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Polariton local states in periodic Bragg
multiple-quantum-well structures

Lev I. Deych

Department of Physics, Seton Hall University, South Orange, New Jersey 07079

A. Yamilov and A. A. Lisyansky

Department of Physics, Queens College of the City University of New York, Flushing, New York 11367
Received June 9, 2000

We study analytically the optical properties of several types of defect in Bragg multiple-quantum-well struc-
tures. We show that a single defect leads to two local polariton modes in the photonic bandgap. These
modes lead to peculiarities in ref lection and transmission spectra. Detailed recommendations for experimen-
tal observation of the effects studied here are given. © 2000 Optical Society of America
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It was demonstrated recently1 that long multiple-quan-
tum-well (MQW) systems can form optical lattices in
which various quantum wells (QW’s) are coherently
coupled as a result of interaction with a retarded
electromagnetic field. Light–matter interaction in
such systems depends on the structure of the systems
and can be signif icantly and controllably modif ied.
A polariton formalism provides an adequate self-con-
sistent way to describe the strong interaction of the
QW excitons and the light in MQW systems.2,3 These
systems have become a subject of very active research
in the past few years (see, for instance, Refs. 2–4
and references therein). Special attention has been
paid to so-called Bragg structures in which interwell
spacing a is exactly equal to the half-wavelength
of light at the frequency of excitonic resonance,
l0�2 � a.1,5,6 Peculiarities of the Bragg structures
follow from the fact that a photonic bandgap in the
vicinity of the exciton frequency is degenerate. In
other words, the bandgap is formed from two adja-
cent gaps with coinciding boundaries. Detuning the
structure from the exact Bragg condition shifts those
boundaries away from each other, giving rise to a
conduction band between them.7

Should the periodicity in the arrangement of
MQW’s be locally altered, one would expect the ap-
pearence of defect local modes inside the photonic
bandgaps. This phenomenon provides additional
possibilities for controlling the optical properties
of MQW’s and therefore is of considerable interest.
This idea was put forward in Ref. 8, in which a
dispersion equation for frequencies of local modes
with different polarizations was derived. In the case
of transversely polarized excitation, the equation
that describes MQW’s is essentially equivalent to
a model of a one-dimensional chain of dipoles that
we used previously to discuss local polariton states
in polar crystals.9 – 11 In the context of MQW’s, the
local polariton states considered in Refs. 9–11 cor-
respond to a mode localized in the growth direction
of the MQW structure but extended in the in-plane
directions.
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In this Letter we study local defect polariton states
in Bragg MQW structures and defect-induced changes
in transmission and ref lection spectra. Defect layers
can differ from host layers in three ways: in exci-
ton–light-coupling strength (G defect), in exciton reso-
nance frequency (V defect), and in interwell spacing
(a defect). Each of these types of defect can be repro-
duced experimentally, and we show below that each
of them plays a distinctly different role in the optical
properties of the system. We obtain closed analytical
expressions for respective local frequencies as well as
for ref lection and transmission coefficients. On the
basis of the results obtained, we give a practical recom-
mendation for experimental observation of the stud-
ied effects in samples used in the research reported in
Refs. 1 and 5.

The optical properties of QW’s are usually described
with the use of nonlocal susceptibility determined by
energies and wave functions of a QW exciton.2,12 For
sufficiently thin QW’s, a simplified approach is pos-
sible, in which the polarization density of the QW is
presented in the form P �r, z� � Pn�r�d�z 2 zn�, where
r is an in-plane position vector, zn represents a coordi-
nate of the nth well, and Pn is the surface polarization
density of the well. When light is incident in the di-
rection of growth z of MQW’s, kk � 0 and there are
two independent degenerate transverse polarizations,
T and L, that are not coupled to the longitudinal Z
mode. In this case the dynamics of transverse modes
can be described by

�V2
n 2 v2�Pn � �c�p�GnE�zn� , (1)

v2

c2
E�z� 1

d2E�z�
dz2

� 24p
v2

c2
X
n

Pnd�z 2 zn� , (2)

which coincide with equations used in Refs. 9–11 and
13 to describe one-dimensional chains of atoms. Here
Vn and Gn are the excitonic frequency and the exci-
ton–light coupling of the nth QW, respectively. In an
infinite, pure system, all Gn � G0, Vn � V0, and zn �
na � nl0�2. The spectra of ideal MQW’s have been
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studied in many papers.2,3,7,13,14 In the specif ic case of
Bragg structures, the exciton resonance frequency is at
the center of the bandgap determined by the inequality
vl � V0�1 2

p
2G0�pV0 � , v , V0�1 1

p
2G0�pV0 � �

vu.7 This bandgap is the frequency region where we
look for new local states associated with defects in
MQW’s.

