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a b s t r a c t

Existing model-free tests of the conditional coordinate hypothesis in sufficient dimension
reduction (Cook (1998) [3]) focused mainly on the first-order estimation methods such as
the sliced inverse regression estimation (Li (1991) [14]). Such testing procedures based
on quadratic inference functions are difficult to be extended to second-order sufficient
dimension reduction methods such as the sliced average variance estimation (Cook and
Weisberg (1991) [9]). In this article,wedevelop twonewmodel-free tests of the conditional
predictor hypothesis. Moreover, our proposed test statistics can be adapted to commonly
used sufficient dimension reduction methods of eigendecomposition type. We derive the
asymptotic null distributions of the two test statistics and conduct simulation studies to
examine the performances of the tests.

© 2012 Elsevier Inc. All rights reserved.

1. Introduction

For parametric regressions, hypothesis testing for predictor contributions to the response is a well developed research
area. For instance, in the linear models, t test is often applied to check the contribution of every predictor. However, for
semiparametric models, this topic has not yet received enough attention because how to construct a test therein is a
challenge. To attack this problem, Cook [4] investigated this issue in a dimension reduction framework.

For a typical regression problem with a univariate random response Y and a vector of random predictors X =

(X1, . . . , Xp)
T

∈ Rp, the goal is to understand how the conditional distribution Y |X depends on the value of X. The spirit
of sufficient dimension reduction [14,3] is to reduce the dimension of X without loss of information on the regression
and without requiring a pre-specified parametric model. Assuming the following semiparametric regression model: Y =

g(βT
1X, βT

2X, . . . ,βT
dX, ϵ), where g(·) is an unknown function and ϵ is an unknown random error independent of X, we

can see that the conditional distribution of Y |(βT
1X, . . . ,βT

dX) is the same as that of Y |X for all values of X. Hence, these
β’s provide a parsimonious characterization of the conditional distribution of Y |X. We call them the effective (sufficient)
directions [14,3]. When d is small which is often the case in real applications, the original regression problem (data) can be
effectively reduced by projecting X along these effective directions.

More formally, we search for subspaces S ⊆ Rp such that YyX|PSX where y indicates independence, and P(·) stands
for a projection operator with respect to the standard inner product. The intersection of all such S is defined as the central
subspace, denoted as SY |X [3], which almost always exists in practice under mild conditions [25]. We assume the existence
of the central subspaces throughout this article. Sufficient dimension reduction is concerned withmaking inferences for the
central subspace. d = dim(SY |X ) is called the structural dimensionof the regression. Unlike other nonparametric approaches,
sufficient dimension reduction can often avoid the curse of dimensionality. Many sufficient dimension reduction methods
enjoy

√
n convergence rates since they exploit the global features of the dependence of Y on X.
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Sufficient dimension reduction has been a promising field during the past decades. It has attracted considerable interests,
and many methods have been developed. Among them, sliced inverse regression (SIR; [14]), sliced average variance
estimation (SAVE; [9]), minimum average variance estimation [22], inverse regression estimation [7] and directional
regression (DR; [17]) are the most widely investigated methods in the literature. All these aforementioned methods except
Xia et al. [22] mainly focus on the estimation of the central subspace.

Other than estimating the central subspace, it is also of interest to evaluate the predictor effects in a model free setting.
Cook [4] considered two types of hypotheses to test the significance of subsets of predictors under the framework of
sufficient dimension reduction. The first type is the Marginal Coordinate Hypothesis: PHSY |X = Op versus PHSY |X ≠ Op.
The second type is called the Conditional Coordinate Hypothesis:

PHSY |X = Op versus PHSY |X ≠ Op given d; (1.1)

whereH is an r-dimensional (r ≤ p−d) user-selected subspace of the predictor space andOp indicates the origin in Rp. For
example, suppose thatXT

= (XT
1,X

T
2), whereX1 ∈ Rr andX2 ∈ Rp−r , andwewould like to test ifX1 makes any contributions

to the regression Y |X, we then consider these two types of hypotheses tests with H = Span((Ir , 0)T ). Although in general,
H need not correspond to a subset of predictors (coordinates).

Hence, both the marginal coordinate hypothesis and the conditional coordinate hypothesis can be used to test the
contributions of selected predictors without requiring a pre-specified model about the original regression Y |X. When d,
the structural dimension of the regression, is specified as a modeling device, or inferences on d result in a clear estimate,
a conditional coordinate hypothesis test will be the natural choice. Otherwise, a marginal coordinate hypothesis would be
tested. We would expect that the conditional coordinate hypothesis will provide us with greater power when a correct d is
given prior to testing predictors. On the other hand, when d is misspecified, a conditional coordinate hypothesis test might
lead tomisleading results, while themarginal coordinate hypothesis test should be considered. Although simulation studies
provided in Section 4 suggest that the misspecification of d need not be a worrisome issue in practice.

Based on a nonlinear least squares formulation of the sliced inverse regression estimation, Cook [4] constructed asymp-
totic tests for themarginal and conditional coordinate hypotheses. Cook andNi [7] showedhow to testmarginal (conditional)
coordinate hypotheses using various quadratic inference functions, which stimulated the tests of conditional independence
hypotheses based on the minimum discrepancy approach [7] and the covariance inverse regression estimation [8].

All the aforementioned tests are based on the first moment of the inverse regression of X|Y that are called the first-order
sufficient dimension reduction methods. Note that these tests for the predictor contributions might be invalid when the
response surface is symmetric about the origin since these first-order sufficient dimension reduction methods themselves
would fail in such cases. Therefore, it is of great interest to consider coordinate tests using the second-order sufficient di-
mension reductionmethodswhich involve both the first and secondmoments of the inverse regression ofX|Y . However, the
commonly used second-order sufficient dimension reduction methods such as the sliced average variance estimation [9],
and the directional regression [17], are very different from those first-ordermethodswhich could be derived from quadratic
inference functions. Hence, the asymptotic tests developed by Cook andNi [7] are not directly applicable. Shao et al. [21] pro-
vided amarginal coordinate test based on the sliced average variance estimation. But to the best of our knowledge, there are
nomethods available in the literature for testing of the conditional coordinate hypotheses of (1.1)with second-order dimen-
sion reduction methods. To address this issue, we in this article present two new tests of conditional coordinate hypotheses
which could be adapted to essentially all existing sufficient dimension reduction methods of the eigendecomposition type,
including both the sliced inverse regression estimation and the sliced average variance estimation methods.

The rest of the paper is organized as follows. Section 2 revisits several moment based sufficient dimension reduction
methods. In Section 3, we construct two new tests and present their asymptotic null distributions. Sections 4 and 5 are
concerned with simulation studies and a real data application. We conclude with a brief discussion in Section 6. For easy of
exposition, the proofs of the asymptotic results are deferred to the Appendix A.

2. Sufficient dimension reduction methods revisited

Let µ = E(X), 6 = Var(X), and Z = 6−1/2(X − µ) be the standardized predictor. Many moment based sufficient
dimension reduction methods can be formulated as the following eigendecomposition problem:

Mηi = λiηi, i = 1, . . . , p, (2.2)

where M is the Z scale method-specific candidate matrix. Under certain conditions imposed only on the marginal
distribution of the predictor, the eigenvectors (η1, . . . , ηd) corresponding to the nonzero eigenvalues λ1 ≥ · · · ≥ λd form
a basis of the Z scale central subspace SY |Z . Then by the invariance property SY |X = 6−1/2SY |Z as described by Cook [3],
β = (6−1/2η1, . . . , 6−1/2ηd) forms a basis of SY |X .

