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Partial dimension reduction is a general method to seek informative convex combinations of predictors of primary interest, which includes
dimension reduction as its special case when the predictors in the remaining part are constants. In this article, we propose a novel method
to conduct partial dimension reduction estimation for predictors of primary interest without assuming that the remaining predictors are
categorical. To this end, we first take the dichotomization step such that any existing approach for partial dimension reduction estimation
can be employed. Then we take the expectation step to integrate over all the dichotomic predictors to identify the partial central subspace.
As an example, we use the partially linear multi-index model to illustrate its applications for semiparametric modeling. Simulations and real
data examples are given to illustrate our methodology.
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1. INTRODUCTION

For a regression problem, partial dimension reduction arises
when one considers the informational role of all predictors but
limits reduction to a subset of them. These predictors are called
the predictors of primary interest, and other predictors are called
the predictors of secondary interest. Partial dimension reduction
is a very general problem; in a certain sense, sufficient dimen-
sion reduction (see, e.g., Li 1991; Cook 1998) may be regarded
as its special case when the rest of the predictors outside this
subset is a constant (vector). This would be of particular interest
in applications in which some predictors play a particular role
and must therefore be shielded from the reduction process. An
example is an alcoholism study (Pfeiffer and Bura 2008), from
the publicly available Third National Health and Nutrition Ex-
amination Survey (NHANES III), where the goal was to classify
men aged 40 years or older into two groups: heavy drinkers and
abstainers, using nine serum biomarkers. Age was also included
since it is known to influence both the values of the biomarkers
and the drinking pattern. Here the dimension reduction should
focus on the set of biomarkers while controlling for the age
effect.

Let Y be a univariate random response, X = (X1, . . . , Xp)T ∈
Rp be a vector of continuous random predictors of primary in-
terest, and W = (W1, . . . ,Wq) ∈ Rq be a vector of predictors
of secondary interest. When it is desirable to conduct dimension
reduction on X while incorporating the prior information from
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W, we should not treat all the components of the predictors
(X,W) indiscriminately, as the usual case in sufficient dimen-
sion reduction (e.g., Li 1991; Cook 1998). Chiaromonte, Cook,
and Li (2002) introduced the partial central subspace S (W )

Y |X that
is defined as the intersection of all subspaces S satisfying

Y�X | (PSX,W), (1.1)

where � indicates independence and P(.) stands for a projec-
tion operator with respect to the standard inner product. And
dim(S (W )

Y |X) = d is called the structural dimension of the partial
central subspace.

Chiaromonte, Cook, and Li (2002) proposed an estima-
tion method for the partial central subspace. Although, their
method—along with other existing methods in this field (Wen
and Cook 2007)—can only be applied to the cases in which the
predictors of secondary interest are categorical, and it is diffi-
cult to extend these methods to incorporate the continuous W
scenario. However, this scenario is of particular interest in semi-
parametric modeling as the approach we develop in this article
could be applied to many semiparametric models. Details on
this perspective will be provided in later sections.

A related approach is the groupwise dimension reduction
(GDR; Li, Li, and Zhu 2010), which could be adopted to handle
the partial dimension reduction problem. As was mentioned in
Li, Li, and Zhu (2010, sect. 4.2), all the predictors of secondary
interest are regarded as an extra group with a q × q identity
matrix as a given projection matrix when the secondary pre-
dictors are q-dimensional. However, GDR can only be used to
infer about the partial conditional mean subspace (Li, Cook, and
Chiaromonte 2003), rather than the partial dimension reduction
subspace. Directions along the conditional variance cannot be
identified by GDR. Further, even for the inference on the par-
tial central mean subspace, GDR is not an efficient approach.
The convergence rate of the GDR estimator is highly related
to the bandwidth and the number of all predictors in nonpara-
metric smoothing, the estimation efficiency is therefore greatly
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deteriorated. Oversmoothing is needed for better convergence
rate, which thus increases the difficulty of bandwidth selection
(Stute and Zhu 2005; Zhu 2005). It is clear that when treating all
those secondary predictors as a group, the estimation efficiency
gets worse particularly when q is large. See theorem 5 of Li, Li,
and Zhu (2010) for further details.

In this article, we propose a method to deal with the estima-
tion of partial central subspace with a general W. Our method
can identify the partial central subspace while enjoying the root-
n convergence rate as long as the corresponding estimation for
sufficient dimension reduction has such a rate. The basic idea is
to transfer the continuous W to a set of dichotomized W in terms
of a dichotomization transformation. This transformation plays
a critical role enabling us to apply existing approaches which
could deal with categorical W successfully. The dichotomiza-
tion transformation can also be replaced by a discretization
transformation with more than two values. Once an existing
approach is used to construct kernel matrix (see Yu, Zhu, and
Wen 2012 for details) with respect to any dichotomized W,
the average over all the transformed W’s in the set can be em-
ployed to define a final estimator of the partial central subspace.
We call the method partial discretization-expectation estima-
tion (PDEE). Note that although the spirit in discretization and
expectation is similar to DEE (Zhu et al. 2010), neither the mo-
tivation nor target of our method is the same as DEE. DEE is
developed to make slicing estimation more efficient (Li 1991;
Zhu and Ng 1995; Li and Zhu 2007). In contrast, PDEE is to
make the estimation of S (W )

Y |X possible when W is not categorical.
This is the first result with continuous W in the literature. As
the discretization is placed on W, rather than on the response Y ,
we cannot simply use the slicing estimation in DEE to partial
dimension reduction. Therefore, the method in DEE cannot be
directly applied to PDEE. Further, we also propose a new ap-
proximation algorithm to implement the expectation step when
W is high-dimensional.

As an important application, PDEE can be applied to some
well-known semiparametric models where the classical methods
have difficulties to handle. An example is the well-known par-
tially linear single-index (PLSI) or multi-index model (Carroll
et al. 1997; Wang et al. 2010):

Y = θTW + g(βTX) + ε, (1.2)

where W ∈ Rq , β ∈ Rp×d (a p × d matrix), g(.) is an unknown
link function for the single index (when d = 1) or multiple
indices (when d > 1), and ε is the error term with E(ε) = 0
and 0 < var(ε) < ∞. For this model, there are three main ap-
proaches in the literature to the best of our knowledge. The first
approach is to estimate θ by using the conditionally centered Y
given X and then to estimate β. A relevant reference is Härdle,
Liang, and Gao (2000). This type of method involves nonpara-
metrically estimating E(W|X) with high-dimensional predictor
X, which suffers from a typical estimation inefficiency. The
second approach is to estimate them simultaneously (see, e.g.,
Carroll et al. 1997). It is not stable in computation as its esti-
mation procedure is complicated (Carroll et al. 1997; Yu and
Ruppert 2002). The third method (Wang et al. 2010) is a com-
putationally more efficient procedure than the second one, as-
suming that W is of a dimension reduction structure of βT1 X
for another projection β1. This method can only be applied to

the single-index model where d = 1 with W being limited to
be a function of βT1 X. Thus, it cannot handle the general W
herein. Xia and Härdle (2006) also used a dimension reduc-
tion approach to simultaneously estimate both β and θ . Their
method, however, also involves high-dimensional nonparamet-
ric smoothing.

