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a b s t r a c t

The requirement of constant censoring parameter β in Koziol–Green (KG) model is too
restrictive. When covariates are present, the conditional KG model (Veraverbekea and
Cadarso-Suárez, 2000) which allows β to be dependent on the covariates is more realistic.
In this paper, using sufficient dimension reduction methods, we provide a model-free
diagnostic tool to test if β is a function of the covariates. Our method also allows us to
conduct a model-free selection of the related covariates. A simulation study and a real data
analysis are also included to illustrate our approach.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

1.1. Sufficient dimension reduction

Thanks to modern technology, we are now overwhelmed by a huge amount of data. In most sciences, advances in
data collection and storage capabilities have led to an information overload. Researchers are now facing larger and larger
observations and simulations on a daily basis. Such large data sets pose new challenges in data analysis. Traditionalmethods
developed for smaller data sets break down. Dimensionality is a major concern in analyzing large data sets. Many methods,
such as principal component analysis, factor analysis, projection pursuit etc., were developed to reduce the dimension of
the original data prior to any modeling. All these methods try to gasp the ‘‘important’’ features or patterns in the data. For
regression problems, the notion of effective (sufficient) dimension reduction was first introduced by Li (1991).
For a typical regression problem with a univariate random response Y and a vector of random predictors X =

(X1, . . . , Xp)T ∈ Rp, the goal is to understand how the conditional distribution Y |X depends on the value of X. The
spirit of sufficient dimension reduction is to reduce the dimension of X without loss of information on the regression
and without requiring a pre-specified parametric model. Assuming the following semiparametric regression model: Y =
g(βT1X, β

T
2X, . . . , β

T
KX, ε), where g(.) is an unknown function and ε is an unknown random error independent of X, we can

see that the conditional distribution of Y |(βT1X, . . . , β
T
KX) is the same as that of Y |X for all values ofX. Hence, these β’s which

provides a parsimonious characterization of the conditional distribution of Y |X. We call these β’s effective directions (Li,
1991). When K is small which is often the case in real applications, the original regression problem (data) can be effectively
reduced by projecting X along these effective directions.
More formally, we search for subspaces S ⊆ Rp such that

YyX|PSX
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where y indicates independence, and P(.) stands for a projection operator with respect to the standard inner product. The
intersection of all such S is defined as the central subspace SY|X (Cook, 1998), which almost always exists in practice under
mild conditions. We assume the existence of the central subspaces through this article. Sufficient dimension reduction is
concerned with making inference for the central subspace. Unlike other nonparametric approaches, sufficient dimension
reduction can often avoid the curse of dimensionality. Many sufficient dimension reductionmethods enjoy

√
n convergence

rates since they exploit the global features of the dependence of Y on X.
One of the most popular sufficient dimension reduction methods is called sliced inverse regression (SIR) proposed by Li

(1991). SIR is based on E(X|Y ), the first conditional moment of the inverse regression where X is regressed on Y . Although
SIR is easy to implement and has received considerable interests in applications, Cook and Ni (2005) showed that it is
not asymptotically optimal. They proposed inverse regression estimation (IRE) which is asymptotically efficient among
methods based on first conditional moments. However, both SIR and IRE fail to recover the whole central subspace when
the response surface is symmetric about the origin. Methods based on the second conditional moment (E(XXT |Y )) or the
first two conditional moments, such as sliced average variance estimation (SAVE; (Cook andWeisberg, 1991), SIRII (Li, 1991)
and combinations of SIR and SIRII (Gannoun and Saracco, 2003; Saracco, 2005), DR (Li and Wang, 2007) were developed in
response to this limitation. In addition to thosemethods exploiting the global features of the dependency of Y onX, Xia et al.
(2002) proposed MAVE which makes use of the local features of the dependency of Y on X. Wang and Xia (2008) recently
proposed a method called sliced regression (SR) which combined SIR and MAVE.
Sufficient dimension reduction methods have been developed under various regression settings. To list a few, Li et al.

(2003) studied estimation methods with a multivariate Y; Zhong et al. (2005) used a method called regularized sliced
inverse regression (RSIR) for motif discovery in microarray analysis; Wen and Cook (2007) and Liquet and Saracco (2007)
investigated dimension reductionswith amix of continuous and categorical predictors. Li et al. (1999),Wen andCook (2009),
discussed dimension reductionmethods that allow for censoring. In this paper, wewill study dimension reductionmethods
in survival analysis data under the context of proportional censorship model.

