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Dimension reductionwith bivariate responses, especially amix of a continuous and categorical
responses, can be of special interest. One immediate application is to regressions with censor-
ing. In this paper, we propose two novel methods to reduce the dimension of the covariates
of a bivariate regression via a model-free approach. Both methods enjoy a simple asymp-
totic chi-squared distribution for testing the dimension of the regression, and also allow us to
test the contributions of the covariates easily without pre-specifying a parametric model. The
new methods outperform the current one both in simulations and in analysis of a real data.
The well-known PBC data are used to illustrate the application of our method to censored
regression.

© 2008 Elsevier B.V. All rights reserved.

1. Introduction

The overarching goal of sufficient dimension reduction (SDR) in a regression analysis with response Y and a vector of random
predictorsX=(X1, . . . ,Xp)

T ∈ Rp is to find a parsimonious characterization of the conditional distribution of Y|Xwithout requiring
a parametric model. We pursue this goal by seeking sufficient predictors, gTj X, j = 1, . . . , d, a minimal set of linear combinations of

X, such that Y|(gT1X, . . . ,gTdX) has the same distribution as Y|X for all values of X. More formally, we search for subspacesS ⊆ Rp

such that

Y@X|PSX,

where@ indicates independence and P(.) stands for a projection operator with respect to the standard inner product. Such anS
is called a dimension reduction subspace. While a dimension reduction subspace always exists, it is not necessarily unique. Ideally
we should search for the minimal dimension reduction subspace, the one with the smallest dimension. Under mild conditions
(Cook, 1998) that almost always hold in practice, the minimal dimension reduction subspace is uniquely defined and coincides
with the intersection of all dimension reduction subspaces. This intersection is called the central subspace (CS; Cook, 1994, 1998) of
the regression and denoted asSY|X. The dimension ofSY|X is called the structural dimension of the regression; let d=dim(SY|X).

In practice, d is often atmost three and this allows a fully informative and direct visualization of the original regression through
a plot of Y versus the estimated sufficient predictors. In this sense, SDR can facilitate data visualization and model building. And
unlike other nonparametric approaches, SDR can often avoid the curse of dimensionality (Friedman, 1994). Many SDR methods
enjoy

√
n convergence rates since they exploit the global features of the dependence of Y on X.
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In the past decade, many methods have been developed to estimate SY|X when the response is univariate, but there is
relatively little methodology available when the response is multivariate. In this paper, we focus on investigating estimation
methods when Y is bivariate. We assume that the bivariate central subspace exists throughout this article.

There are many important regression settings where a bivariate response arises naturally, particularly regressions involving
censored data. Li et al. (1999) discussed dimension reduction methods that allows for censoring. Cook (1995, 2003) presented
a method called bivariate SIR that is applicable with bivariate responses. Li and Li (2004) applied bivariate SIR to study gene
microarrays in the context of censored survival data.

For bivariate responses we consider three cases: both responses are categorical, one is categorical and the other is continuous,
both are continuous. Slicing a continuous response (Li, 1991), which is a standard methodology in SDR, converts the second
and third cases to the double categorical case where bivariate SIR seems to be the only methodological option that has been
developed.

Cook and Ni (2006) recently pointed out that intra-slice information is lost when converting a continuous response to a
categorical one, and they developed methodology for recovering intra-slice information in univariate regressions. In this paper
we present two newdimension reductionmethods for bivariate responses, both designed to recover intra-slice informationwhen
at least one response is continuous. One method, bivariate estimation across responses (BEAR), is mainly designed for bivariate
regressions with one continuous response and one categorical response. The other method, balanced bivariate estimation (BBE),
is for the cases with two continuous responses. Both methods allow us to test predictor effects easily, a simple chi-squared
distribution can be used in inference methods for d and they both have optimal properties to be described later.

The rest of this paper is organized as follows. In Section 2 we first review the two major approaches to estimation in SDR. We
then discuss dimension reduction for regressions with bivariate responses. A brief review of the existing method, bivariate SIR, is
presented. In Section 3, we propose BEAR. Its asymptotics are also discussed. Section 4 is dedicated to the discussion of BBE and its
asymptotic properties. Application of our methods to survival regression data is studied in Section 5. The performances of BEAR
and BBE are compared to that of bivariate SIR via simulation studies in Section 6. An illustration is given via a real data analysis.
Brief conclusions and a discussion on future research directions are given in Section 7. We assume the usual SDR linearity and
coverage conditions throughout; see Cook and Ni (2005) for a discussion of these conditions in the context of this article.

2. Dimension reduction in regressions with bivariate responses

2.1. Two major approaches

Many SDR methods, such as sliced inverse regression (SIR; Li, 1991), sliced average variance estimation (SAVE; Cook and
Weisberg, 1991; Cook, 2000), graphical regression (Cook, 1994, 1998), and parametric inverse regression (Bura and Cook, 2001)
are all based on the following logic. Let R = Cov(X). First, working with the standardized variable Z = R−1/2(X − E(X)), find
a symmetric population kernel matrix M, which satisfies the property that Span(M) ⊆ SY|Z. This restriction to symmetry
involves no loss of generality. Then, spectrally decompose M̂, a consistent estimate of M, and use the span of the eigenvectors
corresponding to the d largest eigenvalues of M̂ to estimate Span(M). The eigenvalues provide a test statistic for hypotheses
on the structural dimension, and the eigenvectors can be linearly transformed back to the X-scale. This is called the spectral
decomposition approach since it is based on a spectral decomposition of the sample kernel matrix M̂.