In contrast, our method can be efficient without using the
classical nonparametric estimation and without assuming the
special structure of W. Once we obtain an estimator of β via
partial dimension reduction method, we can reduce the high-
dimensional X to a low-dimensional βTX. The least squares
method can then be used to estimate θ in terms of centering
Y conditionally on βTX. The approach is different from all
existing methods in the literature. Our method is, by nature, one
of dimension reduction and an asymptotically normal estimator
of β can be obtained without an iteration algorithm. More details
are given in Section 4. Also, our approach can be applied to
multi-index models with d > 1. The above discussion is also
applicable to a more general model investigated by Li, Zhu, and
Zhu (2011), in which the secondary predictor set contains two
sets of variables. More discussion is provided in Section 6.

The rest of this article is organized as follows. In Section 2,
we present our new estimation method, which we call PDEE, of
S (W )
Y |X with continuous W and its related asymptotic properties.

An approximation algorithm is suggested in Section 2 as well.
A modified Bayesian information criterion (BIC)-type criterion
will be adopted to estimate the dimension of S (W )

Y |X in Section 3.
Section 4 is dedicated to the inferences of the partially linear
multi-index models with the aid of the partial sufficient dimen-
sion reduction. We illustrate the performance of our methods via
simulation studies in Section 5. Real data analyses will also be
discussed. Some further discussion on future research directions
are given in Section 6. For the ease of exposition, we defer all
proofs to the Appendix.

2. PARTIAL DISCRETIZATION-EXPECTATION
ESTIMATION

2.1 Theoretical Development

Let (Xw, Yw) denote a generic pair distributed like
(X, Y )|(W = w) and SYw |Xw

be the central subspace in sub-
population W = w. When W is discrete and takes value at
{1, 2, . . . , K}, the following equation connects the marginal
central subspace SYw |Xw

with the partial central subspace S (W )
Y |X :

S (W )
Y |X =

K∑
1

SYw |Xw
. (2.1)

Chiaromonte, Cook, and Li (2002) and Wen and Cook (2007)
proposed estimation methods for the partial central subspace
based on (2.1).

Now we introduce a PDEE procedure for continuous
W. At the first step, we discretize the continuous W =
(W1, . . . ,Wq)T into a set of binary variables. To be pre-
cise, for each t = (t1, . . . , tq)T , we define the new W(t) =
(I{W1≤t1}, . . . , I{Wq≤tq })

T , where the indicator function I{Wi≤ti }
takes the value 1 if Wi ≤ ti , and 0 otherwise, for i = 1, . . . , q.
In doing so, the multidimension W is divided into at most
2q hypercubes because every response coordinate in W(t) is
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binary. This procedure is easy to implement, and we can also use
any general discretization procedure. Let S (W (t))

Y |X be the partial
central subspace of Y|(X,W(t)), and M(t) be a p × p positive
semidefinite matrix such that Span{M(t)} = S (W (t))

Y |X . We have
the following results.

Proposition 1. S (W (t))
Y |X ⊆ S (W )

Y |X for any t ∈ Rq and⋃
t S (W (t))

Y |X = S (W )
Y |X .

This motivates us to consider a direct product of the subspaces
S (W (t))
Y |X via a sum of the kernel matrices for all S (W (t))

Y |X so that
we can preserve the integrity of S (W )

Y |X . Specifically, we need to
sum up the column spaces of M(t) over all possible values of t.
Because M(t) is assumed to be positive semidefinite, it suffices
to take the expectation over a random vector T with support Rq

T
to obtain the target matrix M = E{M(T)}, where Rq

T contains
all points in the support of W (Rq

W). One easy way is to take T
as an independent copy of W. Theorem 1 shows that the above
procedure can span S (W )

Y |X in terms of the matrix M.

Theorem 1. If the support of W is a subset of the support of
T and Span{M(t)} = S (W (t))

Y |X for any given t, then Span{M} =
S (W )
Y |X , where M = E{M(T)}.
In general, we can estimate S (W )

Y |X using the above two-step
procedure by estimating M = E{M(T)}. Let t1, . . . , tln be ln
independent copies of T, then

lim
ln→∞

1

ln

ln∑
i=1

M(ti) = E{M(T)}.

For any fixed ti ∈ Rq

T, we can obtainMn(ti), a
√
n consistent es-

timator ofM(ti), via available partial dimension reduction meth-
ods such as partial sliced inverse regression estimation (partial
SIR; Chiaromonte, Cook, and Li 2002), partial sliced average
variance estimation (partial SAVE; Shao, Cook, and Weisberg
2009), or partial directional regression (partial DR; Li and Wang
2007).

Let Mln,n = 1
ln

∑ln
i=1Mn(ti), assuming the following condi-

tions:

(a) Mn(t) = M(t) + En{φ(X, Y,W, t)} + Rn(t), where En
denotes sample averages, E{φ(X, Y,W, t)} = 0 and
φ(X, Y,W, t) has a finite second-order moment.

(b) supt∈Rq

T
‖Rn(t)‖F = op(n− 1

2 ), where ‖.‖F denotes the
Frobenius norm of a matrix.

The following proposition suggests that under some regularity
conditions, it suffices to takeO(n) random sample points in Rq

T
to obtain a

√
n consistent estimator of M. Hence we only need

to estimate O(n) partial central subspaces S (W (t))
Y |X .

Proposition 2. Assuming conditions (a) and (b), and also
assuming that the entries of Mn(t) have finite second moments,
for each t ∈ Rq

T, we have that if ln = O(n),

Mln,n = M +Op

(
n− 1

2
)
.

We now investigate the asymptotic properties of Mln,n. Let
ln = n and ti = Wi , which is a natural choice for ease of prac-
tical implementation, for i = 1, . . . , n.

Theorem 2. Let W̃ be an independent copy of W. Assume
that all conditions in Proposition 2 hold, and E{M2(T)} < ∞

componentwise. Then,

√
n( vec(Mn,n) − vec(M))

D−→ Normal(0, var{ vec(C)}),
where vec(.) is the operator stacking the columns of
a matrix to vectorize it and C = M(W̃) − E(M(W̃)) +
E{φ(X, Y,W, W̃)|(X, Y,W)} + E{φ(X, Y,W, W̃)|W̃}.

