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Abstract

For regression problems with grouped covariates, we adopt the idea of sparse

group lasso (Friedman et al., 2010) to the framework of the sufficient dimension

reduction. We propose a method called the sparse group sufficient dimension reduc-

tion (sgSDR) to conduct group and withingroup variable selections simultaneously

without assuming a specific model structure on the regression function. Simulation

studies show that our method is comparable to the sparse group lasso under the

regular linear model setting, and outperforms sparse group lasso with higher true

positive rates and substantially lower false positive rates when the regression func-

tion is nonlinear or (and) the error distributions are non-Gaussian. One immediate

application of our method is to the gene pathway data analysis where genes natu-

rally fall into groups (pathways). An analysis of a glioblastoma microarray data is

included for illustration of our method.

KEY WORDS: Sparse Group Lasso; Gene Pathway Analysis; Sufficient Dimension Re-

duction.

1 Introduction

1.1 Sufficient Dimension Reduction

For a typical regression problem with a univariate random response Y and a p-dimensional

random vector X, sufficient dimension reduction (SDR: Li, 1991; Cook and Weisberg,
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1991; Cook, 1998) aims to reduce the dimension of X without loss of information on the

regression and without requiring a pre-specified parametric model. The basic idea of suf-

ficient dimension reduction is to replace the predictors X ∈ R
p with a lower dimensional

projection PSX onto a subspace S ⊆ R
p without the loss of information on the original

regression of Y |X, i.e., Y X|PSX, where indicates independence and P(.) stands for

a projection operator with respect to the standard inner product. Such an S is defined as

a dimension reduction subspace, and the smallest one is called the central subspace SY |X

(Cook, 1998), which exists under very mild conditions (Cook, 1998; Yin et al., 2008).

We assume the existence of SY |X throughout this article. dim(SY |X) = d is called the

structural dimension of the regression. The goal of sufficient dimension reduction is to

estimate and make statistical inferences about SY |X and d. Subsequent modeling and

prediction can then be built upon the reduced dimensional projection.

Many methods have been developed to estimate SY |X. Among them, sliced inverse re-

gression (SIR; Li, 1991), sliced average variance estimation (SAVE; Cook and Weisberg,

1991), minimum average variance estimation (MAVE; Xia et al., 2002), directional re-

gression (DR; Li and Wang, 2007) and are the most widely investigated methods in the

literature. Cook and Li (2002) proposed the central mean subspace where the interest

of dimension reduction is restricted to the conditional mean function E(Y |X). Recently,

Li et al. (2010) proposed a groupwise dimension reduction which incorporates the prior

group information when the predictors under investigation fall naturally into several

groups.

As pointed by Bondell and Li (2011), the general framework of sufficient dimension

reduction is also useful for variable selection since no pre-specified underlying models

between Y and X are required. Instead, usually a so-called “linearity condition” (Hall

and Li, 1993; Wen and Cook, 2007) on the marginal distribution of X is assumed. This is

a mild condition and holds approximately true when p goes to infinity. Ni, Cook and Tsai

(2005), Li and Nachtsheim (2006) and Li and Yin (2008) proposed model-free variable

selections by reformulating SDR as a penalized regression problem. Li (2007) proposed a

unified approach combining SDR and shrinkage estimation to produce sparse estimators
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of the central subspace. Wang et al. (2012) proposed a distribution-weighted lasso

method for the single-index model. However, none of those model-free variable selections

take the prior group (predictor network) information into account. Such situations do

arise in the gene pathway analysis where genes naturally fall into groups (pathways/ gene

networks; see the following subsection for more discussions). In this paper, we propose a

method called the sparse group sufficient dimension reduction (sgSDR), which conducts

both group and within-group variable selections simultaneously under the framework of

sufficient dimension reduction. We then apply our method to a survival analysis for

glioblastoma patients (Horvath et al., 2006) using gene expression profiles with about

1500 genes and 33 pathways.

