- 30. Solve the following initial value problems:
 - (a) y'' 3y' 10y = 0. First, y(0) = 1, y'(0) = 0. Next, y(0) = 0, y'(0) = 1;
 - (b) 6y'' 5y' + y = 0. First, y(0) = 4, y'(0) = 0. Next: y(0) = 0, y'(0) = 0;
 - (c) y'' + 3y' = 0, y(0) = -2, y'(0) = 3;
 - (d) 6y'' 7y' + 2y = 0, y(0) = 0, y'(0) = 1;
 - (e) 2y'' 3y' + y = 0, y(0) = 2, $y'(0) = \frac{1}{2}$.
- 31. If $b^2 4ac > 0$, solve the IVP ay'' + by' + cy = 0, $y(t_0) = y_0$, $y'(t_0) = y_0'$.
- 32. Consider the equation y'' = y.
 - (a) Sketch the solutions c with y(0) = 1 and y'(0) = 0 and s with y(0) = 0 and y'(0) = 1.
 - (b) Show that $c^2(t) s^2(t) = 1$ for all t. Also, prove that c' = s and s' = c.
 - (c) Draw the Gateway Arch $y(x) = -127.7c(\frac{x}{127.7}) + 757.7$. How high is it? How long is it's base?
- 33. Find the Wronskian of the given pair of functions:
 - (a) e^{-2t} and te^{-2t} ; (b) e^{-2t} and $\frac{3}{5}e^{-2t}$;
- (c) $\cos t$ and $\sin t$;
- (d) $\cosh t$ and $\sinh t$; (e) t^n and t^m ;
- (f) t^n and mt^n ;

- (g) t and te^t ;
- (h) $\cos^2 t$ and $1 + \cos(2t)$.
- 34. If the Wronskian of y_1 and y_2 is $3e^{4t}$ and if $y_1(t) = e^{2t}$, find y_2 .
- 35. If $b^2 4ac > 0$, calculate the Wronskian of any two solutions of ay'' + by' + cy = 0.
- 36. Consider the equation y'' + q(t)y = 0.
 - (a) If $q(t) \equiv -1$, find two solutions such that the Wronskian is always 1.
 - (b) If $q(t) \equiv 1$, find two solutions such that the Wronskian is always 1.
 - (c) If q is any continuous function, show that the Wronskian of any two solutions is independent of the time. Calculate the Wronskian.
- 37. For the equation (p(t)y')' + q(t)y = 0, where p is differentiable and never zero and q is continuous, calculate the Wronskian of any two solutions.