As Zhu and Ng (1995) and Zhu and Fang (1996) showed,
under certain regularity conditions, the above root-n consistency
leads to the root-n consistency of the eigenvectors of Mn,n. A
subset of those eigenvectors can be used to estimate the base
vectors of S (W )

Y |X .

2.2 A Discussion on Implementation

We now discuss the implementation of the estimation proce-
dure. From the above theorem, we can see that the law of large
numbers ensures thatMn = 1

n

∑n
i=1Mn(Wi) → M as n → ∞.

Thus, theoretically, when we use n points Wi’s, the estimator
is consistent. More generally, at the sample level, we may only
need to choose ln points ti’s of which ln is of the order O(n) to
construct an estimate of M. However, when q is large, for many
Wi , the set of contaminated points {(Xi , Yi)} associated with
the super-cube {Wj : I (Wj ≤ Wi)} are very few and then the
corresponding partial central subspace Span{M(Wi)} associated
withMn(Wi) cannot be estimated well. Hence, 1

n

∑n
i=1Mn(Wi)

cannot provide a good estimator of the partial central subspace
Span{M}. Another immediate way is to use all grid points in
the set A = {ti1,...,iq = (W1i1 , . . . ,Wqiq )

T : 1 ≤ i1, . . . , iq ≤ n}
to exhaustively compute the corresponding Mn(ti1,...,iq ), where
Wi = (W1i , . . . ,Wqi)T . Then we can have an estimator of M

1

(n− 1)q
∑

1≤i1,...,iq≤n
Mn(ti1,...,iq ) := Mn.

However, the above strategy is clearly impractical when q is
large as it needs to compute nq matrices in total and thus the
computational burden is very heavy. More importantly, such an
exhaustive average may not provide a good estimator or even de-
teriorate the estimation accuracy. This is because, as commented
above, there will be manyMn(ti1,...,iq ) based only on a few points
and thus do not estimate the corresponding partial central sub-
spaces efficiently. Actually, in a small-scale simulation, we did
observe this phenomenon. Furthermore, the computational bur-
den makes the algorithm infeasible and the resulting estimator
does not perform well. As such, we do not use this algorithm. In
the simulation section, we adopt the following approximation
algorithm. Let W∞

ik be the column vector of which only the kth
component is the same as that of Wi and the other components
are the maximum values of the corresponding components of
all Wi’s. We then use

1

qn

q∑
k=1

n∑
i=1

Mn

(
W∞

ik

)
:= M̃n (2.2)

as an estimator. In effect, this is an estimator of

M̃ =
∫
M(T)dF1(t1) . . . dFq(tq), (2.3)

where Fk(·)’s are the marginal distribution of tk . M̃ may not be
equal toM = ∫

M(T)dF (T). Thus, the partial central subspace
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that is based on M̃ might not be equal to that of M. Proposition
1 shows that the space identified by M̃ is contained in Span(M).
In theory, it is hard to know in which cases the space of M̃
is identical to that of M. However, from the simulation results
reported in Section 5, we can see that this approximation al-
gorithm never fails to identify Span(M). Our experiences also
show that it always yields satisfactory performances. Therefore,
we leave the theoretical development to further studies.

3. DIMENSION DETERMINATION OF THE PARTIAL
CENTRAL SUBSPACE

There are several approaches for determining the structural
dimension d. Sequential test method and weighted sequential
test method (Li 1991; Bura and Cook 2001) are frequently used.
However, they are not consistent and generally require a rel-
atively large sample size for good performances. Zhu, Miao,
and Peng (2006) first proposed the BIC-type criterion to obtain
consistent estimation of the structural dimension. Here, we use
a modified BIC-type criterion:

d̂ = arg max
k∈{1,2,...,p}

(
n
∑k

m=1(log(λ̂m + 1) − λ̂m)

2
∑p

m=1(log(λ̂m + 1) − λ̂m)

− 2Cn × k(k + 1)/2

p

)
, (3.1)

where λ̂1, . . . , λ̂p denote the eigenvalues of the matrix of Mn,n;
Cn is a penalty constant; and k(k + 1)/2 equals to the number
of free parameters. The following theorem provides the consis-
tency of d̂ .

Theorem 3. Assuming that Cn
n

→ 0 and Cn → ∞ as n →
∞, also assuming the conditions of Theorem 2, the estimated
structural dimension d̂ obtained via (3.1) converges to the true
structural dimension d with probability tending to one.

The proof is similar to that of theorem 4 of Zhu et al. (2010)
and is omitted. In Zhu et al. (2010), Cn = √

n was recom-
mended. In the original BIC proposed by Zhu, Miao, and Peng
(2006), some values with leading order Cn = n1/3 were con-
sidered. In our simulations, we also tried similar values and
found that Cn = n1/3 was a good choice, but when p is large,
BIC tended to overestimate the structural dimension. In con-
trast, when Cn contains a factor of p, BIC works better. Thus,
we recommend a value of Cn = n1/3p2/3.

4. PARTIALLY LINEAR MULTI-INDEX MODEL

For model (1.2), we recommend a new estimation approach in
which we first estimate β to reduce the dimension of X without
dealing with the unknown link function g(·). Its estimator is of
the asymptotic normality in terms of Theorem 2. Specifically,
our estimation method relies on the following equation:

Span{β} = S (W )
Y |X . (4.1)

The estimation procedure is as follows:

Step 1. Use partial dimension reduction to construct an esti-
mator β̂ of β.

Step 2. Center Y as Y − Ê(Y |β̂TX) where Ê stands for a

nonparametric estimator ofE(Y |β̂TX). For example,

we can use kernel estimation procedure to produce

an estimator of E(Y |β̂TX).

Step 3. Define a least squares estimator θ̂ by Y − Ê(Y |β̂TX)

versus W − Ê(W|β̂TX).

Following the arguments parallel to that in theorem 1 of Wang
et al. (2010), the asymptotic normality of θ̂ can be achieved
under some regularity conditions. For this, we can see that

θ̂ = (ĉov(W − Ê(W|β̂TX)))−1Ê((W − Ê(W|β̂TX))

× (Y − Ê(Y |β̂TX))), (4.2)

where ĉov(W − Ê(W|β̂TX)) is the sample version of cov(W −
E(W|βTX)) and Ê((W − Ê(W|β̂TX))(Y − Ê(Y |β̂TX))) is the
sample version of E((W − E(W|βTX))(Y − E(Y |βTX))). Un-
der certain regularity conditions (see, e.g., Wang et al. 2010), ĉov

(W − Ê(W|β̂TX)) converges in probability to cov(W −
E(W|βTX)) and Ê((W − Ê(W|β̂TX))(Y − Ê(Y |β̂TX))) ad-
mits an asymptotic linear presentation as Ê((W −
E(W|βTX))(Y − E(Y |βTX))) + op(1/

√
n), which is a sum of

independent identically distributed variables plus a negligible
remainder. This leads to the asymptotic normality by the cen-
tral limit theorem. We will not present the details of conditions
and proof while only present a general result parallel to that in
theorem 1 of Wang et al. (2010), although our model is more
general than theirs without imposing a special structure on the
predictors related to the parameter θ .