Cook and Ni (2005) introduced a novel approach based on minimizing the following quadratic discrepancy function:

Fd(B,C) = (vec(f̂) − vec(BC))TVn(vec(f̂) − vec(BC)), (2.1)

where f̂ ∈ Rp×l is the datamatrix, B ∈ Rp×d, C ∈ Rd×l, l > d, and Vn ∈ Rpl×pl >0. Letting (B̂, Ĉ)=arg min Fd, Span(B̂) is a consistent
estimator ofSY|X for any Vn >0 that converges to a positive definite matrix V. This is called the minimum discrepancy approach
(MDA). They also showed that many current methods including SIR belong to a suboptimal class of this family.

2.2. Bivariate SIR

In this section, we will study regressions with bivariate responses of the form (Y ,U), where Y and U are scalars. Analogous to
the definition of the central subspace, the bivariate central subspace S(Y ,U)|X is defined as the intersection of all subspaces S
satisfying the conditional independent condition (Y ,U)@X|PSX.

Although SIR was introduced in the context of regression problems with a univariate response variable, the same theory
applies when the response variable is bivariate. Cook (1995) proposed a method called bivariate SIR based on double slicing the
observations on (Y ,U) to form a discrete bivariate response (Ỹ , Ũ), where Ũ takes value in {1, . . . ,K}, and for each value of Ũ, Ỹ
takes value in {1, . . . ,hŨ}. Hence, the discrete response (Ỹ , Ũ) is constructed by first slicing on U and then slicing on Ywithin each

value of Ũ. Let h = ∑K
u=1 hu.

Letting Ju(U)= I{Ũ=u}, fu=Pr(Ju=1), Juy(Y ,U)= I{Ũ=u, and Ỹ=y}, and fuy=Pr(Juy=1). Define nuy=R−1 Cov(X, Juy), u=1, . . . ,K,

and y = 1, . . . ,hu. Starting with a random sample (Xi,Yi,Ui), i = 1, . . . ,n, on (X,Y ,U), define n̂uy as X coefficients from the ordinary
least-squares fit of Juy(Yi,Ui) on Xi, including an intercept.
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Following the MDA, we now write a nonlinear objective function that reproduces the methodology of bivariate SIR:

Fbsird (B,C) =
K∑

u=1

hu∑
y=1

(f̂uyn̂uy − BCuy)T f̂−1
uy R̂(f̂uyn̂uy − BCuy),

where B ∈ Rp×d, Cuy ∈ Rd, f̂uy is the fraction of the sample points in slice (y,u), u = 1, . . . ,K, y = 1, . . . ,hu, and R̂ is the sample
version of R. Here and in what follows we use F̂ to denote the value of an objective function minimized over its arguments. For
instance, F̂bsird = Fbsird (B̂, Ĉ). Span(B̂) provides a consistent estimate of S(Y ,U)|X and nF̂bsirm can be used to test hypothesis d = m
versus d >m.

3. Bivariate estimation across responses

Define

gw =R−1 Cov(X, Jw(U)), w = 1, . . . ,K, (3.1)

bws =R−1 Cov(X,YJws(Y ,U)), s = 1, . . . ,hw, (3.2)

where U is categorical. One special case is survival data where U takes two values and is constant within Y slices. Detailed
discussion on this case is given in Section 5.

Most SDRmethods require a linearity condition on themarginal distribution ofX. In the present context, the linearity condition
says that E(X|qTX)must be a linear function ofqTX, where the columns ofq ∈ Rp×d form a basis for the bivariate central subspace.
When X follows an elliptically contoured distribution like the multivariate normal, the linearity condition always holds (Eaton,
1986). Diaconis and Freedman (1984) showed that most lower dimension projections of high-dimensional data are close to
normal. Hall and Li (1993) showed that as p increases with d fixed, the linearity condition holds to a good approximation in
many problems. Shao et al. (2007) argued that for single-index regression model, the linearity condition seems to substitute for
knowing the exact conditional distribution of Y|X. In practice, we are free to use experimental design, and one-to-one predictor
transformations to induce the linearity condition. Cook and Nachtsheim (1994) proposed a re-weighting method to force this
condition when necessary without suffering complications when inferring about Y|X. Since no model is assumed for Y|X, these
methods will not change the fundamental issues in the regression. Additional discussion of this condition, which is typically
regarded as mild with quantitative predictors, was given by Cook and Ni (2005). Under the linearity condition it is easy to
prove that

gw ∈ S(Y ,U)|X and bws ∈ S(Y ,U)|X. (3.3)

Taking a step further, we then assume the common coverage condition (for background, see Cook and Ni, 2005; Wen and
Cook, 2007), that S(Y ,U)|X = Span(g1, . . . ,gK ,b11, . . . ,bKhK ). Letting g = (g1, . . . ,gK ), and b = (b11, . . . ,bKhK ), we can always find

c ∈ Rd×(h+K) such that (g,b) = qc.
Following Cook and Ni (2006), we divide bws into two parts:

bws = fwsR−1 Cov(X,Y|Jws = 1) + fwsE(Y|Jws = 1)nws. (3.4)

Eq. (3.4) shows us how the intra-slice information is being recovered for the continuous variable Y with BEAR, by using the
intra-slice covariance between Y and X. Let ĝw and b̂ws be the X coefficients from the ordinary least-squares fits of Jw(Ui) and
YiJws(Yi,Ui) on Xi, respectively, including an intercept. Letting ĝ= (ĝ1, . . . , ĝK ), and b̂= (b̂11, . . . , b̂KhK ), we then estimate (q, c) by
minimizing the following quadratic discrepancy function:

(vec(ĝ, b̂) − vec(BC))TVn(vec(ĝ, b̂) − vec(BC)), (3.5)

where B ∈ Rp×d, C ∈ Rd×(h+K), and Vn >0 depends on the specific method.
Define h = (�1, . . . ,�K )

T and � = (�11, . . . , �ws, . . . , �KhK )
T where the elements �w and �ws, w = 1, . . . ,K, s = 1, . . . ,hw, are the

population residuals from the ordinary least squares fit of UJw(U) and YJws(Y ,U) on X. The asymptotic distribution necessary to
select Vn optimally is given in the following Lemma. The proof is omitted.

