- 57. Let V be a subspace of \mathbb{R}^n . Prove that V^{\perp} is also a subspace of \mathbb{R}^n .
- 58. Let V and W be subspaces of \mathbb{R}^n . Prove that $V \perp W$ implies that $V \cap W = \{0\}$.

59. Let $P = \{ [a \ b \ c]^T \in I\!\!R^3 : a + 2b - c = 6 \}.$

- (a) Give three points that are in P and three points that are not in P. Is P a subspace of \mathbb{R}^3 ?
- (b) Find the subspace Q of \mathbb{R}^3 that has dimension 2 and no point in common with P. Give three points that are in Q and three points that are not in Q.
- (c) Find Q^{\perp} . What is the dimension of Q^{\perp} ? Give three points that are in Q^{\perp} and three points that are not in Q^{\perp} .
- (d) Find, if possible, matrices A and B such that $\mathcal{N}(A) = Q^{\perp}$ and $\mathcal{R}(B) = Q^{\perp}$.

60. Let
$$S = \{ [a \ b \ c \ d]^T \in I\!\!R^4 : a+b+c+d=0 \}$$
. Find S^{\perp} .

- 61. Give an example of a 2×3 -matrix A with
 - (a) $\mathcal{N}(A) \neq \{0\}$ and check that $\mathcal{N}(A) = \mathcal{N}(A^T A)$;
 - (b) $\mathcal{N}(A) = \{0\}$ and check that $A^T A$ is invertible.
- 62. Let A be an $m \times n$ -matrix. Prove

(a)
$$\mathcal{N}(A) = \mathcal{N}(A^T A)$$
 (b) If $\mathcal{N}(A) = \{0\}$, then $A^T A$ is invertible.

- 63. Consider a company that prints books.
 - (a) If no books are printed, the costs for the company are \$2000. If 100 books are printed, the costs are \$5000. For 200 and 300 books the costs are \$8000 and \$11000, respectively. Draw the data into a coordinate system, using the number of books divided by 100 on the x-axis and the costs in Dollars divided by 1000 on the y-axis. Can you find a line such that each of the points is on that line? (Will work unless you did a mistake.) Give the equation l(x) of this line. Use it to estimate the costs for producing 400 books.
 - (b) Same problem as in (a), but the data are now as follows: For 0, 100, 200, and 300 books the costs are \$1500, \$6200, \$8700, and \$11000, respectively. Plot the data in a coordinate system as in (a). Try to find a line through them (won't work unless you did a mistake). Use the line l(x) from (a) and compute the sum $(1.5-l(0))^2+(6.2-l(1))^2+(8.7-l(2))^2+(11-l(3))^2$. What is this sum geometrically? Now consider the line $\tilde{l}(x) = 3x + 2.1$. Evaluate the corresponding sum for the line $\tilde{l}(x)$. Now find the line that has the smallest possible such sum (give this sum). Use this line to predict the cost of producing 400 books.
- 64. On 10 stock exchange days the cash courses x and y of the shares of two automobile companies read as follows: 420, 429, 445, 418, 431, 459, 451, 465, 449, 473 (for x) and 495, 506, 516, 475, 493, 531, 537, 554, 547, 565 (for y). Plot the data into a coordinate system. Are they on a line? (Most likely not.) Find the line that fits the data best using the method from the previous problem. Use this line to predict the course of y when x = 455.