because it
provide better estimates of the structural dimension of the
regression when one has large enough sample size, improves
the estimation accuracy of the central subspace, and allows
prior screening of predictors.

Figure 7. Scatterplot matrix of Y versus the first KIR and
GM.KIRE predictors.

Table 2. P-values from marginal predictor tests for
Minneapolis School data

Predictor Step 1 Step 2 Step 3

AFDC 0.000 0.000 0.000
Attend 0.002 0.000 0.000
BP 0.001 0.000 0.000
HS 0.000 0.000 0.000
Minority 0.000 0.000 0.000
Mobility 0.000 0.002 0.000
Poverty 0.272 0.583 deleted
PT-ratio 0.627 deleted

When the conditional mean function E(Y|X) is of spe-
cial interest, the inquiry of SDR is restricted to the central
mean subspace, the intersection of all subspaces S satisfying
Y E(Y|X)|PSX. Or equivalently, the intersection of all
subspaces S satisfying the conditional independent condi-
tion

E(Y|X) X|PSX.

Cook and Li (2002) investigated possible approaches to in-
ferring about the central mean subspace when Y is univari-
ate. Cook and Setodji (2003), Li et al. (2003), Yoo and Cook
(2007) studied estimation methods for the multivariate cen-
tral mean subspace. Their works are not applicable to the
estimation of the central subspace and are beyond the scope
of this paper.
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APPENDIX

Proof of Theorem 1. The proof of Theorem 1 hinges
on Shapiro’s (1986) results on asymptotics of over-
parameterized discrepancy functions and two supplemen-
tal lemmas (Cook and Ni, 2005). The discrepancy functions
that Shaprio considered are

H(τn, g(θ)) = (τn − g(θ))T V(τn − g(θ)),

where τn is an asymptotically normal estimate of the popu-
lation value g(θ0), and V is a known inner product matrix.

The following setting makes it clear that Hd(B,C) is in
the form of Shapiro’s discrepancy function H:

θ =
(

vec(B)
vec(C)

)
∈ R

d×(p+rh)

g(θ) = vec(BC) ∈ R
p×rh

τn = vec(β̂)
g(θ0) = vec(ρν)

where ρ ∈ R
p×d is in general a basis for Sξ and ν ∈ R

d×rh.
Following from Shapiro (1986), we then have vec(ρ̂ν̂) of
Hd(B,C) is asymptotically efficient with

√
n( vec(ρ̂ν̂) − vec(βν))
D→ Normal(0,Δgm(ΔT

gmVΔgm)−Δgm),

which leads to the conclusion 1 of Theorem 1. And nĤ has
an asymptotic chi-squared distribution with degrees of free-
dom p × (rh) − rank(Δgm), where

rank(Δgm) = rank(νT ⊗ Qβ, Irh ⊗ β)

= d × (p − d) + d × (rh)
= d(p + rh − d).

Therefore, the degrees of freedom are p×(rh)−d(p+rh−d) =
(p − d)(rh − d). Thus, conclusion 2 is proved.
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