Proposition 3. Assume that an estimator β̂ of β is
√
n-

consistent. Under the regularity conditions specified in Wang
et al. (2010), θ̂ is also asymptotically normal with mean zero
and variance matrix � = (cov(W − E(W|βTX)))−1cov((W −
E(W|βTX))(Y − E(Y |βTX)))(cov(W − E(W|βTX)))−1 pro-
vided that it is a positive definite matrix.

Another issue is about estimation efficiency for β. Since there
are no results available in the literature for multiple indices,
we limit the comparison of our method with existing ones to
single-index model (d = 1). Comparing the limiting variance
matrix with those in the literature (see, e.g., Carroll et al. 1997;
Wang et al. 2010; its correction in Li, Zhu, and Zhu 2011), our
estimator β̂ may not be as efficient as existing ones which are
asymptotically efficient in a semiparametric sense. However,
this can be easily fixed because the following algorithm with
one more iteration can be applied to achieve the asymptotic
efficiency. Regard β̂ as the initial estimator of β to obtain θ̂ .
We then use Ŷj = Yj − θ̂

T
Wj and Xj to update the estimator

of the index β. This is because we actually rewrite the model
as Y − θTW = g(βTX) + ε and regard the model as the single-
index model. The techniques in Wang et al. (2010) or Cui,
Härdle, and Zhu (2011) may be useful for proving the asymptotic
efficiency. Research along this line is ongoing. On the other
hand, our method also has its limitation on handling very high-
dimensional W because the PDEE algorithm with the average
over all W neglects the special linear structure about W. Thus,
it deserves a further investigation on more efficient algorithms.
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5. NUMERICAL STUDIES

In this section, we first conduct extensive simulation studies
to evaluate the performance of the three partial discretization-
expectation estimators: PDEE-SIR, PDEE-SAVE, and PDEE-
DR. To assess the accuracy of our proposed method, we use
the squared trace correlation coefficient (Li and Dong 2009).
For a pair of generic random vectors U and V , the squared
trace correlation coefficient is defined as r2 = tr(A)/dim(A),
whereA = �

−1/2
V �VU�

−1
U �UV�

−1/2
V ,�V ,�U are the variance

matrices of U and V , respectively, and �VU is the covariance
matrix between U and V . For a sample estimator β̂ of β, we can
then compute a sample estimate of r2(U,V ) withU = βT X and
V = β̂

T
X. A squared trace correlation coefficient closer to unity

indicates higher estimation efficiency. See Li and Dong (2009)
and references therein for further details. We then apply PDEE-
based dimension reduction methods to analyze the NHAMES
III data (Pfeiffer and Bura 2008) and the Boston Housing data
(Wang et al. 2010).

5.1 Simulation Studies

In this section, we use simulations to evaluate the perfor-
mance of the three partial discretization-expectation estimators:
PDEE-SIR, PDEE-SAVE, and PDEE-DR. Our comparison is
twofold: we compare the performances among the three partial
discretization-expectation estimators themselves and compare
them with other well-developed methods for PLSI model.

5.1.1 Study I: Comparisons Among the Three PDEEs. Con-
sider the following six models:

(I)Y = (5 + X1 + X2 − X3 − X4 +W + 0.5ε)2,

(II)Y = 3WX1/(0.5 + (1.5 + X2)2) + 0.2ε,

(III)Y = θTW + (X1 + X2)4 + 0.2ε,

(IV)Y = 0.8W1 − 0.3W2 + exp
(
βT1 X

)
sgn

(
βT2 X

)+ 0.2ε,

(V)Y = 0.3W1+3 sin
(
βT1 X/4

)+0.5(1+W2)
(
βT2 X

)2 + 0.2ε,

(VI)Y = 0.3W1+3 sin
(
1+(W2 + βT2 X

)
/4
)

+ 0.4
(
2 + βT1 X + 0.5W3

)2

+ 0.1(W4 + · · · +Wq) + 0.5ε.

For the aforementioned six models, the error term ε is standard
normalN (0, 1) and is independent of X and W. In Models I–II, X
and W are generated independently from N (0, Ip) and N (0, 1).
Model II has two directions with β1 = (1, 0, . . . , 0) and β2 =
(0, 1, 0, . . . , 0). Different versions of Models I–II had been con-
sidered by Yin (2005) with discrete W. In Model III, X follows
N (0, Ip), θ = (0.8,−0.6, 0.5)T , and W = (W1,W2,W3)T is a
three-dimensional random vector with Wi being independently
generated from U [0, 1]. For Models IV, V, and VI, β1 and β2
are p-dimensional vectors with their first six components being
(1, 1, 1, 0, 0, 0) and (0, 0, 0, 0,−1, 1) and other elements being
0 if p > 6. In Model IV, V = (W,X) follows a multivariate nor-
mal distribution with mean 0, and the correlation between Vi

and Vj is 0.5|i−j |, 1 ≤ i, j ≤ p + 2. In Model V, X is generated
independently from N (0, Ip), while W is generated indepen-
dently from N (0, I2). In Model VI, q = 15, X ∼ N (0, Ip), and
W ∼ N (0, Iq).

Models I and III are of one-dimensional structure, while Mod-
els II, IV, V, and VI are two-dimensional structure. Model III is
standard PLSI models. Models IV–V are different variations of
partially linear multi-index models with relatively complicated
structures. Model VI is a partially linear multi-index model with
high-dimensional W.

