- 20. Let $f_n(x) = x \frac{x^n}{n}$. Determine the limit function f of $\{f_n\}$ on [0,1] and decide whether $f'_n \to f'$. Does $\int_0^1 f_n(x) dx \to \int_0^1 f(x) dx$ hold?
- 21. Let $f_n(x) = nx(1-x)^n$. Graph f_1 , f_2 , f_5 , and f_{11} on [0,1]. Determine the limit function f of $\{f_n\}$ as $n \to \infty$. Is the limit function continuous? Is $f'_n \to f'$ true? How about the integral? Discuss whether $\{f_n\}$ is uniformly convergent on [0,1].
- 22. Let $f_n(x) = nxe^{-nx}$. Is $\{f_n\}_{n\in\mathbb{N}}$ uniformly convergent on $(0,\infty)$?
- 23. Prove that $f_n \to f$ uniformly provided $|f_n(x) f(x)| \le \alpha_n$ for all $n \ge N$ and all $x \in E$, where $\{\alpha_n\}$ is assumed to be a sequence that converges to zero.
- 24. Let $f_n(x) = x^{2n}/(1+x^{2n})$. What is the limit function? Show that the sequence converges uniformly on [0, q] with q < 1 and also on $[\alpha, \infty)$ with $\alpha > 1$ but not on \mathbb{R} .
- 25. Let $f_n(x) = nx/(1 + n^2x^2)$ for $x \in [0, 1]$. Show that the sequence converges uniformly on [q, 1] for any $q \in (0, 1)$ but not on [0, 1].
- 26. Show that $\sum_{k=0}^{\infty} x^k (1-x)$ converges on (-1,1], but not uniformly.
- 27. Let $\alpha > 1$. Show that $\sum_{k=1}^{\infty} \frac{\sin(kx)}{k^{\alpha}}$ is uniformly convergent on \mathbb{R} .
- 28. Prove: If $f_n \to f$ uniformly on E and $g \in B(E)$, then $f_n g \to f g$ uniformly on E.
- 29. Prove: If $f_n \to f$ uniformly on E and $|f_n(x)| \ge \alpha > 0$ for all $n \in \mathbb{N}$ and all $x \in E$, then $1/f_n \to 1/f$ uniformly on E.