1.2 Gene Pathway Analysis

Genetic association studies aim to detect the associations between gene expressions and

the occurrence or progression of disease phenotypes. Recent developments in microarray

techniques make it possible to profile gene expressions on a whole genome scale, simulta-

neously measuring expressions of thousands or tens of thousands of genes. New challenges

arise for the analysis of microarray data due to the large number of genes surveyed and

often the relatively small sample sizes. A large amount of existing approaches (to list

a few: Alon et al., 1999; Dudoit et al., 2002; Nguyen and Rocke, 2002; Rosenwald et

al., 2003) has been developed to identify a small subset of genes or linear combinations

of genes which are often referred to as super genes, that have influential effects on dis-

eases. Such studies can lead to better understanding of the genetic causation of diseases

and better predictive models. However, since the presence of cluster structure of genes

(gene pathways) was ignored, these methods are insufficient to dissect the complex ge-

netic structure of many common diseases. Here the clusters are composed of co-regulated

genes with coordinated functions. Gene annotation databases, such as KEGG (Ogata et

al., 2000), Reactome (Matthews et al., 2008), PID (http://pid.nci.nih.gov/) and BioCyc

(Karp et al., 2005), group functionally relevant genes into biological pathways. Since it
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is commonly believed that genes carry out their functions through intricate pathways

of reactions and interactions, intuitively, pathway-based analysis can offer an attractive

alternative to improve the power of gene (or SNP)-based methods, and may help us to

identify relevant subsets of genes in meaningful biological pathways underlying complex

diseases.

There are considerable interests in pathway-based analysis (to list a few: Manoli et

al., 2006; Wang et al., 2007; Li and Li, 2008; Wei and Pan, 2008; Ma and Kosorok,

2009; Pan et al., 2010; Zhu and Li, 2011). Pathway-based approaches in microarray

data analysis often yield biological insights that are otherwise undetectable by focusing

only on genes with the strongest evidence of differential expressions. Most pathway-

based methods focus on identifying meaningful biological pathways underlying complex

diseases, assuming that if a pathway (cluster) is strongly associated with the phenotype,

then all genes within that pathway are associated with the phenotype. However, if only

a subset of genes within a pathway contributes to the outcome, then these methods may

result in loss of power. Our sparse group sufficient dimension reduction is developed to

address this problem, where pathway selection and within pathway gene selection can be

achieved simultaneously. Details of our method will be presented in Section 2.

The remainder of this article is organized as follows. Section 2 describes our statistical

approach. It first reviews the sparse group lasso (Friedman et al., 2010), and then

shows how it can be extended within the context of sufficient dimension reduction. The

SLEP package (Liu et al., 2009) is adopted for the implementation of our method. Five-

fold cross-validation is used to select the related tuning parameters. Section 3 reports

simulation studies comparing the finite-sample performances of our method with the

sparse group lasso. A real data example on glioblastoma study (Horvath et al., 2006) is

discussed in Section 4. Conclusions and a brief discussion on future research directions

are given in Section 5.
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2 Sparse Group Sufficient Dimension Reduction

The lasso-penalized linear regression (Tibshirani, 1996) is applied to high-dimensional

regression problems with tens to hundreds of thousands of predictors. It finds a solution

with few nonzero entries by minimizing:

1

2
||y −Xβ||22 + λ||β||1, (2.1)

where y = (y1, . . . , yn)
T is the observed centered response vector, X = (x1, . . . ,xn)

T is

the centered design matrix with xi = (xi
1, . . . , x

i
p)

T being the predictor values for the

ith observed subject, β ∈ R
p the vector of regression coefficients, ||z||22 = (

∑

j z
2
j )

1

2 the

Euclidean (l2) norm and ||z||1 =
∑

j |zj| the l1 norm. The first term in (2.1) represents

the loss function minimized in the ordinary least squares, the second term is the lasso

penalty function while the multiplier λ > 0 is the penalty constant. Large value of λ will

set some components βj exactly to 0. The lasso has become a popular model selection

and shrinkage estimation method since it is capable of producing sparse models and is

computationally feasible. In some applications, it is natural to group predictors (Yuan

and Lin, 2006). This raises the question of how to penalize a group of parameters. The

group lasso proposed by Yuan and Lin (2006) overcomes that problem by minimizing the

following penalized least squares regression:

1

2
||y −

G
∑

g=1

X (g)β(g)||22 + λ

G
∑

g=1

√
pg||β(g)||2, (2.2)

where X (g) is the submatrix of X with columns corresponding to the predictors in the

gth group, β(g) the coefficient vector of that group with pg as its length. The rescaling

factor pg makes the penalty level proportional to the group size, which ensures that small

groups are not overwhelmed by large groups in group selections. The group lasso penalty

has been investigated in multiple studies (Bakin, 1999; Meier et al., 2008; Huang et al.,