We compare the performances among the three PDEE-based
sufficient dimension reduction methods with different choices
of n and p. The number of slices is taken as 5. Table 1
gives the median values and the interquartile ranges (IQRs) of
the estimated squared trace correlation coefficients across 200

Table 1. Medians (IQR) of r̂2 for Models I–VI

PDEE-SIR PDEE-SAVE PDEE-DR

Model n p = 6 p = 12 p = 6 p = 12 p = 6 p = 12

100 0.9759(0.0228) 0.9423(0.0288) 0.1291(0.6197) 0.0077(0.0207) 0.9731(0.0270) 0.9354(0.0416)
I 200 0.9870(0.0109) 0.9733(0.0179) 0.6461(0.8269) 0.0069(0.0211) 0.9842(0.0125) 0.9698(0.0189)

400 0.9935(0.0059) 0.9844(0.0103) 0.9478(0.0786) 0.0205(0.0987) 0.9926(0.0062) 0.9836(0.0101)

100 0.9193(0.0714) 0.8265(0.0758) 0.4934(0.1384) 0.0527(0.0782) 0.8789(0.0943) 0.7789(0.1205)
II 200 0.9590(0.0341) 0.9309(0.0505) 0.5213(0.1675) 0.1633(0.3049) 0.9410(0.0463) 0.8732(0.0670)

400 0.9771(0.0181) 0.9455(0.0270) 0.6303(0.2872) 0.4312(0.1212) 0.9719(0.0242) 0.9274(0.0367)

100 0.0773(0.2328) 0.0366(0.1327) 0.8863(0.1340) 0.7826(0.1743) 0.8864(0.0905) 0.7886(0.1717)
III 200 0.0914(0.2499) 0.0321(0.0964) 0.9327(0.0704) 0.8621(0.1025) 0.9404(0.0663) 0.8838(0.0654)

400 0.0680(0.3119) 0.0377(0.1077) 0.9594(0.0443) 0.9169(0.0486) 0.9691(0.0292) 0.9388(0.0386)

100 0.9306(0.0565) 0.8392(0.0814) 0.4982(0.2261) 0.0507(0.0672) 0.9095(0.0664) 0.7891(0.0985)
IV 200 0.9652(0.0294) 0.9061(0.0461) 0.6469(0.3655) 0.1312(0.3039) 0.9550(0.0434) 0.8805(0.0691)

400 0.9812(0.0154) 0.9489(0.0241) 0.9208(0.1375) 0.4467(0.0901) 0.9768(0.0220) 0.9322(0.0304)

100 0.5375(0.1131) 0.4737(0.0598) 0.5327(0.1612) 0.4082(0.0993) 0.8551(0.1498) 0.6816(0.2616)
V 200 0.5474(0.1396) 0.4943(0.0724) 0.5352(0.1703) 0.4496(0.0837) 0.9367(0.0490) 0.8191(0.1142)

400 0.5523(0.1573) 0.5029(0.0474) 0.5529(0.1574) 0.4815(0.0564) 0.9706(0.0207) 0.9160(0.0453)

100 0.7564(0.2157) 0.6060(0.1546) 0.5059(0.1108) 0.0829(0.1111) 0.7059(0.2609) 0.5352(0.1246)
VI 200 0.8629(0.1486) 0.7164(0.1593) 0.5126(0.1048) 0.1621(0.2709) 0.8149(0.2319) 0.6286(0.2008)

400 0.9254(0.0737) 0.8339(0.1263) 0.5346(0.1126) 0.4744(0.0733) 0.8993(0.1102) 0.7639(0.1686)
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simulated samples. From Table 1, we can see that PDEE-DR is
the most robust and accurate method among the three PDEE-
based methods across all six models. When n = 400 and p = 6,
all the median values of r̂2’s from PDEE-DR are above 0.96 for
Models I–V and 0.90 for Model VI, respectively. This agrees
with the results from the classical dimension reduction meth-
ods. Li and Wang (2007) argued that when its conditions are
satisfied, DR is the most accurate method among the family of
all sufficient dimension reduction methods that are based on the
first two inverse moments, including SIR and SAVE. We also
observe that the performances of all the three methods improve
reasonably with increasing sample sizes, except PDEE-SIR for
Model III with n = 400, although the gains in estimation accu-
racy are not substantial in some cases. Also, the performances of
PDEE-SIR and PDEE-DR are pretty robust as p increases, while
there are some substantial differences for the performances of
PDEE-SAVE with the increase of p.

PDEE-SAVE fails for Models I–IV and is outperformed by
PDEE-DR for most models, except for Model III where the ex-
act symmetric structures are designed for the best performance
of PDEE-SAVE. Even for those models, PDEE-SAVE does not
show an advantage over PDEE-DR. In general, we do not rec-
ommend the use of PDEE-SAVE for partial sufficient dimension
reduction. This is because, as Li and Zhu (2007) pointed out,
SAVE is very sensitive to the choice of the number of slices.
Under a complicated structure with either a categorical or con-
tinuous W, PDEE-SAVE is generally inferior to PDEE-DR.

Because of the symmetry of the mean functions in Model
III, we expect PDEE-SIR to fail, while both PDEE-SAVE and
PDEE-DR perform reasonably well with three-dimensional W.
Models IV, V, and VI are of complex structure with multidimen-
sional W and strong nonlinear trend, particularly for Model VI,
PDEE-DR still performs reasonably well. In general, we recom-
mend PDEE-DR and PDEE-SIR for partial sufficient dimension
reduction. Compared with PDEE-SIR, PDEE-DR requires an
extra constant variance condition, thus we might need to use
PDEE-SIR as a complementary method to PDEE-DR.

5.1.2 Study II: BIC in Estimating the Structural Dimension.
Table 2 reports the percentages of correctly identifying structural
dimension for Models II–IV using the modified BIC-type crite-
rion proposed in Section 3. The medians of the estimated struc-
tural dimensions over 200 replications are reported in Table 2
as well. We can see that BIC correctly selects the structural
dimension most of the time if we choose a suitable partial
discretization-expectation estimator adapting to the model. On
the other hand, from the median values of the estimated struc-
tural dimensions, we also find that, when BIC cannot correctly
select the structural dimension, it tends to overselect the di-
mensions rather than to underselect them. Thus, we may not
lose some useful combinations of the predictors even when we
used an estimator such as PDEE-SIR for Model III (the median
value is d̂ = 2) that cannot correctly determine the dimension
(d = 1) with large probability. Further, we observed that in
some cases, when p is larger, the proportions of correctly es-
timating the dimension are also higher. Also this phenomenon
depends on the models, estimation methods, and sample sizes.
We have not had a clear explanation and thus leave it to further
investigation.