V and G defects introduce perturbations into the
equation of motion that are localized at one site (di-
agonal disorder). Therefore they can be studied by
the usual Green’s function technique (see, for instance,
Ref. 15). The resultant dispersion equations have the
form

GV,G � b�2
p
D , (3)

where b � 4G0v��v2 2 V2
0� and D � 21 1 b2�4 1

b cot�va�c�. For the V defect, the function is GV �
�V2

1 2 v2���V2
1 2 V

2
0 �; for the G defect, the respective

function is GG � G0��G1 2 G0�. V1 and G1 denote the
respective parameters of the defect layer. A similar
equation for the V defect was studied in the long-wave
approximation in Ref. 9. It was found that the equa-
tion has one real-valued solution for any V1 . V0. In
the case of Bragg structures there are always two so-
lutions for both types of defect, one below V1 and one
above. This is a manifestation of the degenerate na-
ture of the bandgap in Bragg structures. Equation (3)
can be solved approximately by use of the fact that
G0 ,, V0 in most cases. For the V defect, one solu-
tion demonstrates a radiative shift from the defect fre-
quency V1:

v
�1�
def � V1 2 G0�V1 2 V0����vu 2 V1� �V1 2 vl��1�2,

(4)
whereas the second solution splits off the upper or
lower boundary, depending on the sign of V1 2 V0:

v
�2�
def � vu, l 6 p2�vu 2 vl� �V1 2 V0�2�4V2

0 , (5)

where one chooses vu and minus for V1 . V0, and
vl and plus in the opposite case. In the case of the
G defect, both solutions appear in the vicinity of the
gap boundaries v

�1, 2�
def � vu, l 6 2�G1 2 G0�2�vu 2 vl�.

These solutions exist only for 0 , G1 , G0 and are close
to the gap boundaries. One could expect, therefore,
that the states at these frequencies will be vulnerable
to even a weak dissipation and will not significantly
affect the optical spectra of the system.

The a defect significantly differs from the two other
types. An increase in the interwell distance between
any two wells automatically changes the coordinates of
an infinite number of wells: zn � na for n # nd and
zn � �b 2 a� 1 na for nd , n, where b is the distance
between the ndth and the �nd 1 1�st wells. Therefore
this defect is nonlocal and cannot be treated with the
same methods as in the two cases described above.
The best approach to this situation is to match solu-
tions of semi-infinite chains for n , nd and n . nd 1

1 with a solution for na , z , na 1 �b 2 a�. Solu-
tions for semi-inf inite chains can be constructed by the
transfer matrix approach, in which the state of the sys-
tem is described by a two-dimensional vector vn with
components E�zn� and �c�v�dE�zn��dz. Propagation
of this vector through the system is described by the
transfer matrix t̂n:

ctn �

"
cos��v�c�an� 1 b sin��v�c�an� sin��v�c�an�

2sin��v�c�an� 1 b cos��v�c�an� cos��v�c�an�

#
,

(6)

where an � zn11 2 zn. As a result, one obtains the
dispersion equation for the defect mode in terms of
elements of the total transfer matrix T̂ , equal to the
product of all site matrices t̂:

�T11 1 T22� 2 i�T12 2 T21� � 0 . (7)

In the limit of an infinitely long system, the imaginary
part of Eq. (7) vanishes, and one has a real-valued dis-
persion equation for the frequency of a stationary local
mode. Using Eq. (6), one can write Eq. (7) for an infi-
nite MQW system as

cot��v�c�b� � 2 �sin��v�c�a� 2 bl2�2��

�cos��v�c�a� 2 l2� , (8)

where l2 � �cot�va�c� 1 b�2 2
p
D �sin�va�c� is one of

the eigenvalues of the transfer matrix [Eq. (6)]. This
equation also has two solutions, above and below V0.
Assuming that

p
G0 b�V0a ,, 1, one of these solutions

can be expressed as

v
�1�
def � V0 2

vu 2 vl

2

3
�21��j11�2�sin�p�2�j

1 1 �vu 2 vl��2V0�b�a� �21��j11�2� cos�p�2�j
,

(9)

where j � b�a and � � denotes an integer part. We can
obtain the second solution from Eq. (9) by replacing j

with j 1 1. Therefore, for G0 ,, V0 and j not very
large, both solutions are almost periodic functions of
b�a with a period of 1.