As most of commonly used sufficient dimension reduction methods that target SY |Z are of candidate matrices satisfying
the above eigendecomposition, we only list some as follows:

Sliced Inverse Regression: M = Var{E(Z|Y )};

Sliced Average Variance Estimation: M = E{Ip − Var(Z|Y )}2;

Directional Regression: M = 2E{E2(ZZT
|Y )} + 2E2

{E(Z|Y )E(ZT
|Y )} + 2E{E(ZT

|Y )E(Z|Y )}E{E(Z|Y )E(ZT
|Y )} − 2Ip.
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As we discussed in Section 1, SIR is a first-order estimation method, while SAVE and DR are second-order methods. Li and
Wang [17] showed that both SAVE and DR are exhaustive under certain conditions posed on the marginal distribution of X;
that is, the column spaces of the candidate matrices based on SAVE and DR are equal to SY |Z . However, it is known that SIR
is not exhaustive when the relation between Y and X contains a U-shaped trend. Thus in addition to SIR, it is necessary to
develop conditional coordinate tests based on second-order sufficient dimension reduction methods. In the following, we
adopt SIR, SAVE and DR to illustrate the idea of our proposed tests and evaluate their performances in simulation studies.

3. Two general tests of conditional coordinate hypotheses

3.1. The first test statistic

Let W be a user-selected p × r matrix basis of H . The null hypotheses of (1.1) implies that W Tβi = W T6−1/2ηi = 0
for i = 1, . . . , d. It is then natural to study the asymptotic null distribution of W T6−1/2ηi and further construct test
statistic, where 6 andηi are the sample estimators of 6 and ηi respectively. Zhu and Fang [26], Chen and Li [2] and Fung
et al. [11] derived the asymptotic distributions of the ith (1 ≤ i ≤ d) estimated directionηi by different inverse regression
methods.However, their theoretical results require that thenonzero eigenvalues ofM are distinct,which is a rather stringent
condition. When this condition is violated, their asymptotic results for theηi’s will not be valid.

To address this issue, we consider P =
d

i=1 ηiη
T
i rather than ηi. Let Q =

p
i=d+1 ηiη

T
i . Note that Q is the unique

eigenprojection corresponding to zero eigenvalue with multiplicity p−d. Therefore P = Ip −Q is always identifiable, while
ηi is not identifiable if the corresponding eigenvalue, λi, is amultiple eigenvalue.We then takeH = 6−1/2W(W T6−1W)−1/2

to be an orthonormal basis of 6−1/2H and let L1 = trace(HTPH). The next proposition connects the conditional coordinates
hypothesis with L1.

Proposition 1. Assume that Span(M) = SY |Z and d = dim(SY |X ) is known, then PHSY |X = Op if and only if L1 = 0.

Proposition 1 inspires us to construct the following test statistic:
T1 = nL1 = ntrace(HTPH),

where P is the estimator of P and H = 6−1/2
W(W T6−1

W)−1/2. As we know, the sliced inverse regression may miss
directions inSY |Z when the regression function E(Y |X) is curvedwith little linear trend, hence the condition Span(M) = SY |Z
maynot hold for estimationmethods by the sliced inverse regression. Therefore, in addition to themethods developed based
on sliced inverse regression, we also consider the asymptotic null distribution of T1 with sliced average variance estimation
and directional regression which can better or even exhaustively estimate the central subspace. Let M be the sample level
candidate matrix corresponding to one of the aforementioned three dimension reduction methods. The following lemma
provides us with the expansions of 6−1/2 and M.

Lemma 1. Assume that the data (Xi, Yi), for i = 1, . . . , n, are a random sample from (X, Y ) with finite fourth order moments.
Then we have the following expansions:6−1/2

= 6−1/2
+ En{6∗−1/2(X, Y )} + op(n−1/2),M = M + En{M∗(X, Y )} + op(n−1/2),

where En{.} indicates the sample average n−1 n
i=1{.}, and the explicit formula of 6∗−1/2(X, Y ) andM∗(X, Y ) (for SIR, SAVE and

DR) are given in Appendix B.

The next theorem gives the asymptotic distribution of T1 under null hypothesis (1.1).

Theorem 1. Assume the conditions of Proposition 1 and Lemma 1 hold. Then under null hypotheses (1.1)

T1 −→

dr
i=1

ωiχ
2
i (1),

where d = dim(SY |X ), r = dim(H), ω1 ≥ · · · ≥ ωdr are the eigenvalues of Ω = E{vec(A)vec(A)T } with

A = (W T6−1W )−1/2W T


6∗−1/2(X, Y )P + 6−1/2M∗(X, Y )

d
i=1

λ−1
i ηiη

T
i


,

and vec(·) is the operator which stacks the columns of a matrix to form a vector.

By substituting sample estimates for the unknown quantities, we can get a consistent estimates of Ω , denoted by Ω .
Moreover, the weights ωi’s can be consistently estimated as the sample eigenvalues ω̂i’s of Ω . Then a p-value for the
conditional coordinate hypothesis can be constructed by comparing the observed value of the test statistic to the percentage
points of

dr
i=1 ω̂iχ

2
i (1), which can be approximately obtained by Monte Carlo simulations. We can also approximate the

tail probabilities by using the modified test statistics proposed by Bentler and Xie [1].
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3.2. The second test statistic

Naik and Tsai [19] suggested a constrained sufficient dimension regression approach for incorporating the prior
information. If we regard the null hypothesis as the prior information, we can follow Naik and Tsai [19] to impose
corresponding constraints when applying any sufficient dimension reduction methods. Then we can compare the sufficient
dimension reduction estimators under the null hypothesis (1.1) and under the full model to construct our test statistic.

Let PW = HHT ,QW = Ip − PW and Mc = QWMQW . Then Mc can be regarded as the candidate matrix under the null
hypothesis (1.1). Denote the ith eigenvalue and its corresponding eigenvector of Mc by ρi and ξi respectively, i = 1, . . . , p.
Let Pc =

d
i=1 ξiξ

T
i and L2 = ∥P − Pc∥2. Similar to Proposition 1, the next proposition relates the null hypothesis (1.1) to L2.

Proposition 2. Assume the same conditions of Proposition 1 hold, then PHSY |X = Op if and only if L2 = 0.

LetPW = HHT ,QW = Ip −PW and Mc = QW McQW be the sample estimators of PW ,QW and Mc respectively. Letρi’s andξi’s be the sample eigenvalues and sample eigenvectors of Mc . Denote the sample estimator of Pc byPc =
d

i=1
ξiξTi . Then a

test statistic can be constructed as the difference betweenP andPc , that is, T2 = nL2 = n∥P −Pc∥2. The next theorem gives
the limiting distribution of T2 under null hypothesis.

Theorem 2. Assume the same conditions of Theorem 1 hold, then under null hypotheses (1.1),

T2 −→

dr
i=1

δiχ
2
i (1),

where d = dim(SY |X ), r = dim(H), and δ1 ≥ · · · ≥ δdr are the eigenvalues of ∆ = E{vec(B + BT )vec(B + BT )T } with

B =

PWM∗(X, Y ) + 6−1/2W(W T6−1W)−1W T6∗−1/2(X, Y )M

 d
i=1

λ−1
i ηiη

T
i .

