- 9. Prove the following statements using the Principle of Mathematical Induction:

 - (a) $\forall n \in \mathbb{N} \sum_{k=1}^{n} k^2 = \frac{n(n+1)(2n+1)}{6};$ (b) $\forall n \in \mathbb{N} \sum_{k=1}^{n} k^3 = \left(\frac{n(n+1)}{2}\right)^2;$
 - (c) $\forall n \in \mathbb{N} \sum_{k=1}^{n} (-1)^{k+1} k^2 = \frac{(-1)^{n+1} n(n+1)}{2};$ (d) $\forall n \in \mathbb{N} \setminus \{1, 2\} \ 2n + 1 \le 2^n;$

 - (e) $\forall n \in \mathbb{N} \setminus \{1, 2, 3\} \ 2^n > n^2$:
 - (f) $\forall n \in \mathbb{N} \ 3^n > n2^n$;
 - (g) $\forall n \in \mathbb{N} \ 5 | (11^n 6);$
 - (h) $\forall n \in \mathbb{N} \ 4 | (6 \cdot 7^n 2 \cdot 3^n);$
 - (i) $\forall x \ge -1 \ \forall n \in \mathbb{N} \ (1+x)^n \ge 1 + nx$.
- 10. Let P(n): $\sum_{k=1}^{n} (2k) = (n+2)(n-1)$. Find the truth values of the following propositions:
 - (a) $\forall k \in \mathbb{N} \ P(k) \to P(k+1);$
 - (b) $\forall k \in \mathbb{N} \ P(k)$.
- 11. Work on problems 7–9 of Section 1.6 in the textbook.
- 12. We define the harmonic numbers as

$$H_n = \sum_{k=1}^n \frac{1}{k}.$$

- (a) Find H_1 , H_2 , H_3 , H_4 , H_5 as fractions $\frac{m}{n}$ with $m, n \in \mathbb{Z}$.
- (b) What is $H_{n+1} H_n$ for $n \in \mathbb{N}$?
- (c) Prove by mathematical induction that $H_{2^n} \leq 1 + n$ holds for all $n \in \mathbb{N}_0$.
- (d) Prove by mathematical induction that $\sum_{k=1}^{n} H_k = (n+1)H_n n$ holds for all $n \in \mathbb{N}$.
- 13. By experimenting with some values of n, guess a formula for the sum

$$\sum_{k=1}^{n} \frac{1}{k(k+1)},$$

and then use mathematical induction to verify your formula.