- 40. Read Sections 5.1 and 5.2 of the textbook.
- 41. The population of Utopia increases 5 percent per year. At the beginning of 2000 the population was 10000. What was the population at the end of 1970?
- 42. Assume that a person invests \$3000 at 12% compounded annually. Let A_n be the amount of money at the end of n years.
 - (a) Find A_1 , A_2 , A_3 , and a recurrence relation that relates A_{n+1} to A_n for $n \in \mathbb{N}$.
 - (b) Find A_n for all $n \in \mathbb{N}$.
 - (c) How long will it take to double the initial investment?
- 43. Use "integrating factors" to find the solutions of the following initial value problems:
 - (a) $y_{n+1} = 3y_n$, $y_0 = 4$;
 - (b) $y_{n+1} = 3y_n 2$, $y_0 = 1$;
 - (c) $y_{n+1} = 4y_n 5$, $y_4 = 3$;
 - (d) $y_{n+1} = 1 2y_n$, $y_0 = 0$;
 - (e) $a_{n+1} = 2(n+1)a_n$, $a_0 = 1$;
 - (f) $a_{n+1} = 2(n+1)a_n + 1$, $a_0 = 1$.
- 44. Suppose we deposit \$1000 at the beginning of each year in an IRA that pays an annual rate of 7%. Let y_n be the money in the IRA at the end of the nth year. Find a recurrence relation for y and solve it.
- 45. Suppose we have \$10000 in a savings account that pays an annual interest rate of 3% and now start taking at the beginning of each year \$500. Let y_n be the money in the account at the end of the nth year. Find a recurrence relation for y and solve it. Will the account ever be empty? If so, when?
- 46. Find the solutions of the following initial value problems:
 - (a) $y_{n+2} = y_{n+1} + 6y_n$, $y_0 = 1$, $y_1 = 2$;
 - (b) $y_{n+2} = 7y_{n+1} 12y_n$, $y_0 = 1$, $y_1 = 1$;
 - (c) $L_{n+2} = L_{n+1} + L_n$, $L_0 = 1$, $L_1 = 3$;
 - (d) $a_{n+2} = 6a_{n+1} 9a_n$, $a_0 = -2$, $a_1 = 1$.
- 47. Find all solutions of the recurrence relation $u_{n+3} = 7u_{n+2} 16u_{n+1} + 12u_n$.