2009). The sparsity of the solution is determined by the tuning parameter λ. When the

group size pg = 1, group lasso is reduced to the regular lasso. While the group lasso can

identify important groups, it is not capable of selecting important predictors within each

group, which will be an issue when pg is large.
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Friedman et al. (2010) proposed the sparse group lasso (SGL) which could achieve

sparsity of both groups and within each group by minimizing the following penalized

least squares regression:

1

2
||y −

G
∑

g=1

X (g)β(g)||22 + λ1

G
∑

g=1

√
pg||β(g)||2 + λ2||β||1. (2.3)

It is reduced to the group lasso when λ2 = 0, and the lasso when λ1 = 0. Sparse

group lasso is capable of selecting important groups and important predictors within the

selected groups simultaneously. It might lead to better predictions since it takes the

cluster structure into consideration; and also, its within-group variable selection aspect

can lead to more parsimonious models and hence interpretable results. However, all the

above lasso-based methods assume a linear relationship between the response and the

predictors, and may not be robust to non-Gaussian errors. We propose a sparse group

sufficient dimension reduction method to overcome these limitations.

Li et al. (2010) proposed the groupwise dimension reduction which incorporates the prior

grouping information into the estimation of the central mean subspace. Simulation stud-

ies and real data analyses showed that the groupwise dimension reduction approach can

substantially increase the estimation accuracy and enhance the estimates interpretabil-

ity. However, their method is limited to the dimension reduction of the conditional mean

(E(Y |X)), and is not capable of variable selections. The sparse group sufficient dimen-

sion reduction (sgSDR) method we propose in this article can conduct variable selection

in the general dimension reduction context (not limited only to the conditional mean)

while incorporating the group knowledge, and also can be applied to the n << p setting.

We focus on the following general single-index model:

Y = g(βTX, ǫ) (2.4)

Without loss of generality, we assume thatX is centered with E(X) = 0, and also suppose

that X can be splitted into G groups, XT = (X(1),X(2), · · · ,X(G)), where X(g) is a pg-

dimensional row vector, for g = 1, . . . , G, and
G
∑

g=1

pg = p. Following Wang et al. (2012),
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we consider the following minimization problem:

1

2
||Fn(y)−

G
∑

g=1

X (g)β(g)||22 + λ1

G
∑

g=1

√
pg||β(g)||2 + λ2||β||1, (2.5)

where Fn(y) = (Fn(y1), . . . , Fn(yn))
T and X are all centered, and Fn(.) is the empiri-

cal distribution function. We call the solution (β(g)) of (2.5) the sparse group sufficient

dimension reduction estimator (sgSDR). Equation (2.5) is based on the following obser-

vation. The proof is similar to that of Proposition 2.1 of Wang et al. (2012) and is hence

omitted.

Proposition 1 Under the linearity condition, and assume that Σs, the marginal covari-

ance matrix of all the significant predictors (denoted by Xs here for easy of exposition)

is invertible, then

Σ−1
s Cov{Xs, F (Y )} = cβs,

where βs consists all non-zero coefficients of β from (2.4), c ∈ R
1 is a constant, F (Y )

is the cumulative distribution function of Y .

We adopt the SLEP package (Liu et al., 2009) to implement our method. To select

the two tuning parameters, λ1 and λ2, we employ the commonly used five-fold cross

validation.

3 Simulation Studies

In this section, we compare the performance of our method with the sparse group lasso.

We considered linear models, nonlinear models and generalized linear models with Gaus-

sian and non-Gaussian errors. We use the average true positive rate (TPR = the ratio of

the number of correctly declared active variables to the number of truly active variables);

and the average false positive rate ( FPR = the ratio of the number of falsely declared
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Table 3.1: Linear model I with Gaussian error

l = 1 l = 2 l = 3

TPR FPR TPR FPR TPR FPR

sgSDR 0.75 0.13 0.64 0.32 0.58 0.35

SGL 0.75 0.10 0.64 0.31 0.56 0.32

active variables to the total number of truly inactive variables) as evaluation measure-

ments to summarize variable selection results from 100 simulation runs. We used the

SLEP package (Liu et al., 2009) and Matlab for all our numerical studies.