∆ can be consistently estimated using the obvious sample analogues. Then the nonzero eigenvalues δi’s of ∆ can also be
consistently estimated, denoted by δ̂i’s.

4. Simulation studies

4.1. Study 1: tests with the sliced inverse regression estimation

In this section, we conduct a simulation study to examine the asymptotic results of proposed tests based on the sliced
inverse regression. We also compare our tests with the sliced inverse regression based general marginal coordinate test and
general conditional coordinate test developed by Cook [4]. We consider the following two models: (I) Y = 1/X1 + 0.2ϵ, (II)
Y = exp(X1)sgn(X2) + 0.2ϵ. The predictor vector X = (X1, . . . , Xp) follows a multivariate normal distribution with mean
0, and the correlation between Xi and Xj is 0.5|i−j|, The error ϵ is standard normal and is independent of X. The predictor
dimension p is taken as 4 and 8. Model I is one dimensional, and Model II is of two dimensional structure. We use h = 5
slices and summarize the results over 1000 replications for each simulation study.

Table B.1 contains the empirical levels of the tests under the null hypothesis that SY |X ⊆ V versus the alternative
hypothesis SY |X ⊈ V based onModels I and II, where V = Span(e1, e2) and ei is a canonical basis vector with its ith element
being 1 and all other elements being 0. It becomes apparent that the significance levels are well attained in most cases for
every test if n is large. However, when p is large and n is relatively small, our tests perform better overall. For example, when
p = 8, n = 200, and the nominal level is α = 0.05, the actual levels of our tests are 0.055 and 0.052, comparing to 0.079
and 0.081 from those tests developed by Cook [4] for Model II.

Table B.2 provides the estimatedpower based onModels I and II for testing the hypothesisSY |X ⊆ V versus the alternative
hypothesis SY |X ⊈ V , where V = Span(e3, e4). The power was computed at 5% nominal level. We can see from Table B.2
that the power for all the four tests approached 100%.

Therefore, our limited simulations suggest that our tests perform at least as well as the tests developed by Cook [4] based
on the sliced inverse regression estimation.

4.2. Study 2: tests with second-order methods

In this section, we conduct a simulation study to check the validity of our asymptotic tests with second-order sufficient
dimension reduction methods such as the sliced average variance estimation and the directional regression. We also
include the general marginal coordinate test with the sliced average variance estimation developed by Shao et al. [21] for a
comparison. Consider the following twomodels: (III) Y = log |X1|+0.2ϵ, (IV) Y = 0.4X2

1 +3 sin(X2/4)+0.2ϵ. The predictor
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X and the error ϵ are generated in the sameway as in the previous simulation study. ForModel III, d = 1; whereas for Model
IV, d = 2. In models III and IV, at least one component is symmetric about 0, so the condition Span(M) = SY |Z does not hold
if a first-order sufficient dimension reduction method such as the sliced inverse regression estimation is used.

Similar to Tables B.1 and B.2, the simulation results of estimated nominal levels and estimated power are summarized
in Tables B.3 and B.4 respectively. The estimated levels of our tests seem a little far from the nominal levels when n = 100
and p = 8, but the agreement between the nominal levels and the estimated levels seems good for our tests when the
sample size is relatively large. For example, for model III, with n = 200, p = 4, the estimated levels of our tests are: 0.053
and 0.049 for T1 and T2 respectively, which are pretty close to the nominal level α = 0.05. It turns out that the marginal
coordinate test tends to underestimate the nominal levels in most scenarios and has a lower power when the sample size
is relatively small. Also, it is known that directional regression is more accurate than or competitive with any other second-
order sufficient dimensionmethods. As expected, while enjoying similar performances in estimating the nominal levels, the
conditional coordinate tests based on the directional regression have greater power than those based on the sliced average
variance estimation. Moreover, because our second test statistic, T2, involves more plug-in estimates than that of our first
test statistic, T1, it is understandable that T1 provides greater power than T2, when the sample size is small.

4.3. Choice of d

As discussed in [4], misspecification of d may lead to conclusions different from those based on the true value. In this
section, we conduct a simulation study based on Model IV to investigate the estimated 5% nominal level and estimated
power with different choices of d, in which the null hypothesis and alternative hypothesis are the same as in the previous
section. Simulation results are summarized in Table B.5. For Model IV, the structural dimension is 2. Table B.5 suggests that
the empirical significance levels are not very far from 5% even d is misspecified. With d underspecified as 1, the power still
approaches to 100%. However, the power deteriorates as d is overspecified since X3 and X4 may be regarded as contributing
predictors with d = 3 or d = 4. This is not a troublesome issue since the conclusions drawn from conditional coordinate
test with an overspecified d give an upper bound on the set of relevant predictors. Our limited experiences from this study
are consistent with Cook [4]’s findings that misspecification of d need not be a worrisome issue. In practice, we can always
first estimate d through marginal dimension test and then use the estimated d in conditional coordinate test.

5. Swiss banknote data

The Swiss banknote data [10]consists of 200 observations. The response variable is a note’s authenticity, Y = 0 for
genuine notes and Y = 1 for counterfeit notes. There are six predictors measuring the size of a note in millimeters: Length
at center (Length), Left-edge length (Left), Right-edge length (Right), length of Bottom edge (Bottom), length of Top edge
(Top), and Diagonal length (Diagonal).

Based on themarginal coordinate test with the sliced average variance estimation, Shao et al. [21] concluded that Length,
Top, Left and Right are irrelevant predictors and could be removed from the regression without much loss of information. In
addition, Cook and Lee [5], Li [16] and Shao et al. [21] suggested that the structural dimension of this data is two. Here we
apply our proposed two tests of the conditional coordinate hypotheses with d = 2 to analyze this data. With the additional
information on the structural dimension, we expect potential gains from the conditional coordinate test. To approximate the
p-values, we follow Bentler and Xie [1] to adopt the adjusted test statistics T1 = (


ω̂i/d1)−1T1 and T2 = (


δ̂i/d2)−1T2,

where d1 and d2 are the nearest integers to (


ω̂i)
2/(


ω̂2

i ) and (


δ̂i)
2/(


δ̂2
i ) respectively. Then Ti is approximately

distributed as a chi-squared variate with degrees of freedom of di, i = 1, 2.
Table B.6 presents the backward elimination procedure based on the two adjusted test statistics. Different from the

conclusions drawn from the marginal coordinate test, Table B.6 suggests that at the 5% level that only Left and Right are
uninformative predictors. To be a little less conservative,we can even conclude that Length is also an uninformative predictor
at the 1% level.

We further conduct a series of tests for the joint effects of the predictors as presented in Table B.7. It is clear thatwe should
not reject the hypothesis that Y is independent of Length, Left and Right given the remaining three predictors; the p-value
of this hypothesis was 0.119 forT1, and 0.120 forT2. Li [16] applied a sparse sliced average variance estimation method to
analyze this dataset and estimated the two directions as (0×Length+0×Left+0×Right+0.785×Bottom+0.619×Top+

0×Diagonal) and (0× Length+ 0× Left + 0× Right + 0.400× Bottom+ 0× Top+ 0.917×Diagonal). With the additional
information of d = 2, both the sparse estimation and the test for joint effects of the predictors agree that Top, Bottom and
Diagonal are significant predictors, while Top is regarded as an irrelevant predictor by the marginal coordinate test.

