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Abstract

In this paper, we presented a theoretical result and then discussed possible applications of our result to SDR problems.

In addition to providing insights into existing SDR methods when Y is univariate; our theorem also applies to multivariate

responses, especially when the response takes the form of ðY ;W Þ, where Y is a continuous variable and W is categorical.

r 2007 Elsevier B.V. All rights reserved.
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1. Introduction

In a regression analysis with a response variable Y and a vector of random predictors
X ¼ ðX 1; . . . ;X pÞ

T
2 Rp, we seek a parsimonious characterization of the conditional distribution of Y jX.

The goal of sufficient dimension reduction (SDR; Cook, 1994, 1998) is to reduce the dimension of X by
replacing it with a minimal set of linear combinations of X, without loss of information on Y jX and without
requiring a pre-specified parametric model. These linear combinations are called the sufficient predictors. More
formally, we seek subspaces S � Rp such that

Y@XjPSX,

where @ indicates independence, and Pð:Þ stands for a projection operator with respect to the standard inner
product. Such an S is called a dimension reduction subspace. Under mild conditions (Cook, 1998) that almost
always hold in practice, the minimal dimension reduction subspace is uniquely defined and coincides with the
intersection of all dimension reduction subspaces. This intersection is called the central subspace (CS; Cook,
1994, 1998) of the regression and denoted as SY jX. SDR is concerned with making inferences for the CS.

When the conditional mean function EðY jXÞ is of special interest, the inquiry of SDR is restricted to the
central mean subspace, the intersection of all subspaces S satisfying Y@EðY jXÞjPSX. Or equivalently, the
intersection of all subspaces S satisfying the conditional independent condition

EðY jXÞ@XjPSX. (1.1)

Cook and Li (2002)investigated possible approaches to inferring about the central mean subspace.
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The definition of the central (mean) subspace does not depend on whether Y is univariate or multivariate.
Setodji and Cook (2004) presented an estimation method for the multivariate CS using k-means method. Cook
and Setodji (2003), Yoo and Cook (2007) studied estimation methods for the multivariate central mean
subspace.

In this paper, we present a theoretical result revealing the connections between the multivariate CS and the
marginal CSs. We then apply this result to characterize the loss of information due to slicing, and censoring
regression. In addition to providing useful insights into current methods in sufficient dimension reduction, our
work also suggests the estimation accuracy can be greatly improved by taking slicing effects into account.
When the response is bivariate and multivariate, our theoretical results may also open the door to new and
better estimation methods.

The rest of this paper is organized as follows. In Section 2, we present our main result. We then explore the
applications of our result under different contexts. In Section 3, we discuss how our result relates to the
current estimation methods for the multivariate central mean subspace. Section 4 is dedicated to the discussion
of the effects of slicing. In Section 5, we focus on applying our theoretical findings to censoring regressions.
A brief conclusion is given in Section 6.

2. The connections between multivariate CS and marginal CS

Let Y ¼ ðYT
1 ;Y

T
2 Þ

T
2 Rr, where r41; Y1 2 Rl , lX1; and Y2 2 Rm, mX1. Adopting the definition of the

partial CS from Chiaromonte et al. (2002), we define S
ðY2Þ

Y1jX
as the intersection of all subspaces S satisfying

Y1@X j ðPSX;Y2Þ. The following propositions reveal the connection among the multivariate CS, the partial
CS and the marginal CS. Notice that the roles of Y1 and Y2 are exchangeable. The sum of two subspaces S1

and S2 means that the collection of all vectors of the form
P

kmk, with mk 2Sk, k ¼ 1; 2.

Proposition 1. Assume that Y ¼ ðYT
1 ;Y

T
2 Þ

T, where Y1 2 Rl , and Y2 2 Rm. Then

SYjX ¼SðY1;Y2ÞjX ¼S
ðY2Þ

Y1jX
þSY2jX. (2.2)

Proof. Let SðgÞ be a dimension reduction subspace for the regression of ðY1;Y2ÞjX. Then

ðY1;Y2Þ@X j gTX¼)ðY1;Y2Þ@X j ðgTX;Y2Þ

¼)Y1@X j ðgTX;Y2Þ.

Thus SðgÞ is a partial dimension reduction subspace for the regression of Y 1jðX;Y2Þ, and S
ðY2Þ

Y1jX
� SYjX.

Since SY2jX �SYjX, we then have

S
ðY2Þ

Y1jX
þSY2jX �SYjX.