Table 2. Proportions that BIC correctly estimates the structural
dimension

PDEE-SIR PDEE-SAVE PDEE-DR

Model n p = 6 p = 12 p = 6 p = 12 p = 6 p = 12

100 0.65 0.925 0.695 0.615 0.71 0.975
(2 2) (2 2) (2 2)

II 200 0.925 0.985 0.935 0.685 1 0.995
(2 2) (2 2) (2 2)

400 0.995 0.995 0.625 0.06 1 0.8
(2 2) (2 3) (2 2)

100 0.3 0.055 0.96 0.59 0.87 0.04
(2 2) (1 1) (1 2)

III 200 0.045 0.005 0.99 0.725 0.48 0
(2 2) (1 1) (2 2)

400 0.01 0 1 0.875 0.595 0
(2 3) (1 1) (1 3)

100 0.91 0.995 0.71 0.675 0.915 0.995
(2 2) (2 2) (2 2)

IV 200 1 1 0.765 0.73 1 0.98
(2 2) (2 2) (2 2)

400 1 1 0.49 0.03 1 0.605
(2 2) (3 3) (2 2)

5.1.3 Study III: Comparison With PLSI. We now compare
our proposed estimators with the “PLSI” proposed by Xia and
Härdle (2006) for the following PLSI models with homoscedas-
tic and heteroscedastic error:

(VII)Y = θW + 3 sin
(
βT1 X/4

)+ 0.2
[
1 + (

βT2 X
)3 ]
ε, (5.1)

(VIII)Y = θW + 3 sin
(
βT1 X/4

)+ 0.2ε. (5.2)

Here X, W, and ε are independent and follow N (0, Ip),
N (0, 1), and N (0, 1), respectively; p = 6; β1 = (1/

√
3,

1/
√

3, 1/
√

3, 0, 0, 0)T ; β2 = (0, 0, 0, 0, 1/
√

10, 3/
√

10)T ; and
θ = 0.3. We adopt these two models because PLSI is designed
to fit homoscedastic models such as (VIII), though it is still
applicable to heteroscedastic models such as (VII). Also note
that for Model VII, the PLSI method can only identify the di-
rection β1 in the mean function. Thus, in the simulation study
for this model, we will only compare between the performances
of PLSI for estimating θ and β1 and the performances of PDEE
for identifying θ and the central subspace that contains β1. The
sample size is n = 200. In addition to the median and IQR of
the squared trance correlation coefficient r2, we also report in
Table 3 the median and IQR (in parentheses) of the estimators
of θ , and these of the angles (∠, in radians) between β1 and its
estimators. The average CPU times consumed are also reported.

We can see that from Table 3, for estimating θ in both of the
models, PDEE-SIR and PDEE-DR have similar performances,
the biases are slightly larger, and IQR slightly smaller as com-
pared with PLSI. Thus, we may consider that they perform
comparably. For estimating β1 in Model VII, both PDEE-SIR
and PDEE-DR work better than PLSI, as their resulting an-
gles are smaller and their r2’s are larger. PDEE-SAVE performs
the worst among all competitors. However, for β1 in Model
VIII, PLSI is a good choice with smaller angle and larger
r2. These observations indicate that as PLSI is specifically de-
signed for dealing with the estimation for mean function, it has
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Table 3. Median (IQR) of the estimated parameters for Models VII and VIII

Method θ ∠ r̂2 Time (second)

Model VII
PDEE-SIR 0.2910(0.0630) 0.1670(0.0683) 0.9724(0.0231) 0.1525
PDEE-SAVE 0.3013(0.0872) 1.2152(0.9086) 0.1213(0.6212) 0.1823
PDEE-DR 0.2924(0.0612) 0.1637(0.0817) 0.9734(0.0271) 0.1755
PLSI 0.2978(0.0639) 0.3080(0.4729) 0.9081(0.3445) 2147.7

Model VIII
PDEE-SIR 0.2957(0.0196) 0.1059(0.0531) 0.9888(0.0120) 0.3946
PDEE-SAVE 0.2961(0.0330) 0.4702(0.9960) 0.7949(0.7945 ) 0.2086
PDEE-DR 0.2943(0.0200) 0.1108(0.0512) 0.9878(0.0115) 0.2009
PLSI 0.2983(0.0259) 0.0546(0.0461) 0.9970(0.0058) 11199

advantage for this purpose; otherwise, PDEE works better. On
the other hand, we usually do not have prior information on
model homoscedasticity, and further, it is obvious that PLSI is
much more time consuming than the PDEE methods: the CPU
time consumed of PLSI is more than 10,000 times of those of
the PDEE methods. Thus, for robustness consideration, PDEE
may be recommendable, as their performance is also compet-
itive in the scenario that is not in favor of PDEE. Meanwhile,
PDEE also performs well in estimating β2 whereas PLSI does
not. Although for the reasons mentioned above, we do not report
the estimation for β2 for the fairness of comparison.

5.2 Real Data Analyses

In this section, we consider two datasets: NHAMES III data
and the Boston housing data. PDEE-SIR and the group di-
mension reduction estimator are applied to estimate the partial
(mean) dimension reduction subspaces for further analyses.

5.2.1 NHAMES III Data. The alcoholism study (Pfeiffer
and Bura 2008) we discussed in Section 1 fits exactly in the con-
text of the partial dimension reduction. The aim of this study
was to classify men aged 40 years or older into two groups:
heavy drinkers and abstainers, combining nine serum biomark-
ers to build a screening device, while controlling age. The pre-
dictors are hematocrit, sodium, chloride, phosphorus, uricacid,
blood glucose, blood urea nitrogen, alkaline phosphatase, al-
bumin, and age; age is included as a predictor since it affects
both the drinking pattern and the values of the nine biomark-
ers. This study suggests strong age effects for drinking pattern.
Specifically, for men aged 72 years or older, only 5% are heavy
drinkers, comparing to 63% for the younger group consisting of
men aged between 40 and 71. Hence, when building the screen-
ing device based on serum biomarkers, it is more sensible not
to mix age with the biomarkers. We take W = age and X as the
nine biomarkers. The goal of this study is to search for βTX
such that Y�X|(βTX,W ), which is exactly a problem of the
inference of the partial central subspace S (W )

Y |X .
We apply PDEE-SIR to infer about the partial central sub-

space S (W )
Y |X . The BIC criterion we discussed in Section 3

yields d̂ = 1, and the resulting estimated direction is β̂
T =

(−0.706, 0.0186, −0.0065, −0.1486, −0.066, 0.0000032,
0.0274, 0.0015, −0.151). Also, the direction seems not to be
included in variance and thus, as was commented in Section 1,
the GDR (Li, Li, and Zhu 2010) can thus be modified to infer
about the partial central mean subspace, regarding W itself as a

projection in the real line and then θ = 1 for this projection. In
other words, we consider a subspace with structural dimension 1
about W. Since the constant variance conditions required by the
partial SAVE (Shao, Cook, and Weisberg 2009) and the partial
DR (Li and Wang 2007) are not satisfied for this data, we did
not apply PDEE via those two approaches.