6. Concluding remarks

Weproposed two unified tests for testing the conditional coordinate hypotheses based on the first-order or second-order
sufficient dimension reduction methods. The asymptotic properties were also investigated. Moreover, our tests can also be
adapted to some other sufficient dimension reduction methods, as long as they admit the eigendecomposition formulation
(2.2). For example, we can similarly develop conditional coordinate test for the central subspacewith the inverse third order
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moments method [23], the contour regression [18], the Fourier method [27], the discretization–expectation estimation
method [29] and the cumulative slicing estimation method [28]. In analogy, we may also develop conditional coordinate
test for the central mean subspace [6] with the principal Hessian directions [15], the iterative Hessian directions [6] and the
marginal fourth order moments method [24].

Cook [4] also discussed another type of hypothesis: marginal dimension hypothesis given a coordinate constraint, which
has not been studied systematically in the literature. We expect our present work would be helpful in developing a unified
test of such a hypothesis with the commonly used sufficient dimension reduction methods.

Another interesting issue is to study the global behavior of the asymptotic power functions. Under local alternative
hypotheses, T1 or T2 is expected to converge to a linear combination of non-central chi-square variables with non-centrality
parameters that depend on the alternative hypothesis. Then it would be of great interest to study the power of the two
test statistics against any alternative especially a local sequence of alternatives. Whether the coordinate tests in sufficient
dimension reduction are consistent in power against any alternative remains an open question. Research along this direction
deserves further study.

Appendix A

Proof of Proposition 1. If Span(M) = SY |Z and d is known, we have Span(η1, . . . , ηd) = SY |Z . Moreover, PHSY |X = Op if
and only if W T6−1/2ηi = 0 for i = 1, . . . , d. Then if PHSY |X = Op holds, we can derive that W T6−1/2P = 0 and hence
L1 = 0.

On the other side, observe that L1 = ∥HTP∥
2, then L1 = 0 implies that HTP = (W T6−1W)−1/2W T6−1/2P = 0. Because

W T6−1W is invertible, we then have W T6−1/2P = 0, and hence PHSY |X = Op. �

Proof of Theorem 1. Let Q (X, Y )∗ = −
d

i=1[λ
−1
i ηiη

T
i {EnM

∗(X, Y )}Q + Q {EnM∗(X, Y )}λ−1
i ηiη

T
i ]. From the perturbation

theory [13] and Theorem 1 in [20], Q can be expanded as Q = Q + En{Q ∗(X, Y )} + op(n−1/2). It then follows that

(W T6−1W )−1/2W T6−1/2P
= (W TΣ−1W )−1/2W T 

6−1/2
+ En


6∗−1/2(X, Y )


[P − En{Q ∗(X, Y )}] + op(n−1/2)

= En


(W TΣ−1W )−1/2W T


6∗−1/2(X, Y )P + 6−1/2M∗(X, Y )

d
i=1

λ−1
i ηiη

T
i


+ op(n−1/2).

The last equality holds since W T6−1/2P = 0 and W T6−1/2ηi = 0 for i = 1, . . . , d. The conclusion is then obvious. �

Proof of Proposition 2. Under the null hypotheses, we have QWηi = ηi and Mcηi = λiηi, which indicates that P = Pc
and L2 = 0. If L2 = 0, we see that Span(P) ⊆ Span(QW ) and hence Span(PW ) ⊆ Span(Q ). Then Proposition 2 of Cook [4]
suggests that PHSY |X = Op. �

Proof of Theorem 2. First we can expand Mc as follows:Mc = Mc + En[QWM∗(X, Y )QW − 6−1/2W(W T6−1W)−1W T6∗−1/2(X, Y )MQW

−QWM6∗−1/2(X, Y )W(W T6−1W)−1W T6−1/2
] + op(n−1/2).

Under the null hypothesis, we have P = Pc,QWP = P and W T6−1/2P = 0. Then

P −Pc = En


Q {M∗(X, Y ) − M∗

c (X, Y )}

d
i=1

λ−1
i ηiη

T
i +

d
i=1

λ−1
i ηiη

T
i {M

∗(X, Y ) − M∗

c (X, Y )}Q


+ op(n−1/2)

= En


PWM∗(X, Y ) + 6−1/2W(W T6−1W)−1W T6∗−1/2(X, Y )M

 d
i=1

λ−1
i ηiη

T
i

+

d
i=1

λ−1
i ηiη

T
i


M∗(X, Y )PW + M6∗−1/2(X, Y )W(W T6−1W)−1W T6−1/2

+ op(n−1/2).

The conclusion is then straightforward. �

Appendix B

In this section, we give the detailed proof of Lemma 1, especially for the asymptotic expansion of M with sliced inverse
regression, sliced average variance estimation and directional regression respectively.

B.1. Useful lemmas

We first deal with the asymptotic expansions of 6,6−1 and 6−1/2.
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Table B.1
Estimated test levels, as percentages, based on Models I, and II.

Sample size Model I with p = 4 Model I with p = 8
Testa Nominal level (%) Test Nominal level (%)

1 5 10 1 5 10

n = 100

MCT(SIR) 1.00 6.20 11.1 MCT(SIR) 3.10 11.4 20.2
CCT(SIR) 2.00 6.90 13.7 CCT(SIR) 2.60 11.6 18.9
T1(SIR) 1.20 6.30 14.9 T1(SIR) 1.80 7.80 14.1
T2(SIR) 0.60 5.90 13.5 T2(SIR) 1.50 7.00 13.0

n = 200

MCT(SIR) 0.70 5.20 10.4 MCT(SIR) 1.60 7.80 14.5
CCT(SIR) 1.60 6.80 13.0 CCT(SIR) 2.20 8.10 14.1
T1(SIR) 1.30 6.60 12.0 T1(SIR) 0.90 6.00 11.7
T2(SIR) 1.10 6.10 11.7 T2(SIR) 1.00 5.40 10.9

n = 400

MCT(SIR) 1.60 5.50 10.8 MCT(SIR) 1.10 6.10 11.4
CCT(SIR) 1.50 6.10 11.4 CCT(SIR) 2.10 6.60 11.4
T1(SIR) 0.80 5.80 11.7 T1(SIR) 0.80 5.90 11.9
T2(SIR) 0.70 5.60 11.2 T2(SIR) 0.80 5.80 11.6

Sample size Model II with p = 4 Model II with p = 8
Test Nominal level (%) Test Nominal level (%)

1 5 10 1 5 10

n = 100

MCT(SIR) 1.70 7.80 13.6 MCT(SIR) 2.40 8.40 13.8
CCT(SIR) 2.20 8.60 14.4 CCT(SIR) 2.30 7.70 13.0
T1(SIR) 1.30 6.00 12.0 T1(SIR) 1.10 6.20 12.2
T2(SIR) 1.00 5.30 11.5 T2(SIR) 0.80 5.60 11.2

n = 200

MCT(SIR) 1.10 6.40 11.7 MCT(SIR) 1.70 7.90 14.7
CCT(SIR) 1.70 6.30 11.2 CCT(SIR) 2.30 8.10 14.2
T1(SIR) 1.60 6.30 11.4 T1(SIR) 1.30 5.50 10.0
T2(SIR) 1.60 5.80 11.3 T2(SIR) 1.10 5.20 9.80

n = 400

MCT(SIR) 0.60 5.60 11.3 MCT(SIR) 1.80 6.20 10.6
CCT(SIR) 0.90 6.50 12.5 CCT(SIR) 1.60 7.50 12.6
T1(SIR) 0.90 6.10 11.0 T1(SIR) 1.30 5.40 10.1
T2(SIR) 0.80 6.00 10.8 T2(SIR) 1.20 5.10 9.90

a SIR: sliced inverse regression. MCT(SIR) and CCT(SIR) refer to the sliced inverse regression based
general marginal coordinate test and general conditional coordinate test developed by Cook [4].