On the other hand, let b be an orthonormal basis for S
ðY2Þ

Y1jX
, f be an orthonormal basis for SY2jX.

By definition, Y1@XjðbTX;Y2Þ and Y2@XjfTX. We then have the following two conditions:

ða1Þ Y1@XjðbTX; fTX;Y2Þ; ða2Þ Y2@XjðbTX; fTXÞ.

By Proposition 4.6 from Cook (1998), ðY1;Y2Þ@XjðbTX; fTXÞ. Hence, SðY1;Y2ÞjX �S
ðY2Þ

Y1jX
þSY2jX. &

Chiaromonte et al. (2002) in their Eq. (10) showed that

SY jX �SW jX þS
ðW Þ
Y jX, (2.3)

where W is a categorical variable. From Proposition 1, it is straightforward that the equality holds in (2.3)
when W is a function of Y.
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Proposition 2. Assume that Y ¼ ðYT
1 ;Y

T
2 Þ

T
2 Rr, where Y1 2 Rl , and Y2 2 Rm. If Y1@Y2jX, then

SðY1;Y2ÞjX ¼ SY1jX þSY2jX. (2.4)

Proof. Let q be an orthonormal basis for SY1jX, then

Y1@XjqTX and Y1@Y2jX

3Y1@XjqTX and Y1@Y2jðq
TX;XÞ

3Y1@XjðqTX;Y2Þ and Y1@Y2jq
TX.

Therefore, S
ðY2Þ

Y1jX
�SY1jX. Hence,

SðY1;Y2ÞjX ¼ S
ðY2Þ

Y1jX
þSY2jX � SY1jX þSY2jX.

Also, SY1jX �SðY1;Y2ÞjX and SY2jX � SðY1;Y2ÞjX, it is obvious that SY1jX þSY2jX � SðY1;Y2ÞjX. &

We can also prove that SYjX ¼
Pr

i¼1SY ijX, if given X, Y i, the ith element of Y, i ¼ 1; . . . ; r, are mutually
independent of each other.

3. Multivariate central mean subspace

Cook and Setodji (2003), Yoo and Cook (2007) presented the estimation methods for the multivariate
central mean subspace. Both methods are based on the following proposition which is included here for
reference. Corollary 1 shows that this proposition is a special case of our Proposition 2.

Proposition 3 (Cook and Setodji, 2003, Proposition 4). Assume that Y ¼ ðY 1; . . . ;Y rÞ, where Y k is the kth

coordinate of Y. Then

SEðYjXÞ ¼
Xr

k¼1

SEðY kjXÞ,

where SEðYjXÞ and SEðY kjXÞ, are the central mean subspaces for YjX and Y kjX, respectively.

Corollary 1. Based on the second definition of the central mean subspace (1.1), Proposition 3 is a special case of

Proposition 2.

Proof. To easy exposition, let EðY kjXÞ ¼ Ui, k ¼ 1; . . . ; r, EðYjXÞ ¼ U ¼ ðU1; . . . ;UrÞ. Since Uk is a function
of X, Uk@UjjX, for k; j ¼ 1; . . . ; r and kaj. By Proposition 2,

SUjX ¼
Xr

k¼1

SUk jX.

Based on (1.1), SUjX ¼ SEðYjXÞ, and SUkjX ¼ SEðY k jXÞ. Hence, we proved that SEðYjXÞ ¼
Pr

k¼1SEðY kjXÞ. &

4. The loss of information due to slicing

For a many-valued or continuous response Y, a standard treatment in sufficient dimension reduction is to
partition the range of Y into a fixed number (h) of slices, and work on the discrete version, ~Y , assuming that
the new regression retains all the information, i.e., that S ~Y jX ¼SY jX. However, this assumption is not always
true, and the differences between the working and target regressions can be significant when sample size is not
large. Moreover, even under the case of equality, we will still face the loss of power since we make use of only
the information retained in ~Y , discarding all the intra-slice information.

Let d denote the dimension of SY jX. If h is less than d, then the set of sufficient predictors for the regression
of ~Y on X will necessarily exclude some of the sufficient predictors of Y on X. Experience indicates that good
results are often obtained by choosing h to be somewhat larger than d þ 1, trying a few different values of h as
necessary. Since traditional asymptotic results in SDR are based on the number of observations per slice going
to infinity, in practice this suggests relatively few slices. Choosing h very much larger than d should generally
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be avoided due to the conflicts between the requirements of asymptotic approximations and recovering intra-
slice information.