1.2. Proportional censorship model with covariates

Right-censored data are common inmanymedical and epidemiological studies. Let (T1, C1), . . . , (Tn, Cn) be independent
pairs of positive continuous random variables where Tj, j = 1, . . . , n, represents the survival time (time to event) and Cj
represents the right censoring time of the jth object under study. Let Yj = min(Tj, Cj) and δj = I{Tj ≤ Cj}. the problem
of interest is to estimate the distribution of the survival time T . However, due to the existence of right censoring, only
(Yj, δj) are fully observable. Many methods have been proposed in literature to tackle the problem under the assumption of
non-informative censoring (Lagakos, 1979), i.e., a censored subject has the same risk of having an event as those who have
complete follow-up.When the censoring is informativewhich is often the case in real applications, the so-calledproportional
hazardsmodel of random censorship or Koziol–Greenmodel (KGmodel: Koziol andGreen, 1976; Faraway and Csörgö, 1998)
has been used, in which we assume that there exists a constant β > 0 such that Ḡ(t) = F̄(t)β where F(t) and G(t) are the
distribution functions of T and C respectively, F̄(t) = 1 − F(t), Ḡ(t) = 1 − G(t). Let Λ(t) denote the cumulative hazard
function, then this condition is equivalent to ΛG(·) = βΛF (·). The parameter β is interpreted as the censoring parameter
since P(Ci < Ti) = β/(1+ β).
Csörgö (1988) gave a detailed review on KG model and related estimation and testing procedures. Faraway and Csörgö

(1998) argued that the assumption of constant β makes KG model impractical in reality (censoring is too informative, too
good to be true in practice). In recognizing the limitations of KG model, there are several proposals on generalizing the
KG model. Peña and Rohatgi (1989) proposed a generalized proportional hazard model with random censorship which
allowedβ to be a nonnegative randomvariable. Gather and Pawlitschko (1998) considered the partial KGmodelwhere some
censorings are informative and the others are not. However, neither of those models considered the effects of covariates. As
pointed out by Zeng (2004), in most studies, the covariates X contain not only subject demographic information and disease
history, but also auxiliary information which is informative in predicting subjects failure time or explaining the censoring
mechanism. Gaddah and Braekers (2009) and Veraverbekea and Cadarso-Suárez (2000) investigated estimation methods
which incorporate covariate information. The conditional proportional model proposed by Veraverbekea and Cadarso-
Suárez (2000) assumes that β is a function of covariate X. Hence, whether a subject is being censored, also depends on
the covariate X. However, they only considered a single covariate, i.e., X ∈ R1.
In this paper, we will investigate the estimation method for conditional proportional model with many covariates, say,

X ∈ Rp, p > 1. Specifically, we assume that

ḠT |X(t|x) = EB[F̄T |X(t|x)]β(x), (1.1)

where β(X) = h(ηT1X, . . . ,η
T
qX, ε), q ≤ p, B(b) = P{β ≤ b}, ηj ∈ Rp, j = 1, . . . , q, and ε is a random error independent

with X. So β(X) is a function of q linear combinations of the original covariates X. Without assuming any parametric model,
we first use sufficient dimension reductionmethods to estimate q and η, where η = (η1, . . . ,ηq) is a p×qmatrix consisting
ηj as its columns. An asymptotic chi-squared test is developed to test whether the proportion of non-censoring should be
modeled through the covariate. All our estimates are asymptotically consistent.
The rest of this paper is organized as follows. Section 2 is dedicated to the discussion of estimation methods for q and

η. If q > 0, we then fit a logit model similar to Yuan (2005) to obtain β(X). In Section 3, we present simulation results. An
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illustration of ourmethod is also given via a real data analysis. We conclude our paper and discuss future research directions
in Section 4. Proofs will be delayed to Appendix.

2. Estimation procedure via sufficient dimension reduction

Following the notation in Section 1, we first study estimation methods for q and η assuming model (1.1). If q = 0, then
β(X) = h(ηT1X, . . . ,η

T
qX, ε) is then reduced to a constant and model (1.1) is reduced to the regular KGmodel. Let ST |X, SC |X,

Sδ|X, SY |X and S(Y ,δ)|X denote the corresponding central spaces. The following theorem provides a connection among these
spaces under model (1.1).

