39. Solve the following initial value problems: (a) $$y'' - 3y' - 10y = 0$$. First, $y(0) = 1$, $y'(0) = 0$. Next, $y(0) = 0$, $y'(0) = 1$; (b) $$6y'' - 5y' + y = 0$$. First, $y(0) = 4$, $y'(0) = 0$. Next: $y(0) = 0$, $y'(0) = 0$; (c) $$y'' + 3y' = 0$$, $y(0) = -2$, $y'(0) = 3$; (d) $$6y'' - 7y' + 2y = 0$$, $y(0) = 0$, $y'(0) = 1$; (e) $$2y'' - 3y' + y = 0$$, $y(0) = 2$, $y'(0) = \frac{1}{2}$; (f) $$y'' + 4y = 0$$, $y(0) = 0$, $y'(0) = 1$; (g) $$y'' + 4y' + 5y = 0$$, $y(0) = 1$, $y'(0) = 0$; (h) $$y'' - 2y' + 5y = 0$$, $y(\frac{\pi}{2}) = 0$, $y'(\frac{\pi}{2}) = 2$; (i) $$y'' - 2.5y' + y = 0$$, $y(0) = 0$, $y'(0) = 1$; (j) $$y'' - 2y' + y = 0$$, $y(0) = 0$, $y'(0) = 1$; (k) $$y'' - 4y' + 4y = 0$$, $y(0) = 0$, $y'(0) = 1$; (1) $$y'' - 6y' + 9y = 0$$, $y(0) = 0$, $y'(0) = 1$. 40. Consider the equation y'' = y. - (a) Sketch the solutions c with y(0) = 1 and y'(0) = 0 and s with y(0) = 0 and y'(0) = 1. - (b) Show that $c^2(t) s^2(t) = 1$ for all t. Also, prove that c' = s and s' = c. - (c) Draw the arch $y(x) = -127.7c(\frac{x}{127.7}) + 757.7$. How high is it? How long is it's base? 41. Find the Wronskian of the given pair of functions: - (a) e^{-2t} and te^{-2t} ; (b) e^{-2t} and $\frac{3}{5}e^{-2t}$; - ; (c) $\cos t$ and $\sin t$; - (d) $\cosh t$ and $\sinh t$; (e) t^n and t^m ; - (f) t^n and mt^n ; - (g) t and te^t ; (h) $\cos^2 t$ and $1 + \cos(2t)$. - (1) cos t and $1 + \cos(2t)$. 42. If the Wronskian of y_1 and y_2 is $3e^{4t}$ and if $y_1(t) = e^{2t}$, find y_2 . 43. Consider the second order linear equation with constant coefficients ay'' + by' + cy = 0. (a) Solve the IVP consisting of the equation and the initial conditions $y(t_0) = y_0$ and $y'(t_0) = y'_0$. (b) Calculate the Wronskian of any two solutions of the equation. Hint: You will need to work on three cases for each (a) and (b).