Lemma 1. Assume that the data ((Yi,Ui),Xi), i = 1, . . . ,n, are a simple random sample of ((Y ,U),X) with finite fourth moments. Then

√
n(vec(ĝ, b̂) − vec(qc)) D−→Normal(0,C), (3.6)

where C= Cov(vec(R−1{X − E(X)}(hT,�T))) ∈ Rp(h+K)×p(h+K).
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Letting Ĉ be a consistent estimate of C, our new method is obtained by minimizing

Fbeard (B,C) = (vec(ĝ, b̂) − vec(BC))TĈ−1(vec(ĝ, b̂) − vec(BC)), (3.7)

which is an application of (3.5) with Vn = Ĉ−1. The estimate of S(Y ,U)|X constructed by minimizing (3.7) is called the BEAR
estimator.

Since X and (h, �) are uncorrelated, we can rewrite C as E[(hT, �T)T(hT,�T) ⊗R−1{X − E(X)}{X − E(X)}TR−1]. Assume that the
data ((Yi,Ui),Xi), i = 1, . . . ,n are a simple random sample of ((Y ,U),X), one choice of Ĉ can be constructed straightforwardly by
substituting sample versions for the population moments in C:

Ĉ=
n∑

i=1

1
n

{(ĥT, �̂T)Ti (ĥT, �̂T)i ⊗ R̂−1(Xi − X̄•)(Xi − X̄•)TR̂−1},

where X̄• is the sample average of X.
Let Dbear ≡ (mT ⊗ Ip, Ih+K ⊗ q), which is the Jacobian matrix

D=
(

�vec(BC)
�vec(B)

,
�vec(BC)
�vec(C)

)

evaluated at (B = q,C = m). The associated asymptotic properties of BEAR are given in the following theorem. The proof is
structurally similar to that of Theorem 2 in Cook and Ni (2005).

Theorem 1. Assume that the data ((Yi,Ui),Xi), i = 1, . . . ,n, are a simple random sample of ((Y ,U),X) with finite fourth moments.
Let F̂beard be the minimum value of (3.7), and let

(q̂, m̂) = argmin
B,C

Fbeard (B,C).

Then,

1. The estimate vec(q̂m̂) is asymptotically efficient, and

√
n(vec(q̂m̂) − vec(qm)) D−→Normal(0,Dbear(D

T
bearC

−1
bearDbear)

−DTbear).

2. nF̂beard has an asymptotic chi-squared distribution with degrees of freedom (p − d)(h + K − d).

Theorem1 provides a basis for inference aboutS(Y ,U)|X. In particular, the second conclusion can be used to test the hypothesis

d=m versus d >m, rejecting if nF̂bearm exceeds a selected quantile of the chi-squared distribution with (p−m)(h+K −m) degrees
of freedom. A useful property of BEAR is that nF̂beard follows an asymptotic chi-squared distribution, while the corresponding
statistics for bivariate SIR is distributed as a linear combination of independent chi-squared random variables. Asymptotic
efficiency means that the estimator has minimum asymptotic variance within family (3.5).

The alternating least-squares algorithm for inverse regression estimation (IRE: Cook and Ni, 2005; Ruhe and Wedin, 1980) can
be adapted for theminimization of F̂beard . Since the form of the inner-productmatrix in (3.7) depends onS(Y ,U)|X, we could adapt
the iterative algorithm to reduce the variability of this inner-product matrix. Here is a sketch of this idea. First, obtain Span(q̂),
an estimate ofS(Y ,U)|X, via the alternating least-squares method. Second, update the inner-product matrix using Span(q̂). Then,
re-run the alternating least-squares algorithm to update Span(q̂) applying this new inner-product matrix. Carroll and Ruppert
(1988) recommended at least two cycles. We use a three-cycle iterative computation algorithm for BEAR.

4. Balanced bivariate IRE

In this section, we propose a method, called BBE, to deal with the bivariate regressions with two continuous responses.
For w = 1, . . . ,K, and s = 1, . . . ,hw, within each bivariate slice, we consider (aws,bws), where

aws =R−1 Cov(X,UJws). (4.1)

Let a= (a11, . . . ,aKhK ), and define t= (�11, . . . , �ws, . . . , �KhK )
T, and � = (e11, . . . , ews, . . . , eKhK )

T where the elements �ws and ews,

w = 1, . . . ,K, s = 1, . . . ,hw, are the population residuals from the ordinary least squares fit of UJws(Y ,U) and YJws(Y ,U) on X.

Lemma 2. Assume that the data ((Yi,Ui),Xi), i = 1, . . . ,n, are a simple random sample of ((Y ,U),X) with finite fourth moments. Then

√
n(vec(â, b̂) − vec(qc)) D−→Normal(0,Cbbe), (4.2)
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where Cbbe = Cov(vec(R−1{X − E(X)}(tT,�T))) ∈ R2ph×2ph.

Similar to the construction of BEAR, based on Lemma 2, the BBE estimator ofS(Y ,U)|X is constructed by minimizing

Fbbed (B,C) = (vec(â, b̂) − vec(BC))TĈ−1
bbe(vec(â, b̂) − vec(BC)), (4.3)

where Ĉbbe is a consistent estimate of Cbbe; the following sample version is one possible choice:

Ĉbbe =
n∑

i=1

1
n

{(t̂T, �̂T)Ti (t̂T, �̂T)i ⊗ R̂−1(Xi − X̄•)(Xi − X̄•)TR̂−1}.

