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a b s t r a c t

We revisit cumulative slicing estimation (CUME; Zhu et al., 2010) from a different perspec-
tive to gain more insights, then refine its performance by incorporating the intra-slice
covariances. We also prove that our new method, under some conditions, is more com-
prehensive than CUME.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

For a typical regression problem with a univariate random response Y and a p-dimensional random vector X, sufficient
dimension reduction (SDR: Li, 1991; Cook, 1998) aims to reduce the dimension of X without loss of information on the
regression and without requiring a pre-specified parametric model. The basic idea of sufficient dimension reduction is to
replace the predictors X ∈ Rp with a d-dimensional linear vector ηTX, where η is a p × d matrix with d ≤ p, such that
YyX|ηTX. The column space of η is called a dimension reduction subspace, and the intersection of all such subspaces is
called the central subspace, denoted by SY |X. The dimension d of SY |X is called the structural dimension of the regression.
Under mild conditions (Yin et al., 2008), the central subspace exists and is unique. We assume that SY |X exists throughout
this article. The goal of sufficient dimension reduction is to estimate and make statistical inferences about SY |X and d.

Many methods have been developed to estimate SY |X. Among them, sliced inverse regression (SIR; Li, 1991), sliced
average variance estimation (SAVE; Cook and Weisberg, 1991), minimum average variance estimation (MAVE; Xia et al.,
2002), and directional regression (DR; Li and Wang, 2007) are perhaps the most widely investigated methods in the
literature. Cook and Li (2002) proposed the central mean subspace where the interest of dimension reduction is restricted
to the conditional mean function E(Y |X), and the central mean subspace SE(Y |X) is defined as the smallest column spaces
spanned by η such that E(Y |X)yX|ηTX.

For many-valued or continuous Y , the standard practice in SDR is to replace the response Y with a discrete version
Y̌ by partitioning the range of Y into h non-overlapping slices, then work on Y̌ and assume that SY̌ |X = SY |X. However,
this assumption does not always hold, and the difference between the working and target regressions can be significant.
Moreover, evenwhen this assumption holds, wemight still face the loss of power sincewe use only the information retained
in Y̌ , discarding all the intra-slice information.
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The number of slices h is a tuning parameter much like the tuning parameter encountered in the smoothing literature
(Li, 1987; Härdle et al., 1988). Experience indicates that good results are often obtained by choosing h to be somewhat larger
than d + 1, and sometimes requires several trials of h. However, beyond empirical experiences, how to select the optimal h
still remains unknown in the literature.

Zhu et al. (2010a,b) proposed a method called the cumulative slicing estimation (CUME) which sums up all possible
estimations relating to E(XI(Y ≤ ỹ)) for all ỹ in the support of Y to avoid the subjective selection of h. They showed that the
estimator of CUME enjoys the common

√
n convergence rate and is more efficient comparing to SIR and other first-moment

slicing estimation methods.
In this article, we first revisit CUME from a different perspective to gainmore insights, and then refine its performance by

incorporating the intra-slice covariances. The rest of this article is organized as follows. In Section 2, we reinterpret CUME via
the ensemble estimator approach (Yin and Li, 2011). Our new estimation method, which we call the covariance cumulative
slicing estimation (COCUM), alongwith its asymptotic properties are investigated in Section 3.We illustrate the performances
of our method via simulation studies in Section 4. A brief summary is given in Section 5. For easy of exposition, we defer all
proofs to the Appendix.

2. CUME: the ensemble estimator approach

2.1. CUME

In this subsection, we give a brief review of CUME (Zhu et al., 2010a,b). For ease of exposition, we assume hereafter that
E(X) = 0. Define

m(ỹ) = E(XI(Y ≤ ỹ)) (2.1)

for ỹ ∈ R1. To preserve the integrity of SY |X, let Ỹ be an independent copy of Y and the kernel matrix for CUME be defined
by:

M = E[m(Ỹ )mT (Ỹ )w(Ỹ )], (2.2)

where w(.) is a nonnegative weight function which is often set as 1.
Assuming the linearity condition (see Feng et al., 2013 more details will be given in Section 2.2), which is a mild

condition imposed on the marginal distribution of X only, the column space of M is a subset of 6SY |X, where 6 = Cov(X).
At the sample level, suppose (Xi, Yi), i = 1, . . . , n are independent copies of (X, Y ), we can estimate M by Mn =
1
n

n
i=1 mn(Yi)mT

n(Yi)w(Yi), wheremn(Yi) =
1
n

n
j=1(Xj−X̄)I(Yj ≤ Yi), and X̄ =

1
n

n
i=1 Xi. Let 6̂ =

1
n

n
i=1(Xi−X̄)(Xi−X̄)T

be the sample predictor variance, assuming a known d, the CUME estimator of SY |X is constructed by the d eigenvectors

of 6̂
−1

Mn corresponding to its d largest eigenvalues. Zhu et al. (2010a,b) studied the asymptotic properties of the CUME
estimator, and also provided a data-driven method on the determination of d.

