- 18. Solve the following initial value problems by separating the variables. Give the solutions explicitly and find their domains.
 - (a) $y' = (1 2t)y^2$, $y(0) = -\frac{1}{6}$;
 - (b) $y' = -\frac{x}{y}$, y(1) = 1;

 - (c) $y' = \frac{x^2}{y}$, y(0) = 1; (d) $y' = \frac{x^2}{y}$, y(0) = -1; (e) $y' = \frac{3x^2 1}{3 + 2y}$, y(0) = 1;
 - (f) $\sin(2t) + \cos(3y)y' = 0$, $y(\frac{\pi}{2}) = \frac{\pi}{3}$.
- 19. Let N(t) be the number of individuals in a certain population at time t.
 - (a) If we assume that N increases proportionally to the number of individuals currently present, give a differential equation for N and solve it. For an initial condition, assume that at time 0 the number of individuals is N_0 .
 - (b) Characterize the increasing, decreasing, and constant solutions from (a). Sketch the solutions. Find the limit of N(t) as $t \to \infty$. Give an interpretation of all of your results.
 - (c) Now we assume that N changes proportionally to the product of the number of individuals currently present and $(1 - \frac{N(t)}{K})$, where K is a constant. Give the corresponding differential equation.
 - (d) Solve the differential equation from (c) by separating the variables. For an initial condition, make the same assumption than in (a).
 - (e) Characterize the increasing, decreasing, and constant solutions from (d). Sketch the solutions. Also, find the limit of N(t) as $t \to \infty$. Give an interpretation of all of your results.
- 20. Consider the equation $y' = \frac{y^2 + 3ty}{t^2}$.
 - (a) Find a function F such that $y' = F(\frac{y}{t})$.
 - (b) Substitute $z = \frac{y}{t}$ and solve the resulting differential equation.
 - (c) Find the solution of the original differential equation.
 - (d) Based on the above, suggest a method on how to find the solution of an equation $y' = G(\frac{y}{t})$.
 - (e) Test your method with the equation $y' = \frac{2y-t}{2t-y}$.
- 21. Give the solution y of the following problems explicitly:
 - (a) $y' = y^2 + y + 1$;
 - (b) $y' = y\sqrt{1-y}, y < 1.$
- 22. Find all solutions of $yy' = \sqrt{1 (x^2 + y^2)} x$, where $x^2 + y^2 < 1$, y > 0. Sketch the solutions. (Hint: Substitute $z(x) = \sqrt{x^2 + y^2(x)}$.)