Theorem 1. Assuming model (1.1) with β(X) = h(ηT1X, . . . ,η
T
qX, ε), where ε is a random error independent with X, then

1. Sδ|X = Span{η1, . . . ,ηq}.
2. S(Y ,δ)|X = SY |X + Sδ|X = ST |X + SC |X.
3. SY |X = ST |X = SC |X if q = 0, where q = dim(Sδ|X).

Since δ is a binary variable, most existing sufficient dimension reductionmethods, such as SIR (Li, 1991), SAVE (Cook and
Weisberg, 1991) or IRE (Cook and Ni, 2005), could be used directly to infer about q and Sδ|X. To illustrate our procedure, a
brief review of SIR is provided as following.
LetΣ = Cov(X) denote the marginal covariance matrix of X. Sufficient dimension reduction can often be formulated as

a generalized eigenvalue problem of the form Mνi = λiGνi, where M is a method-specific symmetric kernel matrix and is
nonnegative definite, G is a symmetric and positive definite matrix, ν1, . . . , νp are eigenvectors satisfying νTi Gνj = 1 if i = j,
and 0 otherwise, and λ1 ≥ λ2 ≥ · · · ≥ λp ≥ 0 are the corresponding eigenvalues. Different choices ofM and Gwould yield
different dimension reduction methods. For example,M = Σ and G = Ip correspond to principal component analysis. Li’s
(1991) SIRmethod tookM = Cov[E(X|δ)−E(X)] and G = Σ . Let M̂ denote a consistent estimator ofM . Then the sum of the
smallest eigenvalues of M̂ is utilized to construct test statistics for estimating q, the dimension of Sδ|X. And the eigenvectors
corresponding to the q largest eigenvalues are used to estimate η. Specifically, a sequence of hypotheses H0 : q = m versus
Ha : q > m, with m incremented by 1 until the hypothesis is not rejected. At which point q̂ is the last value of m tested.
Asymptotically, the test statistic of SIR is a linear combination of chi-square random variables.
In addition to the above spectral decomposition approach, there exists another approach called theminimumdiscrepancy

approach (Cook and Ni, 2005) in the literature of sufficient dimension reduction. IRE (Cook and Ni, 2005) takes theminimum
discrepancy approach and outperforms SIR asymptotically. It also provides an asymptotic chi-squared test for testing the
dimension of Sδ|X. Though with small sample size, SIR might perform as well as or even better than IRE. Interested readers
could refer to Cook and Ni (2005) for a detailed discussion. We will apply both procedures in our simulation studies and
data analysis. Both SIR and IRE on the regression of δ with respect to X could provide us with consistent estimators for
η = (η1, . . . ,ηq), where Sδ|X = Span{η}; and allowed us to do predictor selection without assuming any parametric model
(Wen and Cook, 2007). In Theorem 2, we cited the results from Cook and Ni (2005) for reference. Furthermore, with a binary
response δ, IRE and SIR actually provide the same results. Interested readers could refer to Appendix for detailed discussion
on this issue. The proof of Theorem 2 is similar to that of Ni and Cook.

Theorem 2. Assuming model (1.1) with β(X) = h(ηT1X, . . . ,η
T
qX, ε), where ε is a random error independent with X. Assume

that the data (Yi,Xi, δi), i = 1, . . . , n, are a simple random sample of (Y ,X, δ)with finite fourthmoments. Let η̂ be the estimator
from SIR (IRE), then
1. The estimate vec(η̂) is asymptotically efficient, and follows an asymptotic normal distribution, where vec(.) denotes the
operator that constructs a vector from a matrix by stacking its columns.

2. The test statistic on testing dim(Sδ|X) = q = 0 has an asymptotic chi-squared distribution with degrees of freedom of p,
where p is the number of covariates.

3. Span(η̂) is a consistent estimator of Span(η).

When q(q̂) = 0, model (1.1) is reduced to the regular KG model, and β is a constant. Inference methods on KG model
could be applied to the data directly. Or we can directly use sufficient dimension reduction methods to the survival analysis
data to infer about the central subspace of SY |X, since ST |X = SY |X according to Theorem 1. So sufficient dimension reduction
methods can serve as a diagnostic tool as a goodness fit test of regular KG model. It might outperform other approaches
since it does not pre-assume any modeling assumptions on the survival function of T (F̄ ). This can be a good starting point
for further parametric and nonparametric modeling procedures.
When q(q̂) 6= 0, model (1.1) is the so-called conditional proportional model (Veraverbekea and Cadarso-Suárez, 2000).