2.2. The ensemble estimator approach

In this section, we revisit CUME via the ensemble estimator approach (Yin and Li, 2011). The main result of Yin and Li
(2011) is summarized by the following lemma.

Lemma 1 (Yin and Li, 2011). Let J be a family of functions f : ΩY → F, where F can be the set of real or complex numbers; let
FY be the distribution function of Y , L2(FY ) be the class of functions f (Y ) with finite variances and (f1, f2) = E[f1(Y )f2(Y )] as the
inner product. Let SE[f (Y )|X] be the central mean subspace for the conditional mean E[f (Y )|X], as defined in Cook and Li (2002). If
J is a subset of L2(FY ) that is dense in B, where B = {IB : B is a Borel set inΩY }, then we have:

Span{S[E(f (Y )|X)] : f ∈ J } = SY |X. (2.3)

Hence, for a sufficiently rich family of f (Y ), the conditional mean subspaces S[E(f (Y )|X)], when put together, can recover
the central subspace SY |X. Yin and Li (2011) showed that both the Fourier transformation method proposed by Zhu and
Zeng (2006), and the sliced regression (SR) proposed by Wang and Xia (2008) are special examples of the above ensemble
estimators. Specifically, Zhu and Zeng (2006) used J = {ft(y) = eıty : t ∈ R1

}, where ı is the imaginary unit; while Wang
and Xia (2008) used J = {ft(y) = I(−∞,t)(y) : t ∈ R1

}, and in practice taking those slicing points as the values for t , then
use MAVE (Xia et al., 2002) to estimate the individual central mean subspace SE[ft (Y )|X].

Assuming the following two conditions which are commonly used in the sufficient dimension reduction literature (Cook,
2004):

(a) linearity condition: E(X|ηTX) = PT
η(6)X, where Pη(6) = η(ηT6η)−1ηT6.

(b) coverage condition: Span(6−1m(t)) = SE[ft (Y )|X].
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We are now ready to demonstrate that CUME also belongs to the family of the ensemble estimators. Let J =

{ft(y) = I(−∞,t)(y) : t ∈ R1
}. The population coefficient vector from the ordinary least squares fit of ft(Y ) on X is

ηt = 6−1E(ft(Y )X) = 6−1m(t) without the intercept term. Following the result of Duan and Li (1991), it is not hard to
prove that, assuming condition (a), the above OLS coefficient falls into the central mean subspace SE[ft (Y )|X]. The following
proposition concludes our discussion of CUME in this section.

Proposition 1. Let J = {ft(y) = I(−∞,t)(y) : t ∈ R1
}, then assuming conditions (a) and (b), 6−1m(t) = SE[ft (Y )|X], and the

column space of 6̂
−1

Mn provides a consistent estimator of SY |X.

According to the above proposition, we can see that CUME is also a special example of the family of the ensemble estimators.

3. Covariance cumulative slicing estimation (COCUM)

3.1. The method

As Cook andNi (2006) pointed out, the use of ηt discards the intra-slice informationwhichmight result in a loss of power.
Instead, in this section,we propose amethod called the covariance cumulative slicing estimation (COCUM)which incorporates
the intra-slice information into the estimation of the central subspace SY |X.

To recover the intra-slice covariance information, following Cook and Ni (2006), we take

mc(ỹ) = E(XYI(Y ≤ ỹ)) (3.1)
for ỹ ∈ R1. The kernel matrix for COCUM,Mc , is constructed similarly as (2.2) except replacingm(ỹ) withmc(ỹ).

Denote βt = 6−1E(XYI(Y ≤ t)), it is easy to show that βt can be decomposed as Ft6−1 Cov(X, Y |I(Y ≤ t) =

1) + E(Y |I(Y ≤ t) = 1)ηt , where Ft = P(Y ≤ t).