Figure 1(a) shows the receiver operating characteristic (ROC)
curves for our screening score of the composite measure of
the nine biomarkers and the one by the GDR. They both per-
form similarly and the area under curve (AUC) values are also
very close (0.773 and 0.775, respectively). Figure 1(b) and 1(c)
shows the ROC curves for both methods while conditioning
on age ≤ 42 and age ≥ 72, respectively. From the three ROCs,
we cannot say that any method dominates the other. The com-
posite biomarkers from these two methods may be considered
to perform similarly here. However, our method is computa-
tionally more efficient since our approach avoids nonparmetric
smoothing.

5.2.2 Boston Housing Data. In this subsection, we revisit
a frequently studied dataset and obtain some new observations.
The Boston Housing dataset was originally analyzed by Har-
rison and Rubinfeld (1978). It contains information collected
by the U.S. Census Service concerning housing in the area of
Boston. The data consist of 14 variables or features and 506
data points. Variables are per capita crime rate by town (crime
rate); proportion of residential land zoned for lots over 25,000
sq. ft. (zn); proportion of nonretail business acres per town (in-
dus); Charles River dummy variable (1 if tract bounds river;
0 otherwise) (chas); nitric oxide concentration (parts per 10
million) (nox); average number of rooms per dwelling (rm);
proportion of owner-occupied units built prior to 1940 (age);
weighted distances to five Boston employment centers (dis);
index of accessibility to radial highways (rad); full value prop-
erty tax per $10,000 (tax); pupil-teacher ratio by town (ptratio);
(B − 0.63)2, where B is the proportion of blacks by town; per-
centage of lower status of the population (lstat); and median
value of the owner-occupied homes in $1000’s (medv). The
logarithm of medv is taken as the dependent predictor, others
are taken as the independent predictors.

This dataset has been analyzed several times in the litera-
ture for the dimension reduction purposes by treating all the
predictors equally in estimating the central subspace such as
Chen and Li (1998), Zhou and He (2008), and Chen, Zhou, and
Cook (2010). As suggested by Wang et al. (2010), the predictor
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Figure 1. NHANES data: receiver operating characteristic curves for the derived composite biomarkers from PDEE and Group DR.

chas does not have impact for the housing price and is excluded
from our analysis. When we use SIR to identify the central sub-
space, both BIC and sequential test methods yield d̂ = 3 as its
dimension. The R2 value, which will be defined below, is 0.88.
However, as Sentürk and Müller (2005) pointed out, crime rate
plays an important role on the housing price, and should be
treated discriminately, which also agrees with common sense.
Thus, we do not put it in the combinations of the predictors in-
stead treating it as a special predictor in modeling. When using
the partial dimension reduction and GDR method, crime rate is
regarded as W. X is the vector of the other 11 predictors. Hence
we identify the space spanned by the linear combinations of X,
βTX, such that Y�X|(βTX,W ).

We apply PDEE-SIR to infer about the partial central
subspace S (W )

Y |X . The number of slices is taken to be five as in
the simulation studies. The dimension d̂ = 2 of the partial cen-
tral subspace is determined by the BIC criterion. GDR is also
applied, and the BIC criterion also infers that the dimension of
the relevant subspace is d̂ = 2. The estimated directions from
both methods are reported in Table 4. To check the fitting ef-
fects, we fit regression models nonparametrically with predictor
(β̂
T
X,W ), where β̂ is the estimator for β by PDEE-SIR or GDR.

We adopt r2 to measure the fitting effects, where r2 = (SST −
SSE)/SST,SST = ∑

(yi − ȳ)2,SSE = ∑
(yi − ŷi)2 and ŷi are

the fitted response values.
From Table 4, we see that the reported values of r2 are 0.9622

and 0.9139, respectively, for PDEE-SIR and GDR, both are
larger than the 0.88 from SIR while treating all predictors in-
discriminately. This finding suggests that it is desirable to treat
crime rate specially. Moreover, PDEE-SIR helps make a better
fit than GDR.

6. FURTHER DISCUSSION

Other than the application to model (1.2), our method may
also be applied to the following model considered by Li, Zhu,
and Zhu (2011):

Y = γZ + ψ(βTX,W ) + ε, (6.1)

where ψ(.) denotes an unknown smooth function, γ is an un-
known parameter, and β is an unknown p × d orthonormal
matrix with d ≤ p. The main interest therein is to estimate γ
with the aid of partial dimension reduction estimation of β in
a consistent and link-free fashion, since Span(β) = S (W,Z)

Y |X . In
their article, they only deal with the case where both W and Z are
categorical since there is no existing partial dimension reduction
method available to handle continuous Z or W. In contrast, our
method can easily deal with the problems with continuous Z and
(or) W. PDEE can again estimate β consistently with the root-n
convergence rate and then the asymptotic normality of a least
squares estimator of γ could be derived in the way described in
Section 4. Future research along this direction is under way.

Another issue is that of handling the dimension q of W. It
is clear that our method without iteration is limited to handling
small or moderate dimension q. This is because it involves a
high-dimensional integral or average that may affect estimation
accuracy. Although our method has already partly avoided the
curse of dimensionality without nonparametric smoothing, the
high-dimensional integral is still a big issue in practice. This is
the cost we have to pay for using this new methodology. This
is also the reason why we suggest a marginal average in the
estimation procedure. How to handle large q deserves further
study.

Table 4. Estimated directions by PDEE-SIR and GDR, and R2 where W = crime rate

Method R2 lstat age nox rad tax ptratio b dis zn rm indus

PDEE-SIR 0.9622 −0.0058 −0.0063 −0.5907 0.0494 −0.0018 −0.0661 0.0005 −0.1778 0.0100 0.7825 −0.0078
−0.0343 −0.0028 −0.9564 0.0228 −0.0007 −0.0278 0.0005 −0.0055 −0.0032 −0.2873 0.0134

Group DR 0.9139 0.0535 0.0010 −0.3968 −0.0142 0.0005 0.0402 −0.5307 0.0384 −0.0007 −0.0056 0.7900
0.0629 −0.0068 0.6188 0.04 −0.0021 −0.0521 −0.7297 −0.0955 −0.0015 −0.0137 −0.2589
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APPENDIX

Proof of Proposition 1

Let α be an orthogonal basis of S (W )
Y |X . Hence, we have

Y�X|(αT X,W). From the definition of conditional distribution of Y
and X when both αT X and W are given, we can see easily that it is
equivalent to that for all t, the conditional distribution of them when
both αT X andW (t) are given. That is, Y�X|(αT X,W) is equivalent to
that for all t, Y�X|(αT X,W (t)). This is because, by the conditional in-
dependence, for any t, the conditional distributions have the following
equalities

P (Y ≤ y,X ≤ x|αT X ≤ αT x,W ≤ t)

= P (Y ≤ y,X ≤ x,αT X ≤ αT x,W ≤ t)
P (αT X ≤ αT x,W ≤ t)

= P (Y ≤ y,αT X ≤ αT x,W ≤ t)
P (αT X ≤ αT x,W ≤ t)

× P (Y ≤ y,αT X ≤ αT x,W ≤ t)

P (αT X ≤ αT x,W ≤ t)

= P (Y ≤ y,αT X ≤ αT x, I (W ≤ t) = 1)

P (αT X ≤ αT x, I (W ≤ t) = 1)

× P (X ≤ x,αT X ≤ αT x, I (W ≤ t) = 1)

P (αT X ≤ αT x, I (W ≤ t) = 1)

= P (Y ≤ y,X ≤ x,αT X ≤ αT x, I (W ≤ t) = 1)

P (αT X ≤ αT x, I (W ≤ t) = 1)

= P (Y ≤ y,X ≤ x|αT X ≤ αT x, I (W ≤ t) = 1)

= P (Y ≤ y,X ≤ x|αT X ≤ αT x,W(t) = 1).