Model I: For a fair comparison, we first consider a regular linear model as Simon et

al. (2012) discussed in their paper. The predictor X is generated from N(0, Ip), ǫ is

standard normal and independent of X, the univariate response Y is constructed as:

Y =
G
∑

g=1

(β(g))TX(g) + σǫ, (3.6)

where G = 10, σ is set to make the signal to noise ratio as 2. And the coefficients for

the first l group are β(g) = (1, 2, 3, 4, 5, 0, . . . , 0)T , for g = 1, . . . , l, with l varying from 1

to 3; and all zeros for the rest of G − l groups. Following Simon et al. (2012), we took

n = 60, p = 1500. Table 3.1 provides the average true positive and false positive rates.

As shown in Table 3.1, the performances of sgSDR and SGL are comparable in the sense

that the average TPRs and FPRs are very close to each other.

Model II: We now consider a variation of Model I. We take p = 2000, G = 10, Y is

still generated as in (3.6), however, the predictors now are mildly correlated, ǫ follows

Cauchy(1) distribution, and β(g) = (−2, 3, 0, . . . , 0)T , for g = 1, . . . , l, with l varying

from 1 to 3; and zeros otherwise. Specifically, within each group, X(g) = (X
(g)
1 , . . . , X

(g)
200)

are all generated as independent standard normal random variables except X
(g)
3 , which

is generated to be correlated with X
g
1 and X

g
2 by:

X
(g)
3 =

2

3
X

(g)
1 +

2

3
X

(g)
2 +

1

3
eg, (3.7)
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Table 3.2: Linear model with Cauchy error and correlated predictors

l = 1 l = 2 l = 3

TPR FPR TPR FPR TPR FPR

sgSDR 1.00 0.02 0.98 0.04 0.92 0.04

SGL 0.80 0.42 0.71 0.41 0.74 0.42

Table 3.3: Linear model three with Cauchy error

l = 5 l = 10 l = 15

TPR FPR TPR FPR TPR FPR

sgSDR 0.98 0.03 0.88 0.04 0.77 0.06

SGL 0.72 0.26 0.62 0.19 0.59 0.28

where eg follows standard normal distribution. Different version of Model II was consid-

ered by Wang et al. (2012).

The simulation results with n = 60 from 100 simulation runs are shown on Table 3.2.

We can see that our method (sgSDR) is more robust under the Cauchy random error,

which tends to yield relatively higher TPR and significantly lower FPR, compared with

SGL with respect to variable selections. With p = 2000 in our setting, SGL provides a

FPR about 40% higher than our method, which means that about 800 more inactivate

variables are mistakenly selected as significant variables by SGL.

Model III: In this example, the linear model (3.6) is reconsidered with larger sample

size, larger dimension p and more groups, that is, n = 200, p = 5000 and G = 50. The

predictors are generated by N(0,Σ), where Σ =
(

.5|i−j|
)

, i, j = 1, . . . , p. We consider l

(5, 10, 15) significant groups, with β(g) = (3, 1.5, 2, . . . , 0)T , g = 1, . . . , l. The results are

shown on Table 3.3. Similar conclusions as Model II can be drawn here.
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Table 3.4: Nonlinear model with Gaussian and Cauchy error

l = 1 l = 2 l = 3

Method TPR FPR TPR FPR TPR FPR

sgSDR 0.99 0.03 0.99 0.02 0.97 0.03

Gaussian Error SGL 0.98 0.87 0.97 0.95 0.96 0.98

sgSDR 1.00 0.01 0.98 0.04 0.92 0.02

Cauchy Error SGL 1.00 1.00 1.00 0.99 1.00 1.00

Model IV: We now compare the performances of sgSDR and SGL for nonliner models

under the standard normal and Cauchy errors. We consider the following model:

Y = exp
(

G
∑

g=1

X(g)β(g) + 3ǫ
)

(3.8)

The predictors X and the coefficients β are set up exactly the same as those of Model II,

and ǫ ∼ N(0, 1). As shown on Table 3.4, our method outperforms SGL with significantly

lower FPR and slightly higher TPR. For models with non-nonlinear regression function

and Cauchy errors, SGL fails completely, the average FPR for SGL is above 99%, which

implies that it mistakenly selected over 1900 inactive predictors as significant ones.