Since an estimator of η is given by the sufficient dimension reduction method, and q is often 1 or 2, many traditional
parametric modeling methods are applicable with ηTX as the new covariates. Following Yuan (2005), we consider the
following logistic regression:

logit[P(δ = 1|X)] = − log(β(x)) = γ0 + γT (ηTX), (2.2)
where γ0 ∈ R1, and γ ∈ Rq are the unknown coefficients. We may replace the above linear function of ηT1X, . . . ,η

T
qX with

a polynomial function in case of necessity.
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(a) Bilirubin level. (b) Prothrombin time.

Fig. 1. PBC data: Scatter plot of survival time (in days) versus bilirubin levels and prothrombin time.×: Event; ◦: Censored.

Assuming model (1.1), sinceΛT |x(t|x) = 1
1+β(X)ΛY |x(t|x), whereΛT |x andΛY |x are the cumulative hazard functions of T

and Y respectively. We can always estimate ΛT |x(t|x) from ΛY |x(y|x) by plugging in the value of β(X) obtained from (2.2).
Or we can take an approach similar to Abdushukurov–Cheng–Lin estimator (Cheng and Lin, 1987), since 1 − FT |x(t|x) =

(1− HY |x(t|x))
1

1+β(X) where H is the cumulative distribution function of Y . Veraverbekea and Cadarso-Suárez (2000) have a
detailed discussion on this type of estimator. H(.) and β(X) can be estimated independently since Y and δ are independent
given the covariates X under model (1.1). Under this circumstance, the advantage of using sufficient dimension reduction
methods for pre-processing is that now the covariates is reduced to fewer linear combinations of the original covariates.

3. Data illustration and simulation studies

In this section,wewill first illustrate ourmethodusing a real data, the PrimaryBiliary Cirrhosis data set (PBCdata; Fleming
and Harrington, 1991). We then conduct several simulation studies.

3.1. Example: primary biliary cirrhosis data

The PBC data set came from the Mayo Clinic trial in primary biliary cirrhosis (PBC) of the liver conducted between 1974
and 1984. The major goal of this double-blinded randomized placebo controlled trial is to assess the efficacy of a new drug,
the D-penicillamine. This data set contains survival time and other information on 312 PBC patients participating in the
trial. Fleming and Harrington (1991) provided a detailed description of this data set. They selected five predictors from the
original seventeen covariates. Since previous studies have shown that there was no therapeutic differences between control
and D-penicillamine-treated patients. The goal of their study is to explain the relationship between a patient’s survival time
and those covariates.
As suggested by Veraverbekea and Cadarso-Suárez (2000), the proportion of non-censoring is related strongly to the

covariates. A conditional proportional model such as (1.1) was recommended. Though only one covariate, Serum bilirubin,
was investigated in their study. Let Y denote the observed time, which is the number of days between registration and the
earlier of the death or censoring; δ denote the censoring indicator. We would consider the following covariates:

Age= Age in years.
Edema= Presence of edema. 0= no edema and no diuretic edema; 0.5= edema present for which no diuretic therapy
was given, or edema resolved with diuretic therapy; 1= edema despite diuretic therapy.
Bilirubin= Serum bilirubin, in mg/dl.
Albumin= Albumin in gm/dl.
Triglycerides= Triglycerides, in mg/dl.
Platelet = Platelet count.
Prothrombin time= Prothrombin time, in s.
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Table 1
PBC data: p-values from marginal predictor tests using IRE.

Predictor Step 1 Step 2 Step 3 Step 4 Step 5

Age 0.002 0.002 0.002 0.002 0.001
Albumin 0.150 0.153 0.104 0.116 Deleted
Platelet 0.952 Deleted
Edema 0.613 0.617 Deleted
Prothrombin time 0.000 0.000 0.000 0.000 0.000
Bilirubin 0.000 0.000 0.000 0.000 0.000
Triglycerides 0.117 0.171 0.185 Deleted
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Fig. 2. PBC data: Model checking plot for Model (2.2). Solid blue line for response, dashed red line for fit.×: Event; ◦: Censored.

