- 83. Let f be summable. Show that the set $X(f \ge \alpha)$ has measure less than or equal to $(1/\alpha) \int_X f d\mu$. This is Chebyschev's inequality.
- 84. Let f be summable with $\int_X f d\mu < \infty$. Show that f is finite almost everywhere on X.
- 85. Suppose that f attains the values c_1, c_2, \ldots (countably many) on exactly the (measurable) sets A_1, A_2, \ldots Calculate $\int_X f d\mu$.
- 86. Let f be the Dirichlet function. Find $\int_{\mathbb{R}} f d\mu$, where the measure space is $(\mathbb{R}, \mathcal{A}_L, \mu_L)$.
- 87. Let f be a sequence with nonnegative numbers. Find $\int_{\mathbb{N}} f d\mu$, where the measure space is $(\mathbb{N}, \mathcal{P}(\mathbb{N}), \mu)$ with $\mu(A) = |A|$ for $A \subset \mathbb{N}$.
- 88. Let f_n be functions defined on X = [0,1] by $f_n(x) = n$ for 0 < x < 1/n and 0 otherwise. Does the L-integral of f_n converge to the L-integral of the limit of f_n as $n \to \infty$?
- 89. Assume f is integrable (on a complete measure space). If $g \sim f$, then show that g is integrable.
- 90. Assume f and g are integrable with $f \sim g$. Show that the integrals of f and g are the same.
- 91. Let f, g, h be integrable and g, h be nonnegative with f = g h. Show that $\int_X f d\mu = \int_X g d\mu - \int_X h d\mu$.