Table B.2
Estimated power (%) at 5% nominal level based on Models I, and II.

Test Sample size Test Sample size
n = 50 n = 100 n = 200 n = 50 n = 100 n = 200

Model I with p = 4 Model I with p = 8

MCT(SIR) 98.90 100.0 100.0 MCT(SIR) 94.20 100.0 100.0
CCT(SIR) 99.70 100.0 100.0 CCT(SIR) 98.40 100.0 100.0
T1(SIR) 100.0 100.0 100.0 T1(SIR) 97.80 100.0 100.0
T2(SIR) 98.70 100.0 100.0 T2(SIR) 92.80 100.0 100.0

Model II with p = 5 Model II with p = 10

MCT(SIR) 100.0 100.0 100.0 MCT(SIR) 100.0 100.0 100.0
CCT(SIR) 100.0 100.0 100.0 CCT(SIR) 100.0 100.0 100.0
T1(SIR) 100.0 100.0 100.0 T1(SIR) 100.0 100.0 100.0
T2(SIR) 100.0 100.0 100.0 T2(SIR) 99.90 100.0 100.0

Lemma 2. Let 6∗
= (X− µ)(X− µ)T − Σ . Let P1 be an orthogonal matrix such that 6 = P1CPT

1 , where C = diag(c1, . . . , cp)

is a diagonal matrix. Let C1 be a square matrix having
(c

−
1
2

i −c
−

1
2

j )

ci−cj
as the (i, j) entry for i ≠ j and −

1
2 c

−
3
2

i as the (i, i) entry. Define

6∗−1
= −6−16∗6−1 and 6∗−1/2

= P1

C1 ⊙ (PT

1 6∗P1)

PT
1 , where ⊙ denotes the Hadamard product. Then Σ,6−1 and 6−1/2

can be expanded asymptotically as follows:

6 = 6 + En{6∗
} + op(n−

1
2 ),6−1

= 6−1
+ En{6∗−1

} + op(n−
1
2 ),6−1/2

= 6−1/2
+ En{6∗−1/2

} + op(n−
1
2 ).
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Table B.3
Estimated test levels, as percentages, based on Models III, and VI.

Sample size Model III with p = 4 Model III with p = 8
Testa Nominal level (%) Test Nominal level (%)

1 5 10 1 5 10

n = 100

MCT(SAVE) 0.50 3.60 7.90 MCT(SAVE) 0.20 2.80 6.00
T1(SAVE) 1.60 6.10 12.5 T1(SAVE) 1.30 7.00 12.6
T2(SAVE) 1.60 6.00 12.4 T2(SAVE) 1.00 7.20 13.0
T1(DR) 1.70 7.60 13.6 T1(DR) 2.40 7.90 13.2
T2(DR) 1.60 7.60 13.8 T2(DR) 2.40 8.10 13.9

n = 200

MCT(SAVE) 1.10 4.20 9.00 MCT(SAVE) 0.80 3.90 8.60
T1(SAVE) 1.00 5.30 11.5 T1(SAVE) 0.80 6.70 10.7
T2(SAVE) 0.80 4.90 11.3 T2(SAVE) 0.90 6.40 10.5
T1(DR) 1.30 6.30 11.8 T1(DR) 1.40 6.90 12.7
T2(DR) 1.10 6.20 11.5 T2(DR) 1.20 7.10 12.6

n = 400

MCT(SAVE) 1.00 5.90 9.20 MCT(SAVE) 0.70 3.70 8.80
T1(SAVE) 0.90 4.00 9.10 T1(SAVE) 0.80 4.90 10.2
T2(SAVE) 0.90 4.00 9.40 T2(SAVE) 0.90 5.00 10.1
T1(DR) 0.80 4.00 10.4 T1(DR) 1.00 5.30 10.5
T2(DR) 0.90 4.00 10.3 T2(DR) 1.00 5.00 10.5

Sample size Model IV with p = 4 Model IV with p = 8
Test Nominal level (%) Test Nominal level (%)

1 5 10 1 5 10

n = 100

MCT(SAVE) 0.50 3.90 8.50 MCT(SAVE) 0.10 1.50 4.40
T1(SAVE) 2.20 7.90 17.4 T1(SAVE) 0.60 8.10 22.6
T2(SAVE) 0.60 6.50 14.3 T2(SAVE) 0.30 4.30 15.0
T1(DR) 2.30 7.70 15.9 T1(DR) 3.00 9.80 16.9
T2(DR) 1.10 7.40 13.0 T2(DR) 1.40 6.40 11.9

n = 200

MCT(SAVE) 0.50 4.40 9.10 MCT(SAVE) 0.50 2.20 6.60
T1(SAVE) 0.60 4.30 8.80 T1(SAVE) 1.30 6.00 11.2
T2(SAVE) 0.60 4.50 8.00 T2(SAVE) 0.60 5.10 9.90
T1(DR) 1.40 5.40 10.6 T1(DR) 1.10 5.40 10.3
T2(DR) 0.90 4.40 9.60 T2(DR) 0.70 4.70 8.60

n = 400

MCT(SAVE) 0.40 4.30 9.90 MCT(SAVE) 0.50 4.90 8.90
T1(SAVE) 1.10 4.40 8.60 T1(SAVE) 0.70 4.50 7.80
T2(SAVE) 0.50 4.00 8.20 T2(SAVE) 0.50 4.20 7.70
T1(DR) 0.70 6.20 11.8 T1(DR) 0.80 4.70 9.50
T2(DR) 0.70 5.50 11.0 T2(DR) 0.80 5.10 9.10

a SAVE: sliced average variance estimate; DR: directional regression; MCT(SAVE) refers to the general
marginal coordinate test with sliced average variance estimation developed by Shaoe et al. [21].

Table B.4
Estimated powers (%) at 5% nominal level based on Models III, and VI.