4 A Real Data Analysis

We demonstrate our method by analyzing a microarray gene expression data with

glioblastoma patients by Horvath et al. (2006). Glioblastoma is the most common and

aggressive malignant brain tumor in humans. Patients with this disease have a median

survival time of approximately 15 months from the time of diagnosis despite various treat-

ments such as surgery, radiation and chemotherapy. Consisting of two independent sets

of clinical tumor samples of n = 55 and n = 65, the dataset was obtained by Affymetrix

HG-U133A arrays, and processed by the RMA method (Irizarry et al., 2003). As Pan et

al. (2010) pointed out, the two datasets were somewhat different from each other, and

they only used dataset one in their analysis. Following Pan et al. (2010), we also focus on
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the 50 patients with observed survival times from dataset one, and took the log survival

time (in days) as the response variable in our analysis and the gene expression profiles as

predictors. Our goal is to simultaneously identify significant pathways and genes within

those pathways that are strongly associated with the survival time from glioblastoma.

We merged the gene-expression data with the 33 regulatory pathways recorded in the

KEGG database. Among the 1668-node of the 33 pathways, 1507 (Entrez ID) out of

22283 genes (Probe ID) are identified on the HG-U133A chip. Following Li and Li

(2008), Pan et al. (2010), and Zhu and Li (2011), we only use these 1507 genes in our

following analysis. When there are multiple probe set ids corresponding to a single Entrez

KEGG id, we took the average expression levels of those probe ids.

We compared our result with Li and Li (2008). As reported on Table 4.1, our pathway

selection is similar to that of Li and Li (2008) except for pathway 6, 13, 18, 17 and 27

(Cell cycle, Extracellular matrix-receptor interaction, Gap junction, Complement and

coagulation cascades, Type I diabetes mellitus). Among those five pathways, the first

three pathways were selected by our method but not by Li and Li (2008), while the latter

two were selected by Li and Li (2008) only. As reported in Sun, et al. (2012), the entire

tumor growth profile in brain cancer is a collective behavior of cells regulated by the cell

cycle pathway (pathway 6). The study result from Phillips laboratory (UCSF) shows that

heparan sulfate proteoglycans (HSPGs) in extracellular matrix (pathway 13) can change

tumor cell behavior including proliferation, invasion and recruitment of inflammatory

cells. Zhu and Li (2011) ranked all the 33 pathways according to their significances,

pathway 17 and 27 which were only selected by Li and Li (2008), ranked 30th and 28th

respectively, suggesting that they are not very important pathways.

MAPK signaling pathway (pathway 1), Cytokine-cytokine receptor interaction pathway

(pathway 3), Neuroactive ligand-receptor interaction pathway (pathway 5), and Com-

plement and coagulation cascades (pathway 18) were ranked as the top 4 significant

pathways related to the brain cancer by Zhu and Li (2011) using a nonlinear dimension

reduction method. Our pathway selection is consistent with Zhu and Li (2011), since
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Table 4.1: Pathway Selections for Glioblastoma Data
Group Pathway Name sgSDR Li and Li

1 MAPK signaling pathway X X

2 Calcium signaling pathway X X

3 Cytokine-cytokine receptor interaction X X

4 Phospatidylinositol signaling system X X

5 Neuroactive ligand-receptor interaction X X

6 Cell cycle X

7 Ubiquitin mediated proteolysis X X

8 Apopttosis X X

9 Wnt signaling pathway X X

10 Transforming growth factor-beta signaling pathway X X

11 Axon guidance X X

12 Focal adhesion X X

13 Extracellular matrix-receptor interaction X

14 Cell adhension molecules X X

15 Adherens junction X X

16 Tight junction X X

17 Gap junction X

18 Complement and coagulation cascades X

19 Toll-like receptor signaling pathway X X

20 Jak-STAT signaling pathway X X

21 Natural killer cell mediated cytotoxicity X X

22 Circadian rhythm

23 Regulation of actin cytotoxicity X X

24 Insulin signaling pathway X X

25 Adipocytokine signaling pathway X X

26 Type II diabetes mellitus X X

27 Type I diabetes mellitus X

28 Alzheimer’s disease

29 Prion diseases

30 Cocaine addition

31 Unknown

32 Unknown

33 Unknown
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all these 4 pathways are selected by sgSDR. For the within pathway gene selection, our

method selected 85 unique genes. Among them, 10 genes are the same as that of Li and