Let Dbbe ≡ (mT ⊗ Ip, I2h ⊗ q), which is the Jacobian matrix

D=
(

�vec(BC)
�vec(B)

,
�vec(BC)
�vec(C)

)

evaluated at (B = q,C = m). The following theorem provides a basis for BBEs inference about S(Y ,U)|X. BBE also enjoys a simple
asymptotic chi-squared test for testing thedimensionofS(Y ,U)|X. Similarly a three-cycle iterative computation algorithmadapted
from the alternating least-squares algorithm are used for the computation of BBE.

Theorem 2. Assume that the data ((Yi,Ui),Xi), i = 1, . . . ,n, are a simple random sample of ((Y ,U),X) with finite fourth moments.
Let F̂bbed be the minimum value of (4.3), and let

(q̂, m̂) = arg
B,C

min Fbbed (B,C).

Then,

1. The estimate vec(q̂m̂) is asymptotically efficient, and

√
n(vec(q̂m̂) − vec(qm)) D−→Normal(0,Dbbe(D

T
bbeC

−1
bbeDbbe)

−DTbbe).

2. nF̂bbed has an asymptotic chi-squared distribution with degrees of freedom (p − d)(2h − d).

We are free to interchange the role of Y and U during the development of BBE. As we stated in Section 1, BBE is designed to
handle the case when both Y and U are continuous, where we extract the intra-slice information from both responses. If Y and U
are both constants in each bivariate slice, the estimates of aws and bws will span the same subspace so we need only one of them.
Hence, BBE is reduced to bivariate SIR, or bivariate IRE, depending on the inner-product.

4.1. Testing predictor effects

Both BEAR and BBEmethods proposed by us allow us to test conditional independence hypotheses by using various quadratic
inference functions. Without loss of generality, we limit our discussion to BBE. We consider testing hypotheses of the forms:
(Y ,U)@PHX|(QHX), where H is an r-dimensional user-selected subspace of the predictor space. This is equivalent to testing
hypotheses PHS(Y ,U)|X =Op under the usual linearity and coverage conditions (Cook and Ni, 2005).

Since the marginal predictor hypothesis PHS(Y ,U)|X = Op does not require specification of d, equivalently, we test the

hypothesis HT(a,b) = 0, where H ∈ Rp×r be an orthonormal basis forH. It follows from Theorem 2 that a Wald test statistic of
the form

Tbm(H) = nvec(HT(â, b̂))T{(I2h−1 ⊗ HT)Ĉbbe(I2h−1 ⊗ H)}−1 vec(HT(â, b̂)) (4.4)

can be used to test a marginal predictor hypothesis. Following Theorem 2 and Slutsky's theorem, it can be shown that, under the
hypothesis, (4.4) is distributed asymptotically as a chi-squared random variable with degrees of freedom of r(2h − 1).

Let H0 ∈ Rp×(p−r) be an orthonormal basis for Span(QH), then the joint dimension-predictor hypothesis PHSa,� =Op and
d = m, is equivalent to (a,b) = QH(a,b) = QHqm = H0q0m, where q0 contains the coordinates of q represented in terms of the
basis H0. We then can fit under the joint hypothesis by minimizing the following constrained optimal discrepancy function:

Fbbem,H(B,C) = (vec((â, b̂)) − vec(H0BC))
TĈ

−1
bbe(vec((â, b̂)) − vec(H0BC)) (4.5)
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over B ∈ R(p−r)×m and C ∈ Rm×(2h−1). Values of B and C thatminimize (4.5) provide estimates of q0 and m. Following the result of
Theorem 2, we know that, under the null hypothesis, the statistic nF̂bbed,H has an asymptotic chi-squared distribution with degrees
of freedom (p − d)(2h − 1 − d) + dr.

Finally, when d is specified, or when inference on d using marginal dimension tests results in a firm estimate, we might
consider the conditional hypothesis PHSa,� =Op given d. The difference in minimum discrepancies

Tbc(H|d) = nF̂bbed,H − nF̂bbed (4.6)

is used to test a conditional predictor hypothesis. Under the null hypothesis, Tbc(H|d) has an asymptotic chi-squared distribution
with degrees of freedom rd. It can be shown that the conditional predictor test statistic and the marginal dimension statistic are
asymptotically independent.

5. Dimension reduction in regressions with censoring

SDR canbeof practical interest to censored regression analysis. As pointedout by Zeng (2004),when there aremanypredictors,
nonparametric approaches may be infeasible due to the “curse of dimensionality”. Moreover, for semiparametric models, the
parametric functions are likely to bemisspecified. In contrast, the bivariate SDR methodswe proposed can be carried out without
pre-specifying any parametric model, and they can often avoid the curse of dimensionality. After reduction of X to the estimated
sufficient predictors, many traditional methodologies of survival analysis can be applied.

The unique aspects of regressions with censoringmake BEAR attractive as a dimension reductionmethod. Since the censoring
status takes only two values, the double slicing required by BEAR may be feasible in many applications. Given the fact that we
could use different symbols and colors to indicate the censoring status, a summary plot of Y versus estimated sufficient predictors
will give us a direct and informative visualization of the survival data. This may provide insights into model building, and can
identify influential subjects or outliers. In some cases, summary plots may provide a useful tool in the study of the censoring
mechanism.

Common model-based methods of dimension reduction, such as subset selection on linear regression or the lasso, achieve
dimension reduction by removing predictors, thereby reducing p to some smaller number. Many nonparametricmethods achieve
dimension reductionby replacingXwith a few linear combinations, but donot allowpossibility of variable selection. BEARpermits
both reduction by variable selection and reduction via linear combinations, without specifying a parsimonious model for the
regression. The importance of variable selection in survival analysis was pointed out by Raftery et al. (1995): “survival analysis is
concerned with finding models to predict the survival of patients or to assess the efficacy of a clinical treatment. A key part of the
model-building process is the selection of the predictor variables.” In short, BEAR may be an effective pre-modeling tool, aiming
to reduce complicated high-dimensional regressions to simpler ones with lower dimensions.