Cases with missing values were ignored. The remaining 278 cases were analyzed using SIR and IRE. The same outliers as Li
et al. (1999) reported were found and removed in further analysis.
Fig. 1 showed the scatter plots of Y versus two covariates, Serum bilirubin and Prothrombin time respectively. As

pointed by Veraverbekea and Cadarso-Suárez (2000), the proportion of non-censoring relates strongly to the bilirubin since
censoring is much more prevalent for patients with low levels of bilirubin. From panel (b), we can see similar dependence
of δ (β(X)) on the values of prothrombin time.
Since SIR and IRE provide same results with binary response, we will only show the analysis result using IRE. Started

with a regression of δ versus the above eight covariates, we first did a model-free backward variable selection. As shown in
Table 1, four predictors were screened out using 5% tests, leaving 3 predictors for further analysis. This screening requires
only the standard independence condition TyC |X.
We then fit the logistic regression model (2.2) taking ηTX as the first direction from IRE. Fig. 2 shows the model checking

plot for PBC data. The solid blue line is the smooth of the observed fraction of non-censoring versus the first direction from
IRE, while the dashed red line is obtained by smoothing the fitted probabilities of non-censoring versus the first direction
from IRE. The two smooths are reasonably close which suggests that our model agrees with the data.
So we have the following model for the PBC data:

logit[P(δ = 1|X)] = − log(β(x)) = −0.349+ 1.774× IRE1

where IRE1 = 0.054× Age+ 0.977× Prothrombin time+ 0.205× Bilirubin.

3.2. Simulation studies

In this section, we conducted the following simulation via SIR. Both T and C were generated from Cox proportional
hazards model. λT (t|X) = λeX1+X2 , and β(X) = eX3+X4 − 1. Hence q = dim(Sδ|X) = 1, and ηT = (0, 0, 1, 1, 0, 0). We
sampled X3 and X4 from a uniform distribution U[0, 1], while Xi, i = 1, 2, 5, 6, are standard normal random variables. We
ran 1000 simulations at four different sample sizes n = 500, 200, 100, 50. Table 2 reported the median p-values for testing
q = 0, the average angles (the smaller the better) between the estimated direction η̂

TX and the true directionηTX = X3+X4,
and the median number of significant predictors from the model-free variable selection procedure via SIR/IRE (Cook and Ni,
2005). With n = 500, SIR always rejected the null hypothesis of q = 0; about 85% of times, SIR was able to pick and only
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Table 2
Results for non-constant β at 4 different sample sizes.

n p-value for testing q = 0 Average angle Significant predictors

500 1E−11 7.99 2
200 5E−5 12.83 2
100 0.008 18.60 2
50 0.055 27.96 1

Table 3
The percentage of right decisions when β = 0.5, 1.0 and 1.5.

n 0.5 1.0 1.5

500 95.2 95.5 95.3
200 95.7 94.8 94.7
100 96.1 94.9 94.6
50 94.6 96.2 97.0
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Fig. 3. Uniform quantile plot of p-values testing H0 : q = 0 with β = 0.5 and n = 500.

pick the two truly effective predictors X3 and X4 out; the angles between the true direction and estimated direction are
reasonably small. The performance of SIR deteriorates as n became smaller.
We also considered the cases with constant β under similar setup as above. The only difference is now that instead of

generating β as a function of X, we took β = 0.5, 1.0 and 1.5 respectively, which corresponded to 30%, 50% and 60% of
censoring rate. Table 3 showed us the frequencies of accepting mull hypothesis q = 0 at significance level 0.05. About
95% of times, our tests made the right decision. It seems that our method is immune to the change of β . Fig. 3 showed the
uniform quantile plot of p-values for testing H0 : q = 0 at n = 500 and β = 0.5 with 1000 replications. As we can see, the
sampling distribution of SIR’s test statistics is close to the asymptotic one, suggesting a close agreement between the actual
and nominal levels.