Theorem 1. Assuming condition (a), then βt ∈ SY |X, for t ∈ R1. Furthermore, assuming condition (b) and a similar coverage
condition Span(6−1mc(t)) = SE[gt (Y )|X], where gt(y) = yI(y ≤ t), then, comparing with CUME, the column space of 6−1Mc

always encloses that of 6−1M.

Theorem 1 suggests that theoretically COCUM always wins over CUME under some conditions, since it recovers more of the
central subspace.

3.2. The asymptotic properties

The following theorem shows that COCUM possesses the same asymptotic property as CUME. Zhu et al. (2006) derived
the strong consistency for the slicing estimation of the SIR matrix when p = o(n1/4). However, the results from both CUME
and COCUM are better than Zhu et al. (2006). The proof is similar to that of Theorem 2 of CUME (Zhu et al., 2010a,b) and is
omitted.

Theorem 2. Let Xi be the ith coordinate of X, supposemax1≤i≤p E(X8
i Y

8) < ∞ uniformly for p, and then

∥6−1
n Mc

n − 6−1Mc∥ = o(pn−1/2 log n)

almost surely where ∥ · ∥ is the Frobenius norm, whereMc
n =

1
n

n
i=1 mc(Yi)mT

c (Yi)w(Yi).

Let Ỹ be an independent copy of Y , T (X, Y) = 6−1
{XXT

− EXXT
− (X − EX)EXT

− EX(X − EX)T }6−1Mc −

6−1
[2mc(Y )mT

c (Y )ω(Y ) + 2E{XYI(Y ≤ Ỹ )mT
c (Ỹ )ω(Ỹ )|X, Y } + 2E{mc(Ỹ )XTY T I(Y ≤ Ỹ )ω(Ỹ )|X, Y } − 6Mc]. The following

theorem states the asymptotic normality of our estimator which is similar to that of Theorem 3 of Zhu et al. (2010a,b). The
proof is also omitted.

Theorem 3. Assuming the following regularity conditions:
1. max1≤i≤p E(X8

i Y
8) < ∞ uniformly for p,

2. The minimum eigenvalue of 6 satisfies λmin(6) > 0,
3. The largest eigenvalue of Mc satisfies λmax(Mc) < ∞ holds uniformly for p,
4. E{γ TT (X, Y )γ } → G > 0 for any unit length γ ,
5. p = o(n1/2);
then

√
nγ T (6−1

n Mn − 6−1M)γ
D

−→ N(0,G).

3.3. The determination of d

One of the goals for sufficient dimension reduction is to estimate the structural dimension. Many methods have been
developed to determine the structural dimension, such as Li (1991), Schott (1994), Bura and Cook (2001), Zhu et al. (2006)
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Table 4.1
Ratio average (standard error) for Model I.

Method n = 200 n = 400 n = 600
Ratio Deviation Ratio Deviation Ratio Deviation

p = 10 CUME 0.71 0.22 0.80 0.18 0.85 0.14
COCUM 0.75 0.19 0.84 0.15 0.88 0.11

p = 15 CUME 0.66 0.19 0.74 0.17 0.79 0.14
COCUM 0.69 0.18 0.78 0.14 0.83 0.12

p = 20 CUME 0.63 0.16 0.71 0.16 0.76 0.14
COCUM 0.64 0.16 0.74 0.14 0.79 0.12

and Zhu et al. (2010a,b). Following Zhu et al. (2010a,b), we use a modified BIC-type method for COCUM. Define

G(k) = n
k

i=1

λ2
ni

 p
i=1

λ2
ni − Cnk(k + 1)/2 (3.2)

where λ̂n1 ≥ λ̂n2 ≥ · · · ≥ λ̂np are the sample eigenvalues of the kernel matrix. And the estimated dimension K̂ is defined as

K̂ = arg max
1≤k≤p

G(k). (3.3)

As pointed out in Zhu et al. (2010a,b), smaller value of the penalty constant Cn tends to overestimate the dimension d;
while larger Cn tends to underestimate the dimension d. A data-driven manner is needed to choose an appropriate value
for Cn under a certain method. We choose Cn =

1
2 log(n) which mostly leads to satisfactory results. The following theorem

states the consistency of K̂ . The proof is similar to that of Theorem 6 of Zhu et al. (2010a,b) and is omitted.

