39. Solve the following initial value problems:

(a)
$$y'' - 3y' - 10y = 0$$
. First, $y(0) = 1$, $y'(0) = 0$. Next, $y(0) = 0$, $y'(0) = 1$;

(b)
$$6y'' - 5y' + y = 0$$
. First, $y(0) = 4$, $y'(0) = 0$. Next: $y(0) = 0$, $y'(0) = 0$;

(c)
$$y'' + 3y' = 0$$
, $y(0) = -2$, $y'(0) = 3$;

(d)
$$6y'' - 7y' + 2y = 0$$
, $y(0) = 0$, $y'(0) = 1$;

(e)
$$2y'' - 3y' + y = 0$$
, $y(0) = 2$, $y'(0) = \frac{1}{2}$;

(f)
$$y'' + 4y = 0$$
, $y(0) = 0$, $y'(0) = 1$;

(g)
$$y'' + 4y' + 5y = 0$$
, $y(0) = 1$, $y'(0) = 0$;

(h)
$$y'' - 2y' + 5y = 0$$
, $y(\frac{\pi}{2}) = 0$, $y'(\frac{\pi}{2}) = 2$;

(i)
$$y'' - 2.5y' + y = 0$$
, $y(0) = 0$, $y'(0) = 1$;

(j)
$$y'' - 2y' + y = 0$$
, $y(0) = 0$, $y'(0) = 1$;

(k)
$$y'' - 4y' + 4y = 0$$
, $y(0) = 0$, $y'(0) = 1$;

(1)
$$y'' - 6y' + 9y = 0$$
, $y(0) = 0$, $y'(0) = 1$.

40. Consider the equation y'' = y.

- (a) Sketch the solutions c with y(0) = 1 and y'(0) = 0 and s with y(0) = 0 and y'(0) = 1.
- (b) Show that $c^2(t) s^2(t) = 1$ for all t. Also, prove that c' = s and s' = c.
- (c) Draw the arch $y(x) = -127.7c(\frac{x}{127.7}) + 757.7$. How high is it? How long is it's base?

41. Find the Wronskian of the given pair of functions:

- (a) e^{-2t} and te^{-2t} ; (b) e^{-2t} and $\frac{3}{5}e^{-2t}$;
 - ; (c) $\cos t$ and $\sin t$;
- (d) $\cosh t$ and $\sinh t$; (e) t^n and t^m ;
- (f) t^n and mt^n ;
- (g) t and te^t ; (h) $\cos^2 t$ and $1 + \cos(2t)$.
 - (1) cos t and $1 + \cos(2t)$.

42. If the Wronskian of y_1 and y_2 is $3e^{4t}$ and if $y_1(t) = e^{2t}$, find y_2 .

43. Consider the second order linear equation with constant coefficients ay'' + by' + cy = 0.

(a) Solve the IVP consisting of the equation and the initial conditions $y(t_0) = y_0$ and $y'(t_0) = y'_0$.

(b) Calculate the Wronskian of any two solutions of the equation.

Hint: You will need to work on three cases for each (a) and (b).