To adapt BEAR for censored survival data, we first introduce the following notation:

T the true unobservable survival time,
C the censoring time,
� the censoring indicator; � = 1 if T�C and � = 0 otherwise,
Y the observed time, T� + C(1 − �).

We assume that the observed data (Yi,�i,Xi), i = 1, . . . ,n, are obtained from i.i.d. realizations of (T,C,X). We also assume that
T@C|X, the usual independence assumption (Ebrahimi et al., 2003; Tsiatis, 1975), to ensure the identifiability of T.

The goal of SDR for survival data is to infer about the central subspaceST|X. However, since T is not fully observable, we can
estimate only the central subspace S(Y ,�)|X for the bivariate regression of the observable (Y ,�) on X. The following proposition
provides a connection betweenS(Y ,�)|X andST|X. Its proof is given in an Appendix.

Proposition 1. Let the columns of B be an orthonormal basis forST|X.

1. If T@C|X, then T@C|BTX and

S(Y ,�)|X =S(T,C)|X =ST|X +SC|X. (5.1)

2. If T@C|X andSC|X ⊆ ST|X thenST|X =S(T,C)|X.

The condition ofSC|X ⊆ ST|X is not as restrictive as it might appear. For example, the widely used Koziol and Green (1976)
model assumes that the distribution function of C is a positive power of that of T. In this case,SC|X =ST|X.
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Fig. 1. Model A—estimation accuracy: R2
1. Simulation results at various sample sizes with 1000 runs. (a) U = Y2, (b) U = Y1.

6. Simulation studies and data analysis

In this section, we report results from two simulation models to support our theoretical conclusions regarding BBE.
To complement our simulation study of BBE, we also apply BEAR to the well-known PBC data (Fleming and Harrington, 1991).

6.1. Simulation studies

Model A: We first consider a three-dimensional model:

Y1 = 1.5(5 + X1)(2 + X2 + X3) + 0.5�2,
Y2 = (1.5 + X4)�1,

where �1 and �2 are independent standard normal random variates, X1 = W1, X2 = V1 + W2/2, X3 = −V1 + W2/2, X4 = V2 + V3,
and X5 = V2 − V3. The Vi's and Wj's are independent with Vi's drawn from a t(5) distribution and the Wj's from gamma(0.2, 1)
distribution. Versions of this model were also used by Li (1991), Velilla (1998) and others in simulation studies related to the
performance of SIR. It can be shown that the linearity condition holds under this model. Nevertheless, this is a difficult test case
for dimension reduction since the predictors are skewed or have heavy tails, and are prone to outliers.

The number of slices h is a tuning parameter much like the tuning parameter encountered in the smoothing literature
(Li, 1987; Härdle et al., 1988). Experience indicates that good results are often obtained by choosing h to be somewhat larger
than d+ 1, trying a few different values of h as necessary. Since traditional asymptotic results in SDR are based on the number of
observations per slice going to infinity, in practice this suggests relatively few slices. Choosing h very much larger than d should
generally be avoided due to the conflicts between the requirements of asymptotic approximations and recovering intra-slice
information. Based on our experience, at least 20 sample points within each slice are required to achieve satisfactory results.

We set K =3 and h1 =h2 =h3 =3. Simulations are run with Y2 =U and Y1 =U, respectively, to study the effects of asymmetric
slicing. We calculated R21, R

2
2 and R23, the R2 values from the regressions of X1, X2 + X3 and X4 on the d = 3 estimated sufficient

predictors q̂T1X, q̂
T
2X, and q̂

T
3X to measure estimation accuracy. Since the results for R23 and R22 are essentially the same as those

for R21, we will use just R21 in the following discussion. As shown in Fig. 1, both BBE and BEAR clearly dominated over bivariate
SIR and bivariate IRE. The performances of BBE and BEAR were almost identical, while bivariate IRE showed some advantages
over bivariate SIR due to the MDA. It seems that incorporation of intra-slice information into estimation greatly improved
the estimation accuracy. We did not detect significant differences due to different slicing techniques. We then compared the
performances setting U = Y2. When n = 800, the average of R21 from 1000 replications was 0.940 from BBE, 0.946 from BEAR,
0.659 from bivariate IRE, and 0.586 from bivariate SIR. Also, the R21's from BBE, BEAR and bivariate IRE exceeded the R21's from
bivariate SIR 95.3%, 96.3% and 70.9% of the time, respectively. While the R21's from BBE and BEAR exceeded the R21's from bivariate
IRE 93.4% and 94.7% of the time, respectively.

As we mentioned previously, we use a series of dimension tests to estimate d = dim(S(Y ,U)|X). Since we use the same level
for all tests, the best we could expect is that the leading tests of d = 0, 1 and 2 have power 1, and that all of the estimation error
arises from the level � of the test of d = 3. We first consider the actual levels of the test under the null d = 3. The percentage of
correct dimension decisions in 1000 simulated data sets at various sample sizes using nominal level � = 0.05 with two different
slicing methods are shown in Fig. 2. We did not find any difference between the slicing orders, as shown in Fig. 2(a) and (b). The
performances of BBE and BEAR are very similar for most of the time, with slightly better performance for BBE when sample size
is small. Both of them did much better than bivariate SIR. Except for bivariate SIR, all other methods that respond to the change
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Fig. 2. Model A—percentage of correct estimates d̂ = 3 using 5% tests. (a) U = Y2, (b) U = Y1.
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of sample sizes perform closer to the best rate of correct decisions with increasing n. The increment of sample size seems to
affect bivariate IRE the most: the correct dimension decisions it made changed dramatically from 5.8% for n= 200 to 89.8% when
n = 2000.