Theorem 4. Assuming the conditions in Theorem 2, if Cn
n → 0 and Cn → ∞, as n → ∞, the estimated structural dimension K̂

obtained via (3.3) converges to the true structural dimension d in probability.

4. Simulation studies

In this section, we compare the performance of COCUMwith CUME.We considered two differentmodels with the design
matrix generated fromnormal andGammadistributions. To evaluate the performance of differentmethods, following Li and
Dong (2009), we use the ratio of the square multiple correlation coefficient to the dimension d:

ρ2

d
=

trace{(β̂
T
6β̂)−1(β̂

T
6β)(βT6β̂)(βT6β)−1

}

d
(4.1)

as evaluation measurements. Here β̂ is the estimate for true β and 6 is the covariance matrix for predictor X. ρ2 gets closer
to the true dimension d if β̂

T
X and βTX have a linear relation and it is 0 if they are uncorrelated. Hence, the closer the ratio

is to 1, the better fit of the model. In our simulation studies, the average ratios from 1000 simulation runs are reported. In
addition, the frequencies of the estimated structural dimension over 1000 trials are also given to illustrate the performance
of the modified BIC method. For CUME, we follow the suggestion of Zhu et al. (2010a,b) and take Cn = 2n3/4/p. All numbers
reported in the frequency table are multiplied by 10.
Model I.We first consider a twodimensionalmodel (d = 2)with predictorsX = (X1, X2, X3, . . . , Xp) generated fromN(0, Ip),
and standard normal ϵ. The univariate response Y is constructed as:

Y = 1.5(5 + X1)(2 + X2 + X3) + 0.5ϵ. (4.2)

In this case, β = (β1, β2) where β1 = (1, 0, . . . , 0)T and β2 = (0, 1, 1, 0, . . . , 0)T . As shown in Table 4.1, in terms of the
average ratios, COCUM slightly outperforms CUME, while the performances of both methods deteriorate as p gets larger.
Table 4.2 suggests that CUME has serious problem of underestimating the structural dimension d = 2.
Model II. We now consider a model with the predictor X = (X1, X2, X3, . . . , Xp) generated from Gamma(0.1, 10), and
standard normal ϵ. The univariate response Y is constructed as:

Y = (10 + (X2 + 0.5)2)


(0.25 + X1) + 0.5ϵ. (4.3)

In this case,β = (β1, β2)whereβ1 = (1, 0, . . . , 0)T andβ2 = (0, 1, 0, . . . , 0)T . Table 4.3 provides the averages of the ratios
and standard errors of the averages from 1000 simulation runs for Model II. It is obvious that COCUMwins over CUME.With
larger sample size (n = 400 or 600), the average ratios are well above 0.9 even when p = 20. Table 4.4 again shows that
CUME tends to underestimate the structural dimension, while COCUM does a good job most of the time.
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Table 4.2
Dimension estimate for Model I.

p n d = 1 d = 2 d > 2
CUME COCUM CUME COCUM CUME COCUM

10 200 100 1 0 98.5 0 0.5
10 400 100 0.3 0 99.7 0 0
10 600 100 0.2 0 99.8 0 0
15 200 100 0 0 82.9 0 17.1
15 400 100 0 0 98.1 0 1.9
15 600 100 0 0 99.3 0 0.7
20 400 100 0 0 74 0 26
20 600 100 0 0 91 0 9

Table 4.3
Ratio average (standard error) for Model II.

Method n = 200 n = 400 n = 600
Ratio Deviation Ratio Deviation Ratio Deviation

p = 10 CUME 0.52 0.16 0.57 0.25 0.63 0.32
COCUM 0.93 0.15 0.96 0.08 0.98 0.04

p = 15 CUME 0.49 0.08 0.51 0.11 0.54 0.19
COCUM 0.89 0.20 0.94 0.10 0.96 0.07

p = 20 CUME 0.48 0.04 0.49 0.07 0.51 0.10
COCUM 0.85 0.22 0.92 0.14 0.95 0.08

Table 4.4
Dimension estimates for Model II.

p n d = 1 d = 2 d > 2
CUME COCUM CUME COCUM CUME COCUM

10 200 100 8.3 0 91 0 0.7
10 400 100 1.8 0 97.2 0 1
10 600 100 0.3 0 99 0 0.7
15 200 100 3.6 0 90.1 0 6.3
15 400 100 0.8 0 95.4 0 3.8
15 600 100 0.1 0 95.9 0 4
20 400 100 0.4 0 91.2 0 8.4
20 600 100 0.1 0 94.3 0 5.6