Test Sample size Test Sample size
n = 50 n = 100 n = 200 n = 50 n = 100 n = 200

Model III with p = 4 Model III with p = 8

MCT(SAVE) 86.00 99.80 100.0 MCT(SAVE) 31.80 82.20 100.0
T1(SAVE) 98.80 100.0 100.0 T1(SAVE) 79.00 99.70 100.0
T2(SAVE) 94.50 100.0 100.0 T2(SAVE) 64.40 99.40 100.0
T1(DR) 100.0 100.0 100.0 T1(DR) 80.80 100.0 100.0
T2(DR) 99.70 100.0 100.0 T2(DR) 66.90 100.0 100.0

Model IV with p = 4 Model IV with p = 8

MCT(SAVE) 50.80 96.70 100.0 MCT(SAVE) 7.10 24.80 89.50
T1(SAVE) 77.40 97.10 100.0 T1(SAVE) 19.00 77.50 99.50
T2(SAVE) 53.70 90.70 99.80 T2(SAVE) 10.40 57.40 98.20
T1(DR) 84.70 99.30 100.0 T1(DR) 44.40 93.20 99.90
T2(DR) 68.30 94.10 100.0 T2(DR) 28.20 81.30 99.50

Proof of Lemma 2. The asymptotic expansion of 6 is a classic result. The asymptotic expansions of 6−1 and 6−1/2 can be
derived by standard procedure of Von Mises expansion in combination with Theorem 6.6.30 in [12]. �

As with the usual protocol in sufficient dimension reduction, we make a partition of the range of Y as {J1, . . . , Jh}. Let
pk = E{I(Y ∈ Jk)},Uk = E{(X − µ)I(Y ∈ Jk)} and Vk = E{(X − µ)(X − µ)T I(Y ∈ Jk)}. Denote p̂k = En{I(Y ∈ Jk)},Uk =
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Table B.5
Estimated5%nominal levels and estimatedpowers (%) at 5%nominal level for different choices
of d based on Model VI with n = 200 and p = 8.

Estimated 5% nominal levels Estimated powers
Test d = 1 d = 3 d = 4 Test d = 1 d = 3 d = 4

T1(SAVE) 7.60 3.80 1.20 T1(SAVE) 98.80 45.60 11.60
T2(SAVE) 3.10 12.4 18.8 T2(SAVE) 100.0 92.40 65.40
T1(DR) 0.40 4.40 1.80 T1(DR) 100.0 46.80 8.60
T2(DR) 0.50 11.3 15.6 T2(DR) 100.0 87.40 64.20

Table B.6
Results from 5% backward elimination procedures based on conditional coordinate test with
sliced average variance estimation for the Swiss banknote data.

Predictor T1(SAVE) df p-value T2(SAVE) df p-value

(a) Conditional coordinate test results with all six predictors. (d = 2)

Length 2.007 1 0.157 2.040 1 0.153
Left 0.187 1 0.665 0.186 1 0.666
Right 0.676 1 0.411 0.686 1 0.408
Top 34.49 1 0.000 24.95 1 0.000
Bottom 14.32 1 0.000 13.28 1 0.000
Diagonal 25.50 1 0.001 17.50 1 0.000

(b) Conditional coordinate test results with five predictors. (d = 2)

Length 3.148 1 0.076 3.067 1 0.080
Right 1.180 1 0.277 1.170 1 0.280
Top 45.52 1 0.000 25.59 1 0.000
Bottom 18.09 1 0.000 16.28 1 0.000
Diagonal 35.00 1 0.000 20.83 1 0.000

(c) Conditional coordinate test results with four predictors. (d = 2)

Length 5.033 1 0.025 4.834 1 0.028
Top 46.06 1 0.000 26.19 1 0.000
Bottom 17.08 1 0.000 15.44 1 0.000
Diagonal 33.33 1 0.000 19.53 1 0.000

Table B.7
Conditional coordinate test results for the Swiss banknote data with different null hypotheses.T1(SAVE) df p-value T2(SAVE) df p-value

(a) H0 : Yy (Length,Top, Left, Right) given (Bottom, Diagonal) (d = 2)

54.72 3 0.000 27.10 2 0.000

(b) H0 : Yy (Length,Left,Right) given (Top, Bottom, Diagonal) (d = 2)

5.858 3 0.119 5.822 3 0.120

En{(X− µ̂)I(Y ∈ Jk)} andVk = En{(X− µ̂)(X− µ̂)T I(Y ∈ Jk)} be the corresponding sample estimators. The following lemma
is useful for deriving the asymptotic expansion of M.

Lemma 3. Let µ∗
= X − µ, p∗

k = I(Y ∈ Jk) − pk, U∗

k = (X − µ)I(Y ∈ Jk) − Uk + pk(X − µ), V ∗

k = (X − µ)(X − µ)T I(Y ∈

Jk) − Vk − U∗

k µT
− Uk(µ

∗)T . We have the following expansions:

µ̂ = µ + En(µ∗) + op(n−1/2); p̂k = pk + En(p∗

k) + op(n−1/2);Uk = Uk + En(U∗

k ) + op(n−1/2); Vk = Vk + En(V ∗

k ) + op(n−1/2);

p̂−1
k = p−1

k − En(p2kp
∗

k) + op(n−1/2); p̂−2
k = p−2

k − En(2p3kp
∗

k) + op(n−1/2);

p̂−3
k = p−3

k − En(3p4kp
∗

k) + op(n−1/2).

Proof of Lemma 3. These expansion can be derived by Von Mises expansion techniques, see [17]. We omit the details
here. �

B.2. Asymptotic expansion of MSIR

In this section, we consider the asymptotic expansion of the estimated candidatematrix of sliced inverse regression [14].
Define ΛSIR =

h
l=1 plE(X − µ|Y ∈ Jl){E(X − µ|Y ∈ Jl)}T . It is easy to see that ΛSIR =

h
l=1 p

−1
l UlUT

l and MSIR =
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6−1/2ΛSIR6
−1/2. Then their sample estimators are ΛSIR =

h
l=1 p̂

−1
l

UlUT
l and MSIR = 6−1/2ΛSIR6−1/2. We in the following

give the explicit expansion forms of ΛSIR and MSIR.

Lemma 4. Let Λ∗

SIR =
h

l=1(−
p∗
l UlUT

l
p2l

+
U∗
l U

T
l

pl
+

UlU∗T
l

pl
), then we have the expansion ΛSIR = ΛSIR + En(Λ∗

SIR) + op(n−1/2).

Proof of Lemma 4. The conclusion can be derived by using the expansions of p̂−1
l ,Ul and µ̂ given in Lemma 3. The details

are omitted here. �

Theorem 3. MSIR can be expanded asymptotically as MSIR = MSIR + En(M∗

SIR)+ op(n−1/2), where M∗

SIR = 6∗−1/2ΛSIR6
−1/2

+

6−1/2Λ∗

SIR6
−1/2

+ 6−1/2ΛSIR6
∗−1/2.

Proof of Theorem 3. With the expansion of 6−1/2 given in Lemma 2, the conclusion can be easily derived by invoking
Lemma 4. �

If sliced inverse regression is used, A and B can be simplified under the null hypothesis as stated in the following corollary.

Corollary 1. Let U∗∗

k = (X−µ)I(Y ∈ Jk)+pk(X−µ), V ∗∗

k = (X−µ)(X−µ)T I(Y ∈ Jk)−pk6−U∗∗

k µT , Λ∗

SIR =
h

l=1
U∗∗
l UT

l
pl

and M∗∗

SIR = 6∗−1/2ΛSIR6
−1/2

+ 6−1/2Λ∗∗

SIR6
−1/2. Then if sliced inverse regression is used, A and B in Theorems 1 and 2 are

defined as:

A = (W TΣ−1W)−1/2W T


6∗−1/2P + 6−1/2M∗∗

SIR

d
i=1

λ−1
i ηiη

T
i


,

B =

PWM∗∗

SIR + 6−1/2W(W T6−1W)−1W T6∗−1/2M
 d

i=1

λ−1
i ηiη

T
i .

