Part A: Fill in only the boxes and do your work on a separate sheet.

1. Introduce $z = \begin{pmatrix} y \\ y' \end{pmatrix}$ and rewrite the equation as a system z' = Az. Find two linearly independent solutions z_1 and z_2 :

equation	$\mathrm{matrix}\ A$	eigenvalues of A	$z_1(t)$	$z_2(t)$
y'' - 3y' - 10y = 0	$ \left(\begin{array}{cc} 0 & 1 \\ 10 & 3 \end{array}\right) $	5, -2	$\binom{1}{5}e^{5t}$	$\binom{1}{-2}e^{-2t}$
6y'' - 5y' + y = 0	$\left[\left(\begin{array}{cc} 0 & 1 \\ -1/6 & 5/6 \end{array} \right) \right]$	1/2, 1/3	$\binom{2}{1}e^{t/2}$	$\binom{3}{1}e^{t/3}$
y'' + 3y' = 0	$\left(\begin{array}{cc} 0 & 1 \\ 0 & -3 \end{array}\right)$	0, -3	$\binom{1}{0}$	$\binom{1}{-3}e^{-3t}$

2. Fill in the boxes (again y_1 and y_2 should be linearly independent solutions):

equation	characteristic equation	zeros	$y_1(t)$	$y_2(t)$
$t^2y'' - 2ty' + 2y = 0$	(r-2)(r-1) = 0	1, 2	t	t^2
$t^2y'' + 3ty' + y = 0$	$(r+1)^2 = 0$	-1	1/t	$\ln(t)/t$
$2t^2y'' + 3ty' - y = 0$	(2r-1)(r+1) = 0	0.5, -1	\sqrt{t}	1/t

Part B: For the remaining problems, show your work clearly, explaining each step. Use only the space allocated for each problem (use separate sheets of paper for additional work).

3. Let $x_0 = x_1 = 1$. Add both numbers to obtain x_2 , then add x_1 and x_2 to obtain x_3 and so on. Find a formula for x_n , n = 0, 1, 2, ... (try $x_n = r^n$ and use similar techniques as for differential equations). Use it to give x_{20} .

This example was worked out in class. The solution is

$$x_n = \left(\frac{1+\sqrt{5}}{2}\right)^{n+1} - \left(\frac{1-\sqrt{5}}{2}\right)^{n+1}.$$

- 4. A mass weighing 2 lb stretches a spring 6 inches. At time 0 the mass is released from a point 8 inches below the equilibrium position with upward velocity of $\frac{4}{3}$ ft/sec.
 - (a) Determine the function x(t) which describes the subsequent free motion of the mass (ignoring any damping forces).
 - (b) Express x(t) in the form $r \sin(\omega t + \theta)$. Sketch x.
 - (c) Find the period and amplitude of the motion.

This example is worked out on page 175 of the textbook.

5. Find the general solution of the system x' = -6x + 5y, y' = -5x + 4y.

The solution of this problem is posted on the website.