5. Conclusion

Zhu et al. (2010a,b) proposed a method called the cumulative slicing estimation (CUME) which sums up all possible
estimations relating to E(XI(Y ≤ ỹ)) for all ỹ in the support of Y to avoid the otherwise subjective selection of h. They
showed that the estimator of CUME enjoys the common

√
n convergence rate and is more efficient comparing to SIR and

other first-moment slicing estimation methods. In this article, we revisit CUME from the ensemble estimator approach (Yin
and Li, 2011) which helps us to gain more insights of CUME. We then propose a new method, which we call COCUM which
incorporates the intra-slice information into the estimation of the central subspace. The asymptotic properties of COCUM
are also discussed.

Our method can also be applied to multi-dimensional responses. For multi-response Y, we first adapt the projective
resampling method (Li et al., 2008) to our proposed COCUM. Suppose Y ∈ Rq and let U be a random vector uniformly
distributed on the unit sphere Sq. Then we can definem(U, y) = E{XUTYI(UTY ≤ UTy)} and construct the candidate matrix
M = E{m(U, Ỹ)mT (U, Ỹ)ω(Ỹ)}. The column space spanned by 6−1M is a subspace of SY|X.

We can further adapt the idea of COCUM to principle Hessian direction (Li, 1992). Define m(y) = E(ZZTYI(Y ≤ y)),
and then we can adopt M = E{m(Ỹ )mT (Ỹ )ω(Ỹ )} as the candidate matrix as a second order method, which is a potential
competitor of CUME–SAVE or CUME–DR.

In our opinion, the ensemble estimator approach (Yin and Li, 2011) sheds lights on the developments of many existing
sufficient dimension reduction methods such as SIR (Li, 1991), K th moment method (Yin and Cook, 2002), Fourier
transformation method (Zhu and Zeng, 2006), SR (Wang and Xia, 2008). It is of special interest to study how this approach
can be adopted to help developing new dimension reduction methods with functional data.
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Appendix

Proof of Proposition 1. Since ft(y) = I(−∞,t)(y),6−1m(t) is the population coefficient vector from the ordinary least square
fit of ft(Y ) on X without the intercept term. By Theorem 1 of Cook and Li (2002), we can show that 6−1m(t) ∈ SE[ft (Y )|X]

assuming condition (a). Take one step further, assuming condition (b), we then have the equality, i.e., Span(6−1m(t)) =

SE[ft (Y )|X].
Since J = {ft(y) = I(−∞,t)(y) : t ∈ R1

} is dense in L2(FY ), by Lemma 1, we have Span{S[E(ft (Y )|X)] : f ∈ J } = SY |X.
Let m̂(t) denote the corresponding sample estimator ofm(t), for t = Y1, . . . , Yn. Hence m̂(Yi) = mn(Yi). By Theorem 2.2 of
Yin and Li (2011), we have Span(6−1 n

i=1 m(Yi)mT (Yi)w(Yi)) = SY |X, a.s. Since Span(6̂
−1

m̂(t)) is a consistent estimator

of Span(6−1m(Yi)), for t = Y1, . . . , Yn, Span(6̂
−1

Mn) is also a consistent estimator of SY |X. �

Proof of Theorem 1. Let ft(y) = I(y ≤ t), and gt(y) = yI(y ≤ t), then 6−1m(t) = 6−1 Cov{ft(y),X}, and 6−1mc(t) =

6−1 Cov{gt(y),X}. Following similar arguments of Theorem 1 of Cook and Li (2002), we can show that 6−1m(t) ∈ Sft (Y )|X ,
and 6−1mc(t) ∈ Sgt (Y )|X . Assuming that Span(6−1m(t)) = Sft (Y )|X , and Span(6−1mc(t)) = Sgt (Y )|X .

For any α ∈ Rp×d,

gt(y)yX | αTX ⇒ ft(y)yX | αTX, a.s.

which implies that

Sft (Y )|X ⊆ Sgt (Y )|X.

By the structure ofM and Mc , it is straightforward that Span(6−1M) ⊆ Span(6−1Mc).
Also, it is easy to show that both6−1M and6−1Mc are inSY |X. Hence, under very strong coverage conditions, Span(6−1M)

recovers more of the central subspace. �
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