Proof of Corollary 1. Under the null hypothesis, we haveW T6−1Ul/pl = 0 andW T6−1MSIR6
−1/2

= 0. Thenwe can derive
the simplified forms of A and B as given in the above. �

B.3. Asymptotic expansion of MSAVE

In this section, we consider the asymptotic expansion of the estimated candidate matrix of sliced average variance
estimation [9]. Let ΛSAVE = E[6 − Var{X|δ(Y )}]6−1

[6 − Var{X|δ(Y )}], where δ(Y ) =
h

l=1 lI(Y ∈ Jl). Then MSAVE =h
l=1[Ip − Var{Z |δ(Y )}]2 = 6−1/2ΛSAVE6

−1/2. The following lemma expresses ΛSAVE in terms of µ, Σ, pl,Ul and Vl.

Lemma 5. ΛSAVE = 2ΛSIR−6+Γ , whereΓ =
h

l=1(Γ
1
l −Γ 2

l −Γ 3
l +Γ 4

l )withΓ 1
l =

Vl6−1Vl
pl

, Γ 2
l =

Vl6−1UlUT
l

p2l
,Γ 3

l =
UlUT

l 6−1Vl
p2l

and Γ 4
l =

UlUT
l 6−1UlUT

l
p3l

.

Proof of Lemma 5. By some algebra calculations, we can derive that

ΛSAVE = 6 − 2E[Var{X|δ(Y )}] + E[Var{X|δ(Y )}6−1Var{X|δ(Y )}].

The EV-VE formula gives that ΛSAVE = 2ΛSIR − 6 + E[Var{X|δ(Y )}6−1Var{X|δ(Y )}]. Moreover, we can check that
E[Var{X|δ(Y )}6−1Var{X|δ(Y )}] is equal to Γ as defined in this lemma. �

Let Γ 1
l , Γ 1

l , Γ 1
l , Γ 4

l and ΛSAVE be the sample estimators of Γ 1
l , Γ 2

l , Γ 3
l , Γ 4

l and ΛSAVE respectively. Define
Γ 1
l

∗
= −

p∗

l Vl6
−1Vl

p2l
+

V ∗

l 6−1Vl

pl
+

Vl6
∗−1Vl

pl
+

Vl6
−1V ∗

l

pl
,


Γ 2
l

∗
= −2

p∗

l Vl6
−1UlUT

l

p3l
+

V ∗

l 6−1UlUT
l

p2l
+

Vl6
∗−1UlUT

l

p2l
+

Vl6
−1U∗

l U
T
l

p2l
+

Vl6
−1UlU∗T

l

p2l
,


Γ 3
l

∗
= −2

p∗

l UlUT
l 6−1Vl

p3l
+

U∗

l U
T
l 6−1Vl

p2l
+

UlU∗T
l 6−1Vl

p2l
+

UlUT
l 6∗−1Vl

pll
+

UlUT
l 6−1V ∗

l

p2l
,


Γ 4
l

∗
= −3

p∗

l UlUT
l 6−1UlUT

l

p4l
+

U∗

l U
T
l 6−1UlUT

l

p3l
+

UlU∗T
l 6−1UlUT

l

p3l
+

UlUT
l 6∗−1UlUT

l

p3l

+
UlUT

l 6−1U∗

l U
T
l

p3l
+

UlUT
l 6−1UlU∗T

l

p3l
.

The following lemma and theorem confirm the expansion forms of ΛSAVE and MSAVE.
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Lemma 6. Let Γ ∗
=

h
l=1{(Γ

1
l )∗ − (Γ 2

l )∗ − (Γ 3
l )∗ + (Γ 4

l )∗} and Λ∗

SAVE = 2Λ∗

SIR − 6∗
+ Γ ∗. Then we have ΛSAVE =

ΛSAVE + Λ∗

SAVE + op(n−1/2).

Proof of Lemma 6. The conclusion can be derived by Lemmas 2–5. Details are omitted. �

Theorem 4. MSAVE can be expanded asymptotically asMSAVE = MSAVE + En(M∗

SAVE) + op(n−1/2),

where M∗

SAVE = 6∗−1/2ΛSAVE6
−1/2

+ 6−1/2Λ∗

SAVE6
−1/2

+ 6−1/2ΛSAVE6
∗−1/2.

Proof of Theorem 4. With the expansion of 6−1/2 given in Lemma 2, the conclusion can be easily derived by invoking
Lemma 6. �

Similar to Corollary 1, we simplify the expressions of A and B under null hypothesis when slice average variance
estimation is used.

Corollary 2. Define

Γ 1
l

∗∗
= −p∗

l 6 +
V∗∗
l 6−1Vl

pl
+ 66∗−1Vl + V ∗∗

l ,

Γ 2
l

∗∗
=

V∗∗
l 6−1UlUT

l
p2l

+
66∗−1UlUT

l
pl

+
U∗∗
l UT

l
pl

,

Γ 3
l

∗∗
=

U∗∗
l UT

l 6−1Vl
p2l

,

Γ 4
l

∗∗
=

U∗∗
l UT

l 6−1UlUT
l

p3l
, Γ ∗∗

=
H

h=1{(Γ
1
l )∗∗

− (Γ 2
l )∗∗

− (Γ 3
l )∗∗

+ (Γ 4
l )∗∗

}, Λ∗∗

SAVE = 2Λ∗∗

SIR − 6∗
+ Γ ∗∗ and

M∗∗

SAVE = 6∗−1/2ΛSAVE6
−1/2

+ 6−1/2Λ∗∗

SAVE6
−1/2. Then if sliced average variance estimation is used, A and B in Theorems 1 and

2 are defined as:

A = (W TΣ−1W)−1/2W T


6∗−1/2P + 6−1/2M∗∗

SAVE

d
i=1

λ−1
i ηiη

T
i


,

B =

PWM∗∗

SAVE + 6−1/2W(W T6−1W)−1W T6∗−1/2M
 d

i=1

λ−1
i ηiη

T
i .

Proof of Corollary 2. Under the null hypothesis, we have W T6−1Ul/pl = 0, W T6−1(Ip − Vl/pl)6−1/2
= 0 and

W T6−1MSAVE6
−1/2

= 0. Then the conclusion can be derived by some algebra calculations. �

B.4. Asymptotic expansion of MDR

In this section, we consider the asymptotic expansion of the estimated candidate matrix of directional regression [17].
The candidate matrix of directional regression is

MDR = 2E[E2
{ZZT

|δ(Y )}] + 2E2
[E{Z|δ(Y )}E{ZT

|δ(Y )}] + 2E[E{ZT
|δ(Y )}E{Z|δ(Y )}]

× E[E{Z|δ(Y )}E{ZT
|δ(Y )}] − 2Ip.

We first rewrite MDR as given in the following lemma.

Lemma 7. Let Φ1 =
h

l=1
1
pl
UT
l 6−1Ul, then MDR can be reformulated as MDR = 6−1/2ΛDR6

−1/2, where

ΛDR = 2
h

l=1

Γ 1
l + 2(ΛSIR)

2
+ 2Φ1ΛSIR − 2Ip.

Proof of Lemma 7. The conclusion can be derived by algebra calculations. We omit the details here. �

Let ΛDR and MDR be the sample estimators of ΛDR and MDR respectively.

