- 30. Work on problems 1–8 of Section 2.7 in the textbook.
- 31. Define a relation on \mathbb{Z} by $m \sim n$ iff 7 divides m-n. Show that \sim is an equivalence relation. Find all equivalence classes.
- 32. Work on problems 1-5, 26, 36, 56, 58, 89-95 of Section 2.8 in the textbook.
- 33. Let $f, g : \mathbb{N} \to \mathbb{N}$ be defined by $f(n) = n^2$ and g(n) = 3n + 2. Is f one-to-one, onto, invertible? Find $f(\{8, 9, 11\}), g^{-1}(\{8, 9, 11\}), (g \circ f)(4), (g \circ f)^{-1}(\{13, 14\}), \text{ and } \mathcal{P}(f^{-1}([3, 10] \cap \mathbb{Z})).$
- 34. Let $X = \{x_1, x_2, x_3, x_4\}$, $Y = \{y_1, y_2, y_3, y_4\}$, $Z = \{z_1, z_2, z_3\}$, and define $f : X \to Y$, $g : Y \to Z$, $h : Z \to X$ by $f(x_1) = y_1$, $f(x_2) = y_3$, $f(x_3) = y_4$, $f(x_4) = y_2$, $g(y_1) = z_1$, $g(y_2) = z_1$, $g(y_3) = z_3$, $g(y_4) = z_2$, $h(z_1) = x_1$, $h(z_2) = x_2$, and $h(z_3) = x_4$.
 - (a) Find $h \circ g$, $g \circ f$, and $h \circ g \circ f$.
 - (b) Find $g(\{y_1, y_3\})$, h(Z), $f^{-1}(\{y_1, y_3\})$, and $h^{-1}(\{x_3, x_4\})$.
 - (c) Is f one-to-one, onto, or invertible? How about g and h? Find the inverse functions of whatever functions are invertible.
 - (d) Find $(h \circ g \circ f)(X) \cap \{x_2, x_3, x_4\}, h^{-1}(X) \cup g(Y), Z \setminus g(Y), \text{ and } \mathcal{P}(h(Z)).$