Thus, S (W (t))
Y |X ⊆ S (W )

Y |X and
⋃

t
S (W (t))
Y |X = S (W )

Y |X . �
Proof of Theorem 1

Let P be the projection onto S (W )
Y |X , PM(t) be the projection onto

Span{M(t)}, and PM be the projection onto Span{M}. From Propo-
sition 1, Span{M(t)} = S (W (t))

Y |X ⊆ S (W )
Y |X , for any t. Let ν ⊥ S (W )

Y |X , then,
ν ⊥ Span{M(t)} for all t ∈ Rq

T. Hence, Mν = E(M(T)ν) = 0. Thus
Span{M} = Span(E{M(T)}) ⊆ S (W )

Y |X .

We now show that S (W )
Y |X ⊆ Span{M}. Equivalently, we show that

P {X ≤ x, Y ≤ y|(PMX,W)}
= P {X ≤ x|(PMX,W)}P {Y ≤ y|(PMX,W)}, (A.1)

for all x ∈ Rp and y ∈ R1. Suppose that ξ�Span{M}, then ξ TMξ =
ξ T E{M(T)}ξ = 0, which implies that ξ TM(T)ξ = 0 almost surely with
respect to F (.) conditionally on the support of W, where F (.) is the cu-
mulative distribution function of T. Hence, Span{M(t)} ⊆ Span{M}
on a subset A of Rq

W with F (A) = 1. So, Y�X|(PMX,W (t)), for
t ∈ A. Therefore, we have P {X ≤ x, Y ≤ y|(PMX,W (t))} = P {X ≤
x|(PMX,W (t))}P {Y ≤ y|(PMX,W (t))} for any t ∈ A. Also, since

σ (W) =
⋃

t∈Rq
W

{W ≤ t},

where σ (W) is σ -field associated with W and Rq

W is the support of W.
We have

Y�X|(PMX,W).

And this verifies (A.1). �

Proof of Proposition 2

By similar argument as that of Li, Wen, and Zhu (2008) in the proof
of theorem 3.2, under condition (a), we have

Mln,n −M = [ElnM(T) − EM(T)] + 1

n

n∑
i=1

Ui,n + 1

ln

ln∑
i=1

Rn(Ti),

(A.2)
where Ui,n = 1

ln

∑ln
j=1 φ(Xi , Yi,Wi ,Tj ), n = 1, 2, . . . . The first term

of (A.2) has order Op(l
− 1

2
n ), which is no greater than Op(n− 1

2 ) since
ln = Op(n). The norm of the third term is bounded from above by

supt∈Rq
T
‖Rn(t)‖ = op(n− 1

2 ). So, we only need to show that the second

term in (A.2), Sn = 1
n

∑n

i=1 Ui,n, is of orderOp(n− 1
2 ). Since vec(Sn) =

1
nln

∑n

i=1

∑ln
j=1 vec(φ(Xi , Yi,Wi ,Tj )) has mean 0 and variance matrix

1
n2

1
l2n

∑n

i=1

∑ln
j=1

∑n

i′=1

∑ln
j ′=1 E[vec(φ(Xi , Yi,Wi ,Tj )) vec(φ(Xi′ , Yi′ ,

Wi′ ,Tj ′ ))T ], which can be reduced to 1
nln

E[vec(φ(X, Y,W,T)

vec(φ(X, Y,W,T))T ] + ln−1
nln

E[vec(φ(X, Y,W,T1) vec(φ(X, Y,W,

T2))T ], where T1�(X, Y,W ), (T1,T2)�(X, Y,W ), and T1�T2. By
similar argument as of Li, Wen, and Zhu (2008) in the proof of theorem
3.2, we have

var(vec(Sn)) = 1

n
E
[
vec(φ(X, Y,W,T1) vec(φ(X, Y,W,T2))T

]
+O ((nln)−1

)
.

By lemma A.1 of Li, Wen, and Zhu (2008), we can then show that the
second term of (A.2) is of order Op(n− 1

2 ). �
Proof of Theorem 2

By a similar argument as that of Li, Wen, and Zhu (2008) in the
proof of theorem 3.2, under condition (a), we have

Mn,n −M = [EnM(W̃) − EM(W̃)] + 1

n

n∑
i=1

Ui,n + 1

n

n∑
i=1

Rn(Wi),

(A.3)

where Ui,n = 1
n

∑n

j=1 φ(Xi , Yi,Wi ,Wj ), n = 1, 2, . . . . The first term
of (A.3) has order that admits a linear representation, and the norm of
the third term is bounded from above by op(n− 1

2 ) under condition (b).
Hence, we need to show that 1

n

∑n

i=1 Ui,n is an asymptotically linear
estimator for the asymptotic normality. With an argument similar to
that of Zhu et al. (2010), 1

n

∑n

i=1 Ui,n can be written as a V-statistic
and can be approximated by an U-statistic as follows: 1

n

∑n

i=1 Ui,n =
1

n(n−1)

∑
j<i [φ(Xi , Yi, Wi,Wj ) + φ(Xj , Yj , Wj , Wi)] + op(n− 1

2 ) =
Un + op(n− 1

2 ), where Un is a second-order U-statistic.
Thus, Un can be approximated by its projection Ûn =
E(Un | Xi , Yi, Wi) = 1

n

∑n

i=1 [E(φ(Xi , Yi,Wi , W̃)|(Xi , Yi,Wi)) +
E(φ(X, Y,W,Wi)|(Xi , Yi,Wi))], which admits a linear representation
(see Serfling 1980). Also, notice thatUn = Ûn + o( log n

n
) almost surely.

By the Lindeberg–Levy central limit theorem, we then have the desired
result. �

[Received July 2011. Revised October 2012.]
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