Lemma 8. Let Φ∗

1 =
h

l=1(−
p∗
l U

T
l 6−1Ul

p2l
+

U∗T
l 6−1Ul

pl
+

UT
l 6∗−1Ul

pl
+

UT
l 6−1U∗

l
pl

) andΛ∗

DR = 2
h

l=1(Γ
1
l )∗+2ΛSIRΛ

∗

SIR+2Λ∗

SIRΛSIR+

2Φ∗

1ΛSIR + 2Φ1Λ
∗

SIR. Then we have the expansion ΛDR = ΛDR + Λ∗

DR + op(n−1/2).

Proof of Lemma 8. The conclusion can be derived by Lemmas 2–4 and 7. Details are omitted. �

Theorem 5. MDR can be expanded asymptotically asMDR = MDR + En(M∗

DR) + op(n−1/2),

where M∗

DR = 6∗−1/2ΛDR6
−1/2

+ 6−1/2Λ∗

DR6
−1/2

+ 6−1/2ΛDR6
∗−1/2.
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Proof of Theorem 5. With the expansion of 6−1/2 given in Lemma 2, the conclusion can be easily derived by invoking
Lemma 8. �

Similar to Corollaries 1 and 2, we simplify the expressions of A and B under null hypothesis when directional regression
is used.

Corollary 3. Let Λ∗∗

DR = 2
h

l=1(Γ
1
l )∗∗

+ 2Λ∗∗

SIRΛSIR + 2Φ1Λ
∗∗

SIR and M∗∗

DR = 6∗−1/2ΛDR6
−1/2

+ 6−1/2Λ∗∗

DR6
−1/2. Then if

directional regression is used, A and B in Theorems 1 and 2 are defined as:

A = (W TΣ−1W)−1/2W T


6∗−1/2P + 6−1/2M∗∗

DR

d
i=1

λ−1
i ηiη

T
i


,

B =

PWM∗∗

DR + 6−1/2W(W T6−1W)−1W T6∗−1/2M
 d

i=1

λ−1
i ηiη

T
i .

Proof of Corollary 3. The proof is similar to that for Corollaries 1 and 2. Details are omitted. �

References

[1] P. Bentler, J. Xie, Corrections to test statistics in principal Hessian directions, Statist. Probab. Lett. 47 (2000) 381–389.
[2] C.-H. Chen, K.C. Li, Can SIR be as popular as multiple linear regression? Statist. Sinica 8 (1998) 289–316.
[3] R.D. Cook, Regression Graphics, Wiley, New York, 1998.
[4] R.D. Cook, Testing predictor contributions in sufficient dimension reduction, Ann. Statist. 32 (2004) 1062–1092.
[5] R.D. Cook, H. Lee, Dimension reduction in binary response regression, J. Amer. Statist. Assoc. 94 (1999) 1187–1200.
[6] R.D. Cook, B. Li, Dimension reduction for conditional mean in regression, Ann. Statist. 30 (2002) 455–474.
[7] R.D. Cook, L. Ni, Sufficient dimension reduction via inverse regression: a minimum discrepancy approach, J. Amer. Statist. Assoc. 100 (2005) 410–428.
[8] R.D. Cook, L. Ni, Using intraslice covariances for improved estimation of the central subspace in regression, Biometrika 93 (2006) 65–74.
[9] R.D. Cook, S. Weisberg, Discussion of ‘‘sliced inverse regression for dimension reduction’’, J. Amer. Statist. Assoc. 86 (1991) 316–342.

[10] B. Flury, H. Riedwyl, Multivariate Statistics, A Practical Approach, John Wiley and Sons, New York, 1988.
[11] K.F. Fung, X. He, L. Liu, P. Shi, Dimension reduction based on canonical correlation, Statist. Sinica 12 (2002) 1093–1113.
[12] R.A. Horn, C.R. Johnson, Topics in Matrix Analysis, Cambridge University Press, 1991.
[13] K. Kato, A Short Introduction to Perturbation Theory for Linear Operators, Springer-Verlag, New York, 1982.
[14] K.C. Li, Sliced inverse regression for dimension reduction (with discussion), J. Amer. Statist. Assoc. 86 (1991) 316–342.
[15] K.C. Li, On principal Hessian directions for data visualization and dimension reduction: another application of Stein’s lemma, J. Amer. Statist. Assoc.

87 (1992) 1025–1039.
[16] L. Li, Sparse sufficient dimension reduction, Biometrika 94 (2007) 603–613.
[17] B. Li, S. Wang, On directional regression for dimension reduction, J. Amer. Statist. Assoc. 102 (2007) 997–1008.
[18] B. Li, H. Zha, C. Chiaromonte, Contour regression: a general approach to dimension reduction, Ann. Statist. 33 (2005) 1580–1616.
[19] P.A. Naik, C.L. Tsai, Constrained inverse regression for incorporating prior information, J. Amer. Statist. Assoc. 100 (2005) 204–211.
[20] J.R. Schott, Asymptotics of eigenprojections of correlation matrices with some applications in principal components analysis, Biometrika 84 (1997)

327–337.
[21] Y. Shao, R.D. Cook, S. Weisberg, Marginal tests with sliced average variance estimation, Biometrika 94 (2007) 285–296.
[22] Y. Xia, H. Tong, W.K. Li, L.X. Zhu, An adaptive estimation of optimal regression subspace, J. R. Stat. Soc. Ser. B 64 (2002) 363–410.
[23] X. Yin, R.D. Cook, Estimating central subspace via inverse third moment, Biometrika 90 (2003) 113–125.
[24] X. Yin, R.D. Cook, Dimension reduction via marginal fourth moments in regression, J. Comput. Graph. Statist. 13 (2004) 554–570.
[25] X. Yin, B. Li, R.D. Cook, Successive direction extraction for estimating the central subspace in a multiple-index regression, J. Multivariate Anal. 99

(2008) 1733–1757.
[26] L.-X. Zhu, K.-T. Fang, Asymptotics for kernel estimate of sliced inverse regression, Ann. Statist. 3 (1996) 1053–1068.
[27] Y. Zhu, P. Zeng, Fourier methods for estimating the central subspace and the central mean subspace in regression, J. Amer. Statist. Assoc. 101 (2006)

1638–1651.
[28] L.P. Zhu, L.-X. Zhu, Z.H. Feng, Dimension reduction in regressions via average partial mean estimation, J. Amer. Statist. Assoc. 105 (2010) 1455–1466.
[29] L.P. Zhu, L.-X. Zhu, L. Ferré, T. Wang, Sufficient dimension reduction through discretization–expectation estimation, Biometrika 97 (2010) 295–304.


	On model-free conditional coordinate tests for regressions
	Introduction
	Sufficient dimension reduction methods revisited
	Two general tests of conditional coordinate hypotheses
	The first test statistic
	The second test statistic

	Simulation studies
	Study 1: tests with the sliced inverse regression estimation
	Study 2: tests with second-order methods
	Choice of  d 

	Swiss banknote data
	Concluding remarks
	Appendix A
	Appendix B
	Useful lemmas
	Asymptotic expansion of  widehat MSIR 
	Asymptotic expansion of  widehat MSAV E 
	Asymptotic expansion of  widehat MDR 

	References