4. Conclusion and future research directions

We proposed a model-free approach to test whether the censoring parameter β depends on the covariates X under the
context of conditional KG model. When β is indeed a function of X, our approach also allows us to conduct a model-free
variable selection procedure. Since our method does not require any modeling assumptions on the survival function of T
(F̄ ). It can serve as a good starting point for further parametric and nonparametric modeling procedures.
The adoption of sufficient dimension reduction to survival analysis data has showngreat promise. Researches on inferring

both the survival function and β simultaneously under the conditional KG model are also underway.
Another future research direction deserves serious investigations is dimension reduction in functional regressionswhere

X and Y are random functions. Functional data analysis is now an important research field with many applications, see
Ferraty and Vieu (2006) for an extensive review. Since both X and Y are infinite dimensional, parsimony is even more
important therein. Ferre and Yao (2005), Amato et al. (2006) and Ait-Sidi et al. (2008) investigated dimension reduction
methods assuming amultiple (single) index functional model. As Ferre and Yao (2005) pointed out, there are some technical



Author's personal copy

X.M. Wen / Computational Statistics and Data Analysis 54 (2010) 1975–1982 1981

difficulties arising in inverting an estimator of Var(E(X|Y )) since it is ill-conditioned. Ferre and Yao (2005) introduced
functional SIR, while Amato et al. extended both MAVE (Xia et al., 2002) and SIR to functional data. More attentions will
be brought to this area as analysis of massive data become a routine in statistical analysis.
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Appendix

Proof of Theorem 1. 1. Since for binary variable δ, under model (1.1), P(δ = 1|X) = P(Ci < Ti|X) = β(X)/(1 + β(X)),
hence it is obvious that Sδ|X = Span{η1, . . . ,ηq}.

2. Given X, both T and C , and Y and δ are pairwise independent under model (1.1), by Proposition 2 ofWen (2007), we have
S(Y ,δ)|X = SY |X + Sδ|X,

S(T ,C)|X = ST |X + SC |X.

Also, note that (Y , δ) is a function of (T , C), therefore, S(Y ,δ)|X ⊆ S(T ,C)|X.
Following the proof of Proposition 1 from Ebrahimi et al. (2003), let ST (t) = F̄T |X(t|x) = pr(T ≥ t|X), SC (t) =

ḠT |X(t|x) = pr(C ≥ t|X), SY (t) = pr(Y ≥ t|X), and Sδ(t) = pr(Y ≥ t, δ = 1|X). Since TyC |X, we have

ST (t) = SY (t)
−

∫ t
0
dSδ (u)
SY (u)exp .

Therefore, ST |X ⊆ S(Y ,δ)|X. In addition, it is straightforward that SY (t) = ST (t)SC (t). Hence, SC |X ⊆ S(Y ,δ)|X. So
ST |X + SC |X ⊆ S(Y ,δ)|X.
So S(Y ,δ)|X = SY |X + Sδ|X = ST |X + SC |X.

3. When q = 0, Sδ|X = ∅, by result from (2) and (1.1), we have SY |X = ST |X = SC |X. �

The equivalence of SIR and IRE with binary response
When Y is continuous, Li (1991) proposed estimating E(X|Y = y) by replacing Y with a discrete version constructed by

partitioning the range of Y into h fixed slices. Accordingly, we follow standard methodology and assume that Y takes values
in {1, 2, . . . , h}.
Cook (2004) showed that we can derive SIR from the following nonlinear least squares objective function:

F sird (B, C) =
h∑
y=1

(f̂yξ̂y − BCy)T f̂ −1y 6̂(f̂yξ̂y − BCy)

where B ∈ Rp×d, Cy ∈ Rd, ξ̂y = 6̂
−1
(X̄y•− X̄•) = 6̂

−
1
2 Ẑy•, y = 1, . . . , h, X̄y• is the sample average of X in the yth slice, X̄• is

the sample average of X, and f̂y = ny/n is the fraction of sample points in slice y. With h = 2 and notice that f̂1ξ̂1+ f̂2ξ̂2 = 0,
the above ionization problem is the same as minimizing the following quadratic discrepancy function which is exactly how
IRE is derived (Cook and Ni, 2005):

F ired (B, C) = (vec(ξ̂)− vec(BC))
TVn(vec(ξ̂)− vec(BC)),

where f̂ = (f̂1, . . . , f̂h−1)T , ξ̂ = (ξ̂1, . . . , ξ̂h−1) ∈ Rp×(h−1) and V−1n is the sample covariance matrix of the limiting normal
distribution of

√
n(vec(ξ̂)− E(vec(ξ̂))). Since with h = 2, Vn ∝ f̂ −1y 6̂.
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