We have noticed that many existing SDR methods are sensitive to the choice of h to some extent (Cook,
1998; Yin and Cook, 2002), especially for small data sets. One of the open questions Kent (1991) asked is what
is the effect of changing the number of slices h. Yin and Cook (2002) discussed the connections between the
number of slices and the maximum order k of the covariance EðY kXÞ used to summarize the distribution of
YjX.

We consider this question from a different aspect. In Proposition 1, setting Y1 ¼ Y 2 R1, and Y2 ¼ ~Y , we
then have:

Corollary 2.

SY jX ¼S
ð ~Y Þ
Y jX þS ~Y jX, (4.5)

where S
ð ~Y Þ
Y jX as the intersection of all subspaces S satisfying Y@X j ðPSX; ~Y Þ.

Eq. (4.5) gives us the insight about the information we lose on the target regression Y jX by using ~Y instead
of Y. Most of the existing SDR methods (Cook, 1998; Cook and Ni, 2005) focus on estimating S ~Y jX. Since
S
ð ~Y Þ
Y jX typically contains more than the origin, slicing will miss relevant intra-slice information. Cook and Ni

(2006) used the intra-slice covariances to construct inference methods for the CS, which greatly improved the
estimation accuracy.

Note that ~Y can be replaced with any function of Y. This suggests that we may seek some other functions of
Y to replace ~Y in order to gain better estimation accuracy.

5. Censoring regressions

SDR can be of practical interest to censored regression analysis. As pointed by Zeng (2004), when there are
many predictors, nonparametric approaches may be infeasible due to the ‘‘curse of dimensionality’’.
Moreover, for semiparametric models, the parametric functions are likely to be misspecified. In contrast, the
bivariate SDR methods can be carried out without pre-specifying any parametric model, and it can often
avoid the curse of dimensionality. After reduction of X to the estimated sufficient predictors, many traditional
methodologies of survival analysis can be applied.

Proposition 2 is of special interest to us when the response is of the form of made up of continuous and
discrete random variables. One special case is censored data. Let T be the true unobservable survival time, and
let C be the censoring time. Define d ¼ IfTpCg, and Y ¼ Tdþ Cð1� dÞ.

The goal of SDR for survival data is to infer about the CS ST jX. However, since T is not fully observable,
we can estimate only the CS SðY ;dÞjX for the bivariate regression of the observable ðY ; dÞ on X. Assuming
T@CjX, the usual independence assumption (Ebrahimi et al., 2003; Tsiatis, 1975), to ensure the identifiability
of T, we then have which the following proposition provides a connection between SðY ;dÞjX and ST jX.

Proposition 4. If T@CjBTX, then

SðY ;dÞjX ¼SðT ;CÞjX ¼ST jX þSCjX. (5.6)

Proof. By Proposition 2, we have

SðT ;CÞjX ¼ST jX þSCjX.

Following Proposition 1 from Ebrahimi et al. (2003). Let ST ðtÞ ¼ prðTXtjXÞ, SCðtÞ ¼ prðCXtjXÞ,
SY ðtÞ ¼ prðYXtjXÞ, and SdðtÞ ¼ prðYXt; d ¼ 1jX Þ. Following the proof of Ebrahimi et al. (2003), assuming
that T@CjX, we have

ST ðtÞ ¼ SY ðtÞ exp
�
R t

0
dSdðuÞ=SY ðuÞ.

Therefore, ST jX � SðY ;dÞjX. In addition, it is straightforward that SY ðtÞ ¼ ST ðtÞSCðtÞ. Hence,
SCjX � SðY ;dÞjX. Thus, SðT ;CÞjX ¼ ST jX þSCjX �SðY ;dÞjX.

Also, note that ðY ; dÞ is a function of ðT ;CÞ, therefore, SðY ;dÞjX � SðT ;CÞjX.
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We have proved that SðY ;dÞjX ¼SðT ;CÞjX ¼ ST jX þSCjX. &

6. Summary and future directions

In this paper, we presented a theoretical result and then discussed possible applications of our result to
SDR problems. In addition to providing insights into existing SDR methods when Y is univariate; our result
also applies to multivariate responses, especially when the repose takes the form of ðY ;W Þ, where Y is a
continuous variable and W is categorical.

Our theoretical findings give a fresh view over SDR and open the door for new and better estimation
methods. We are currently working on developing new theory and methodology using Proposition 1 as a
guide.
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