Fig. 3 shows uniform quantile plots of p-values for testing H0 : d = 3 in Model A with 1000 replications when n = 800. The
sampling distributions of both BBE and BEAR's test statistics is closer to the asymptotic approximations, which suggests a close
agreement between the actual and nominal levels for them.
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1. Simulation results at various � values with 1000 runs.

We also applied the marginal predictor tests using BBE to all the five predictors in turn at level of 5%. The predictor was
selected if the testing p-value was less than 5%. The average number of predictors selected from 1000 simulation runs were
(4.3, 4.2, 4.1) for n = (200, 400, 800), respectively, and the correct four predictors (X1,X2,X3,X4) were nearly always selected.

Model B: We now consider an inverse regression model:

Y1 = �(Z1 + Z2) + (Z1 − Z2),

Y2 = �(Z1 + Z2) − (Z1 − Z2),

X ∈ R10 and X = a(Y1 − Y2) + �, where Z1 and Z2 are independent standard normal random variates, a = (0, . . . , 0, 1) ∈ R10,
�@(Z1, Z2)

T is a 10-dimensional standard normal vector, � ∈ R1 is a constant. The same model was discussed by Yoo and Cook
(2007). Letting Y = (Y1,Y2), we haveSY|X =Sa.

The number of slices was 3×3withU=Y1 for each simulation run.We used R21, the R
2 values from the regression of X10 on the

first estimated sufficient predictor, to measure the estimation accuracy. The performances of all four estimators were compared
at nine different values of � with fixed sample size n = 200.

The curves shown in Fig. 4 are plots of average R21 from 1000 replications versus each �, for values of � between 1 and 50. Both
bivariate SIR and bivariate IRE are quite sensitive to the change of �, their performances deteriorate fast as � increases; while
BBE and BEAR are robust to the increment. The average R21 from bivariate SIR drops dramatically from 0.98 with � = 1 to 0.13
with � = 50, while the average values from BBE are always above 0.95 regardless the change of �. BBE and BEAR show the clear
advantage due to the incorporation of the intra-slice information.

Model C: In this model, we consider the case of one continuous response and one categorical response. In particular, we use
the technique suggested by Bender et al. (2005) to generate a Cox proportional hazard model as follows:

Y = min(T,C),

� = Indicator{T�C}

with T = 5 log[1 − 200 log(e1)e1.5(5+X1)(X2+X3+2)] and C = e5+X1+log(− log(e2)); where e1 and e2 are random uniform variates on
[0, 1]. For i= 1, . . . , 5, Xi's are generated in the same way as that of Model A; and for i= 6, . . . , 10, Xi's are standard normal variates.
The censoring proportion is about 40%. For this model,S(Y ,�)|X =ST|X =S(�1,�2)

, with bT1X = X1 and bT2X = X2 + X3.

The number of slices was 2 × 3 with U = � for each simulation run. R21 and R22, the R2 values from the regression of X1 and
X2 + X3 on the d = 2 estimated sufficient predictors, were used to measure estimation accuracy. The two methods (BBE and
BEAR) which took the intra-slice information into estimation again showed similar performances: both of themwere better than
the other two methods with respect to estimation accuracy. For example, with n = 800, the average of R22 values from 1000



X.M. Wen, R.D. Cook / Journal of Statistical Planning and Inference 139 (2009) 734 -- 748 743

Bivariate SIR

Bivariate IRE

BEAR

BBE

n

Pe
rc

en
t o

f 
d 

=
 2

0 200 400 600 800 1000 1200

0

20

40

60

80

100

Fig. 5. Model C—percentage of correct estimates d̂ = 2 using 5% tests.

replications was 0.904 from BBE, 0.900 from BEAR, 0.794 from bivariate IRE and 0.791 from bivariate SIR. Also, the R22's from BBE
and BEAR exceeded the R22's from bivariate IRE and bivariate SIR about 90.8% and 93.1% of the time, respectively.

Fig. 5 shows the percentage of correct dimension estimations for all four methods in 1000 simulation runs at various sample
sizes using nominal levels � = 0.05. BBE and BEAR showed clear advantages over the other two methods. Simulation results
suggest that intra-slice information plays a more significant role than the use of MDA (Cook and Ni, 2005) under most of
the cases.

6.2. The PBC data

In this section, we consider the well-known PBC (primary biliary cirrhosis) data set using BEAR. This data set contains survival
time and other information on 312 PBC patients participating the randomized placebo controlled trial in theMayo Clinic between
1974 and 1984. Fleming and Harrington (1991) provided a detailed description of this data set. They selected five predictors from
the original 17 covariates. Li et al. (1999) studied this data set using bivariate SIR.

We will consider the following regression:

Y The observed time, number of days between registration and the earlier of death or censoring.
� The censoring indicator; � = 1 if death occurred and � = 0 otherwise.
Age Age in years.
Edema Presence of edema. 0 = no edema and no diuretic therapy for edema; 0.5 = edema present for which no

diuretic therapy was given, or edema resolved with diuretic therapy; 1 = edema despite diuretic therapy.
SerumB Serum bilirubin in mg/dl.
Albumin Albumin in gm/dl.
SGOT SGOT in U/ml.
Triglycerides Triglycerides in mg/dl.
Platelet Platelet count.
Prothrombintime Prothrombin time in seconds.

Until recently including categorical predictors like Edema in SDRmethods was problematic because of the linearity condition.
However, it follows from the recent work of Cook (2007, Section 3.3) that categorical predictors can be used for dimension
reduction if one assumes an exponential family distribution for them in place of the linearity condition. Cook's results are based
on assuming conditionally independent predictors, but the same conclusion can be shown if a quadratic exponential model
(Prentice and Zhao, 1991) is used. Thus under a modest additional assumption, the inclusion of Edema is no longer problematic.