The expression on the left-hand side of Eq. (7)
coincides with the denominator of the transmission
and ref lection coefficients in a system of f inite length,
and, with the appropriate choice of transfer matrices
t, the equation T11 1 T22 � 0 produces dispersion
equations for local states of all three types of defect, in-
cluding Eq. (3) for V and G defects. In the absence of
homogeneous broadening of the exciton resonance, the
defects would cause a resonance increase in trans-
mission at the local mode frequency.9 The resonance
occurs when the defect is placed at the center of the
system. Then the maximum transmission becomes
independent of the system’s length, and in the case of
V and G defects it can be presented as

jtmaxj
2 � 1 2 4

∑µ
vdef 2 V0

vu 2 V0

∂2

2
1
2

∏2
. (10)

In the absence of absorption, transmission reaches
unity if the frequency of the local state is vdef � V0 6

�vu 2 V0��
p
2 . This cannot happen for the G defect,
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Fig. 1. (a) Ref lection and (b) transmission coeff icients of
200 QW’s with the defect placed in the middle of the stack.
Solid curves, the pure system; dashed curves, the system
with the a defect �b�a � 1.3�.

because frequencies of the respective local states
always lie close to the band edge, but for the V defect
it is quite possible to create the state with the required
frequency.

For the third type of defect, the resonance transmis-
sion also takes place when the defect is in the center of
the stack. tmax, in this case, can be expressed as

jtmaxj
2 � 8

Ω
vdef 2 V0

vu 2 V0

∑
1 2

µ
vdef 2 V0

vu 2 V0

∂2∏æ2
. (11)

It becomes unity for two frequencies: v
�1, 2�
def � V0 6

�vu 2 V0��
p
2 located symmetrically with respect to

the center of the gap. As one can see from Eq. (9),
these conditions can be satisfied for both defect fre-
quencies at the same time when b � �integer 1 1�2�a.

In a real system, enhancement of the transmission
coeff icient is usually limited by homogeneous broaden-
ing. Two situations are possible when exciton damp-
ing is taken into account. Damping can suppress the
resonance transmission, and the presence of the lo-
cal states will be observed only as an enhancement
of absorption at the local frequency. This case can
be called a weak-coupling regime for the local state,
when incident radiation is resonantly absorbed by a
local exciton state. The opposite case, when the reso-
nance transmission persists in the presence of damp-
ing, can be called a strong-coupling regime. In this
case there is coherent coupling between excitons and
the electromagnetic field, so the local state can appro-
priately be called a local polariton. Among the three
types of defect considered here, the G defect is less
likely to survive absorption because of the proximity
of the respective frequencies to bandgap edges. For
the V defect, one of the local frequencies appears far
enough from the boundaries and can be less sensitive
to absorption. However, the width of the transmission
resonance is determined by its radiative shift from V1,
where transmission goes to zero. This shift is rather
small, and small absorption can still suppress the reso-
nance transmission. Therefore the best candidate to
produce a local polariton state in the strong-coupling
regime is the a defect.
To account quantitatively for homogeneous broad-
ening we add an imaginary part to the exciton
polarizability, b � 4G0v��v2 2 V2

0 1 2igv�. For
numerical calculations we use parameters from
Ref. 1: V0 � 1.491 eV, G0 � 27 meV, and g � 0.28 eV.
The localization length at the center of the forbidden
bandgap is in this case 	80a, whereas the length of the
samples used reached 100a. Figure 1 presents plots
of ref lection and transmission for a MQW system with
an a defect for which the resonance transmission is the
most pronounced. We can conclude that the interwell
spacing defect gives rise to local polariton states in
regular MQW InGaAs�GaAs MQW’s. These states
manifest themselves in strong resonant tunneling of
light through a MQW system with 100 or more wells
and can be observed in transmission experiments.
These states can be also viewed as long-lived optical
waveguide modes8 in Bragg MQW structures. The
a type of defect can be implemented experimentally
and presents additional opportunities for controlling
light–matter interaction and photonic engineering.
It gives a unique opportunity for observing and
studying local polaritons.
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