Li (2008), i.e., MAP3K7, CX3CL1, SYNJ2, UBE2E1, SMURF2, CLDN6, IRF3, IL21R,

PCK1, FOXO1A. And FOXO1A was also identified by Pan et al. (2010) as one of the

significant transcription factors associated with glioblastoma.

5 Conclusions and Discussion

We propose a method called sgSDR within the framework of sufficient dimension reduc-

tion which could conduct group and within group variable selection simultaneously. Our

method is comparable to the sparse group lasso (Friedman et al., 2010; Simon et al.,

2012) for the linear models, and outperform it when the regression function is nonlinear.

Also, our method is robust to the error distributions. A glioblastoma data is used to

illustrate the applications of our method to the gene pathway analysis. The consistency

of our group and variable selections deserves further investigation.
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[24] Meier, L., van de Geer, S. and Bühlmann. (2008). The group lasso for logistic
regression. Journal of the Royal Statistical Society, Ser. B , 70, 53–71.

[25] Nguyen, D. and Rocke, D. M. (2002). Partial least squares proportional hazard
regression for application to DNA microarray data. B Bioinformatics, 18, 1625–1632.

14



[26] Ni, L., Cook, R. D. and Tsai, C. (2005). A note on shrinkage sliced inverse regression.
Biometrika, 92, 242–247.

[27] Ogata, H., Goto, S., Sato, K., Fujibuchi, W., Bono, H. and Kanehisa, M. (1999).
KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Research, 27, 29–34.

[28] Pan, W., Xie, B. and Shen, X. (2010). Incorporating predictor network in penalized
regression with application to microarray data. Biometrics, 66, 474–484.

[29] Rosenwald A, Wright G and others. (2003). The proliferation gene expression sig-
nature is a quantitative integrator of oncogenic events that predicts survival in mantle
cell lymphoma. Cancer Cell, 3, 185–197.

[30] Simon, N., Friedman, J., Hastie, T., and Tibshirani, R. (2012). The sparse group
lasso. Journal of Computational and Graphical Statistics, in press.

[31] Sun, X., Zhang, L., and others. (2012). Multi-scale agent-based brain cancer model-
ing and prediction of TKI treatment response: Incorporating EGFR signaling pathway
and angiogenesis. BMC Bioinformatics, 13, 218.

[32] Tibshirani, R. (1996). Regression shrinkage and selection via the lasso. Journal of
the Royal Statistical Society, Ser. B , 58, 267–288.

[33] Wang, K., Li, M. and Bucan, M. (2007). Pathway-based approaches for analysis of
genomewide association studies. American Journal of Human Genetics, 81, 1278–1283.

[34] Wang, T., Xu, P. and Zhu, L.-X. (2012). Non-convex penalized estimation in high-
dimensional models with single-index structure. Journal of Multivariate Analysis, 109,
221–235.

[35] Wei, P. and Pan, W. (2008). Incorporating gene networks into statistical tests for
genomic data via a spatially correlated mixture model. Bioinformatics, 24, 404–411.

[36] Wen, X. and Cook, R. D. (2007). Optimal sufficient dimension reduction in regres-
sions with categorical predictors. Journal of Statistical Planning and Inference, 137,
1931–1978.

[37] Xia et al. (2002). An adaptive estimation of dimension reduction space. Journal of
the Royal Statistical Society, Ser. B , 64, 363–410

[38] Yin, X., Li, B., and Cook, R. D. (2008). Successive direction extraction for esti-
mating the central subspace in a multiple-index regression. Journal of Multivariate
Analysis, 99, 1733–1757.

[39] Yuan, M. and Lin, Y. (2006). Model selection and estimation in regression with
grouped variables. Journal of the Royal Statistical Society, Ser. B , 68, 49–67.

[40] Zhu, H. and Li, L. (2011). Biological pathway selection through nonlinear dimension
reduction. Biostatistics, 12, 429–444.

15