A major goal of survival analysis is to assess the efficacy of a clinical treatment. For the Mayo PBC data, previous studies
have shown that there was no therapeutic differences between control and D-penicillamine-treated patients. Consequently, we
ignored the drug factor throughout this illustration. Cases with missing values were ignored as well. The remaining 278 cases



744 X.M. Wen, R.D. Cook / Journal of Statistical Planning and Inference 139 (2009) 734 -- 748

Table 1
PBC data: p-values of dimension tests from BEAR and bivariate SIR.

d = 0 d = 1 d = 2 d = 3

BEAR 0 0 0.184 0.504
Bivariate SIR 0 0 0.009 0.332

Table 2
PBC data: p-values from marginal predictor tests using BEAR.

Predictor Step 1 Step 2 Step 3 Step 4

Age 0.007 0.007 0.008 0.040
Albumin 0.000 0.000 0.000 0.000
Platelet 0.253 0.248 Deleted
Edema 0.002 0.002 0.003 0.003
Prothrombin time 0.000 0.000 0.000 0.000
Serumb 0.000 0.000 0.000 0.000
SGOT 0.172 0.153 0.104 Deleted
Triglycerides 0.271 Deleted

Table 3
PBC data: the first two directions from BEAR.

First direction (0.0144308,−0.121755, 0.912173, 0.387744, 0.0506238)
Second direction (0.0146395,−0.960727,−0.0301523,−0.247165, 0.121609)

were analyzed using BEAR and bivariate SIR with K = 2 and h1 = h2 = 4. That is, we applied double slicing with four slices within
the censored group and event group, respectively. The same outliers as Li et al. (1999) reported were found and removed in
further analysis.

Table 1 provides the p-values of the asymptotic tests for d = 0, 1, 2 and 3 using BEAR and bivariate SIR. BEAR inferred that
the central subspace is two-dimensional, which agrees with the findings of Li et al. (1999). Judging from our simulation studies,
we think that bivariate SIR over-estimated the dimension.

An important advantage of BEAR is that it allows us to test the predictor effects without assuming a model or specifying d.
For this example, we used marginal predictor tests as the basis of a model-free backward elimination procedure (Li et al., 2005).
As shown in Table 2, three predictors were screened using 5% tests, leaving five predictors for further analysis. This screening
requires only independence condition T@C|X, because then ST|X ⊆ S(Y ,�)|X. If SC|X�ST|X (cf. Proposition 1, part 2), then
some extraneous predictors may remain.

We next re-estimated the dimension of the regression based on these five predictors. Using BEAR, we again inferred that
two sufficient predictors are required. The coefficients associated with the first two BEAR predictors are reported in Table 3 are
strongly correlated with the covariate suggested by Fleming and Harrington (1991):

FH = 0.03Age − 3.06 log(Albumin) + 0.78Edema + 3.11 log(Prothrombin time) + 0.88 log(Serumb). (6.1)

The correlation between FH and its fitted values from the linear regression of FH on the two BEAR predictors is about 0.94.
Plots of the response Y versus the first and second BEAR predictors are shown in Figs. 6 and 7, along with separate smooths for

the event and censored cases. Fig. 6 indicates that Y is independent of the first BEAR predictor within the censored cases, but is
dependent on the predictor within the event cases. Fig. 6 suggests that Y is dependent on the second BEAR predictor within
both the event and censored cases. These interpretations suggest that dim(SC|X) = 1, dim(ST|X) = 2 and SC|X ⊆ ST|X
(cf. Proposition 1). It also suggests that the independence condition hold for PBC data (cf. proof of Lemma 4).

A three-dimensional plot of Y versus both BEAR predictors (not shown) supports this interpretation. As a further diagnostic
check of these conclusions, we applied univariate IRE within the event cases and found the p-values for the null hypotheses
d = m, m = 0, 1, 2, to be 0, 0 and 0.554, providing support for the inference dim(ST|X) = 2. The same procedure applied within
the censored cases gave p-values of 0 and 0.230, sustaining the conclusion that dim(SC|X) = 1.

Turning to the modeling phase, Dickson et al. (1989) developed a prognosis model based on patient's age, total serum
bilirubin and serum albumin concentrations, prothrombin time and severity of edema, the same five predictors that remained
after applying backward elimination (cf. Table 1). Since these measurements can be obtained without requiring liver biopsy, the
Mayo model—represented here by (6.1)—is perhaps the most widely used one among all available prognostic models. It has also
been validated in several other survival studies (Prince and Jones, 2000). In order to compare our method with the Mayo model,
we next fitted a Cox proportional model using the first two BEAR predictors. The resulting estimated risk function, which assigns
a risk score to each individual patient, was

R̂(BEAR1, BEAR2) = 1.157 × BEAR1 − 1.930 × BEAR2 − 0.303 × BEAR22,
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Fig. 6. PBC data: Y versus the first BEAR predictor. ×: event; ◦: censored.
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Fig. 7. PBC data: Y versus the second BEAR predictor. ×: event; ◦: censored.

where our hazardmodel is �i(t)=�0(t) expR(BEAR1, BEAR2).We also fitted a Cox proportionalmodel using the first two directions
identified by Li et al. (1999) resulting in the following estimated risk function (only the first direction is significant):

R̂LI = 1.13 × LI1,

where LI1 =0.02×Age−0.62×Albumin+0.9×Edema+0.38×Prothrombin+0.09×Serumb.We then cross-validate our model
using an independent set of 140 Mayo clinic PBC patients consisting of 106 cases who were eligible for the trial but refused to
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participate, plus 310–276 = 34 cases from the randomized participants with missing values on the “nonsignificant” predictors
(Dickson et al., 1989).

Fig. 8a shows the Kaplan–Meier estimates of the survival curves for three groups of patients: the high-risk patients with risk
scores above 7.88, the medium-risk patients with risk scores between 6.81 and 7.88, and the low-risk patients with risk scores
less than 6.81. Those cut-off points are the 1

3 ,
2
3 percentiles of scores from the training data. The p-value from the log-rank test of

difference among the three risk groups is highly significant. Shown in Fig. 8b is the survival curves for the 140 testing patients,
where the same cut-off points as above are used to decide the risk groups among patients. The difference among the three groups
is still highly significant. From both plots, we can see that our method performs well compared to the Mayo model, while the
model of Li et al. (1999) does a much worse job on identifying the low-risk and medium-risk groups.

7. Discussion

In this paper, we have proposed two new dimension reduction methods for bivariate regressions. Both methods are designed
to recover intra-slice information when at least one response is continuous. Simulations and real data examples showed that our
proposed methods are superior to those based on SIR because they provide better estimates of the structural dimension of the
regression, improves the estimation accuracy of the central subspace, and allows prior screening of predictors. The application to
the PBC data showed the effectiveness of this model-free variable selection approach in practice. The model we developed based
on BEAR is essentially equivalent to previous models, which may provide some assurance on the empirical performance of the
proposed method.

Li et al. (2003) discussed how to reduce the dimension of Y inmultivariate regression. They first appliedmultivariate (bivariate)
SIR to reduce the predictors X to a lower-dimensional space, say, bTX. After exchanging the roles of Y and bTX, they then reduced
the dimension of Y via multivariate SIR. This two-step process may be iterated. Their method should work much better with BBE
(BEAR) as its core when Y is bivariate.

Independent (noninformative) censoring means that, conditional on covariates at each duration, the censored subjects are
“representative” of those under observation at the same time. In other words, the death rates among censored subjects are
the same as the death rates among uncensored subjects. Hence subjects may not be censored (withdrawn) because they have a
higher or lower risk than the average, given the covariates. Independence condition is the standard assumption in survival analysis
(Li et al., 1999). Both the Cox proportional model and the nonparametric Kaplan–Meier estimator require this assumption to
obtain unbiased estimates of the true survival curve.

When the independence condition is violated, information about the censoringmechanism is needed to adjust the estimation
bias due to censoring. Koziol–Green (1976)model commonly used tomodel the possible information contained in the informative
censoring. Lee andWolfe (1998) proposed a two-stage follow-up procedure to test the independent condition. Other approaches
have been proposed to identify and account for dependent censoring (Zheng and Klein, 1995; Lin et al., 1996; Scharfstein and
Robins, 2002). Research on developing dimension reduction methods with dependent censoring is ongoing.
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Appendix

Proof of Proposition 1. We first introduce the following lemmas.

Lemma 3. S(T,C)|X =S(C)
T|X +SC|X,whereS(C)

T|X denote the intersection of all subspaces spanned by the columns of g,which satisfies

T@X|(gTX,C).

Proof. Let q be an orthonormal basis for S(T,C)|X, then (T,C)@X|qTX. Immediately, C@X|qTX, and (T,C)@X|(qTX,C) 
⇒
T@X|(qTX,C). Hence,SC|X ⊆ S(T,C)|X andS(C)

T|X ⊆ S(T,C)|X.

Also, let g be an orthonormal basis forS(C)
T|X, f be an orthonormal basis forSC|X. By definition, T@X|(gTX,C), and C@X|fTX.

We then have the following two conditions:

(a1) T@X|(gTX, fTX,C), (a2) C@X|(gTX, fTX).

By Proposition 4.6 from Cook (1998), (T,C)@X|(gTX, fTX). Hence,S(T,C)|X ⊆ S(C)
T|X +SC|X. �

Lemma 4. Under the independent assumption T@C|X,S(C)
T|X ⊆ ST|X.

Proof. Let B be an orthonormal basis for ST|X. T@X|BTX and T@C|X ⇔ T@X|BTX and T@C|(BTX,X) ⇔ T@X|(BTX,C) and
T@C|BTX. Therefore,S(C)

T|X ⊆ ST|X. �

Lemma 5. Under the independent assumption T@C|X,ST|X ⊆ S(Y ,�)|X andSC|X ⊆ S(Y ,�)|X.

Proof. The proof follows Proposition 1 from Ebrahimi et al. (2003). Let ST (t) = pr(T� t|X), SC(t) = pr(C� t|X), SY (t) = pr(Y� t|X),
and S�(t) = pr(Y� t,� = 1|X). Following the proof of Ebrahimi et al. (2003), assuming that T@C|X, we have

ST (t) = SY (t) exp
− ∫ t

0 dS�(u)/SY (u).

Therefore,ST|X ⊆ S(Y ,�)|X. In addition, it is straightforward that SY (t) = ST (t)SC(t). Hence,SC|X ⊆ S(Y ,�)|X. �

Since ST|X ⊆ S(T,C)|X and SC|X ⊆ S(T,C)|X , consequently, ST|X + SC|X ⊆ S(T,C)|X . Also, by Lemmas 3 and 4, S(T,C)|X =
S(C)

T|X +SC|X ⊆ ST|X +SC|X . Hence under the independent assumption,S(T,C)|X =ST|X +SC|X.
Also, note that (Y ,�) is a function of (T,C), therefore,S(Y ,�)|X ⊆ S(T,C)|X. By Lemma 5,ST|X ⊆ S(Y ,�)|X andSC|X ⊆ S(Y ,�)|X.

Thus,S(T,C)|X =ST|X +SC|X ⊆ S(Y ,�)|X.
We have proved that

S(Y ,�)|X =S(T,C)|X =ST|X +SC|X. �
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